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INTERIOR PENALTY PRECONDITIONERS 
FOR MIXED FINITE ELEMENT APPROXIMATIONS 

OF ELLIPTIC PROBLEMS 

TORGEIR RUSTEN, PANAYOT S. VASSILEVSKI, AND RAGNAR WINTHER 

ABSTRACT. It is established that an interior penalty method applied to second- 
order elliptic problems gives rise to a local operator which is spectrally equiv- 
alent to the corresponding nonlocal operator arising from the mixed finite 
element method. This relation can be utilized in order to construct precon- 
ditioners for the discrete mixed system. As an example, a family of additive 
Schwarz preconditioners for these systems is constructed. Numerical examples 
which confirm the theoretical results are also presented. 

1. INTRODUCTION 

The purpose of this paper is to discuss the construction of preconditioners for the 
discrete problems arising from mixed finite element discretizations of second-order 
elliptic boundary value problems. In particular, we are interested in preconditioners 
constructed by domain decomposition. The main observation made in this paper 
is that, under suitable assumptions, there is a spectral equivalence between the 
local operator which arises from the interior penalty method studied by Arnold [1] 
and the corresponding nonlocal operator which is generated by the mixed method. 
Hence, any reasonable preconditioner for the interior penalty operator is also a 
suitable preconditioner for the corresponding mixed system. As an example of this 
approach we will use the interior penalty method to generate additive Schwarz 
preconditioners for the mixed system. 

Let Q C JR2 be a bounded polygonal domain with boundary 9Q. For a given f E 
L2(Q) and a given measurable, symmetric, uniformly positive definite coefficient 
matrix k = { (x)},j=1 on Q we consider the second-order elliptic problem 

(1.1) -V kVp= f in Q, 
p= O on aQ. 

If the equation (1.1) is discretized by a conforming finite element method, a sym- 
metric, positive definite discrete system is obtained. In order to design effective 
iterative methods for these discrete elliptic systems, it is necessary to construct 
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suitable preconditioners. If machines with a parallel architecture are to be used, 
then domain decomposition preconditioners have proved to be very effective. These 
preconditioners are constructed by utilizing decompositions of the solution space 
into subspaces corresponding to a covering of Q by a collection of subdomains. If 
the subdomains are nonoverlapping, such that the subdomains define a coarse grid 
on Q, the complete preconditioner is defined from a composition of local problems 
on each subdomain, proper continuity equations on the interior boundaries and a 
suitable coarse global problem. For the discussion of nonoverlapping domain decom- 
position methods for conforming finite element discretizations we refer to Bj0rstad 
and Widlund [6] and Bramble, Pasciak and Schatz [10, 9] and the recent survey 
papers by Dryja, Smith and Widlund [20] and Xu [38]. The advantage of overlap- 
ping domain decomposition methods, or Schwarz methods, is partly that there is 
no need for continuity equations on the interior boundaries. Also, these methods 
are more robust with respect to the choice of local solvers. Schwarz methods for 
conforming finite element approximations are discussed by Lions [26], Dryja and 
Widlund [19], Matsokin and Nepomnyaschikh [27], Dryja, Smith and Widlund [20] 
and Xu [38]. 

The mixed finite element method for (1.1) can be derived from a system formu- 
lation of the problem. By introducing the "velocity" u =-kVp as a new variable, 
we obtain the system 

k-lu+Vp O, 

V u =f 

When this system is discretized, using piecewise polynomial finite element spaces 
with basis functions of local support, we obtain a linear system with a symmetric, 
indefinite coefficient matrix of the form 

(1.2) (A B*) 

Here, A is weighted mass matrix, defined from k-1, while B and B* are matrix 
representations of discrete analogs of the negative divergence and the gradient oper- 
ators, respectively. In order to speed up the convergence of an iterative method for 
(1.2), it is necessary to construct a preconditioner for the positive definite matrix 
L _ BA-lB*, i.e. the Schur complement (cf. ?3 below). This operator is a discrete 
analog of the second-order differential operator -V. (kV) which defines (1.1). How- 
ever, a major difficulty with the approximation of this operator introduced by the 
mixed method is that it is in general not a local operator, owing to the appearance 
of the inverse of the mass matrix A. Also, if k is a nondiagonal matrix, the matrix 
A cannot be easily inverted. In fact, even if k is diagonal, the matrix A can only be 
easily inverted if special finite element spaces like the rectangular Raviart-Thomas 
elements are chosen (cf. Ewing and Wheeler [22]). 

The fact that the mixed method introduces a nonlocal approximation of the op- 
erator -V. (kV) has consequences for the design of preconditioners for the mixed 
system. In particular, this is the case for a domain decomposition approach, since 
certain discrete problems on the subdomains will be nonlocal. One way to over- 
come this difficulty is to extend the discrete spaces where approximations of the 
variables u and p are sought in order to localize the operator L. This is for example 
done in the hybrid version of the mixed finite element method, where the conti- 
nuity requirements on the discrete "velocity space" are relaxed at the expense of 
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introducing Langrange multipliers on all the element edges. For a general discus- 
sion of the hybrid mixed finite element method we refer to Brezzi and Fortin [15]. 
The development of domain decomposition preconditioners for the hybrid method 
is discussed by Glowinski and Wheeler [25], Cowsar [16] and Cowsar, Mandel and 
Wheeler [17]. 

In Rusten and Winther [32] an alternative to the standard hybrid version of 
the mixed method is discussed, where the continuity requirements are only relaxed 
on the edges of a coarse grid. This relaxation has the effect that the operator L 
becomes local with respect to the elements of the coarse grid. In [32] this property 
is used in order to define a nonoverlapping domain decomposition preconditioner 
for the mixed finite element method. 

In contrast to the approaches described above we shall in this paper not work with 
any hybridization of the mixed finite element method. Instead of partly changing 
the method in order to localize the operator L, we shall establish that this operator 
is spectrally equivalent to the local operator which arises when the interior penalty 
method of [1] is applied to the problem (1.1). Hence, the interior penalty method 
can be used to construct preconditioners for L. Motivated by this fact, we shall an- 
alyze a family of additive Schwarz preconditioners for the interior penalty method. 
In this way we indirectly also develop a theory for additive Schwarz preconditioners 
for the discrete systems obtained from the mixed finite element method. 

The difference between our approach and the one taken in Cowsar [16] (cf., in 
particular ?7 of [16]) is that we do not relate the mixed approximation to a conform- 
ing approximation. We should also mention that efficient multigrid preconditioners 
for the mixed systems can be derived using the techniques developed by Bramble, 
Pasciak and Xu [12] (cf. also Vassilevski and Wang [35, 36]). 

In ?2 we give a brief review of the mixed finite element method and state the 
main assumptions that will be needed in later sections. A discussion of iterative 
methods and preconditioning for discrete saddle point problems is given in ?3. In 
this section we also derive the spectral equivalence between the mixed method and 
the interior penalty method. The results for the additive Schwarz preconditioner 
are derived in ?4. Finally, in ?5 we present some numerical experiments. 

2. PRELIMINARIES 

For any function space X the associated norm will be denoted by 11 . lix. If 
H'(Q) denotes the L2-based Sobolev space of order m on Q, we introduce the 
simpler notation 1t i m instead of 1. iiHm(rn Furthermore, ig will be used to 
denote 11 | when Q1 & Q. 

In order to introduce the mixed formulation of the problem (1.1), the space 
H(div; Q)--{X E L2(Q)2: V X E L2(Q)} is required. The norm on this space is 
defined by 

iiXiiH(div;Q) = (iiV *iiX + ilI1ii) 2 

Using integration by parts and having in mind the boundary condition p = 0 on 
9Q, one obtains the following mixed formulation of (1.1): 

Find u E H(div; Q) and p E L2(Q) such that 

(2.1) a(u, X) + b(X,p) = 0 for all X E H(div; Q), 
b(u, w) = -(f, w) for all w L2(Q). 
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Here, 

a(X,p) =j k-1x o dx, 

b(X, w) = - jwV. X dx, 

(f, g) = fg dx. 

We will also use the standard inner product (X, Sp) for functions X and p E L2(Q)2. 
We consider a quasi-uniform family of triangulation T = Th of Q into triangles 

or rectangles, where h E (0, 1] is a parameter which indicates the grid size, i.e., 
h is a characteristic diameter of the elements. An adequate approximation of the 
problem (2.1) can then be obtained using piecewise polynomial finite element spaces 
V = Vh C H(div; Q) and W = Wh C L2(Q) with respect to the triangulation Th. 

The space of piecewise constants with respect to Th is denoted Wh,. We assume 
that Whc C Wh. Furthermore, throughout this paper the spaces Vh and Wh are 
required to satisfy the Babuska-Brezzi condition, i.e., there is a positive constant 
500, independent of the mesh parameter h, such that 

(2.2) /3wIIL2() < sup (X, w) for all w E Wh 
XEVh IIXIIH(div;Q) 

In fact, we shall below state two assumptions, (A-I) and (A-II), which will, in 
particular, imply (2.2). Spaces that satisfy the stability condition (2.2) are proposed 
by Raviart-Thomas [30] for triangular and rectangular elements, in Brezzi, Douglas, 
Fortin and Marini [13], Brezzi, Douglas and Marini [14], Douglas and Wang [18] 
and can be also found in the texts of Girault and Raviart [24] and Brezzi and Fortin 
[15]. 

The finite element discretization of (2.1) then reads as follows: Find uh E Vh 
and Ph E Wh such that 

(2.3) a(uh, X) + b(X,Ph) = 0 for all X E Vh, 
b(uh, w) = -(f, w) for all w E Wh. 

This is a discrete linear system, and condition (2.2) implies, in particular, that the 
solution is unique. 

We introduce the following operators A = Ah: Vh -+ Vh defined by 

(AhX, so) = a(X, p) for all X and fo E Vh; 

B = Bh: Vh - Wh defined by 

(2.4) (BhX, W) = b(X, w) for all X E Vh, and all w E Wh; 

and B* =B*: Wh-- Vh defined by 

(B*w, X) = b(x, w) for all w E Wh and all X E Vh 

We observe that A is symmetric and positive definite and that B* is the adjoint of B 
with respect to the L2-inner products on Vh and Wh. Furthermore, the operators 
B and B* are discrete analogs of the negative divergence (-V.) and the gradient 
(V) operators, respectively. 
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The discrete problem (2.3) is a linear system of the following form: 

(2.5) (A B*) (Uh)= (0) 

Here, Q = Qh is the L2- projection of L2 (Q) onto the finite element space Wh. Note 
that there is no continuity requirement for the finite element functions in Wh across 
the element boundaries of Th. In practice, one chooses the space Wh consisting of 
discontinuous piecewise polynomials. In such cases it is clear that the projection 
Qh is a local projection. 

We observe that if L = Lh : Wh -+ Wh denotes the operator L = BA-lB*, then 
the solution Ph of (2.5) solves the reduced system 

Lph = Qf, 

which has the unique solution Ph = L-1Qf. 
To be more specific, consider the following pair of spaces due to Raviart and 

Thomas [30]. We denote by Qr,s (D), r, s > 0, the set of polynomials in two variables 
of degree r in the first variable and of degree s in the second variable, restricted to 
the given domain D. Also, Pr(D) denotes the set of polynomials of two variables of 
total degree r restricted to D. Finally, let Pr(E), for a one-dimensional boundary 
E, be the set of polynomials of one variable of degree r restricted to E. If r > 
0 is fixed and Th defines a rectangular grid, the space Vh consists of piecewise 
polynomials which for each T E Th are in Qr+i ,r(T) x Qr,r+i (T), while Wh consists 
of discontinuous functions in Qr,r (T). On the other hand, if Th consists of triangles, 
Vh consists of piecewise elements of Pr (T)2 U {[x, N]}, where vo runs over the 
homogeneous polynomials of degree r, while the elements of Wh are discontinuous 
functions which are locally in Pr (T). We observe that the requirement Vh C 
H(div; Q) implies that the normal component X rn of each X E Vh should be 
continuous across every edge of Th. Here and elsewhere n is a given unit vector 
normal to the given edge of the element. It is well known (cf. [30]) that the pairs of 
spaces Vh and Wh constructed above satisfy the Babuska-Brezzi condition (2.2). 
However, for the analysis below, more properties of these spaces are needed. 

We stress that the analysis to follow is not restricted to the spaces defined above. 
Also, with minor modifications it should apply to domains of higher than two 
dimensions. What is important for the analysis is the validity of the assumptions 
stated below. 

Assumption (A-I). Each element X E Vh can be defined locally on the basis of 
the following degrees of freedom: 

(2.6) 

f x nw dp = FE(w), for all WIE, w E W(T) and all edges E of T, 
E 

fX Vw dx = GT(VW), for all w E W(T). 
T 

Here, W(T) and V(T) denote the restrictions of the spaces Wh and Vh to any 
element T E Th, FE : L2(E) )-+ R and GT : L2(T) -+ R are given linear 
functionals, while p denotes the arc length along E. O 

The assumption (A-I) will be needed in order to establish the spectral equivalence 
given in Theorem 3.1 below. 
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This assumption implies that there is a positive constant c, independent of h, 
such that for any T E Th 

(2.7) IXd c C(hE IF2 G2) 

where the sum is taken over all edges E of T. Furthermore, 11 denotes the norm 
of FE and GT as linear functionals from L2 (E) and L2 (T), respectively, to R. Note 
that since WIE can be chosen from two different sides of each edge E, the stability 
of the above procedure implies that the value of X n E is specified solely on the 
functionals FE, i.e., independently of GT. Also, from the continuity property of 
X rn across E it follows that if 

X nw dp=O forallw E W(T), 
E 

then x . nE B-? 
Another consequence of the solvability of (2.6) is that the degrees of freedom of 

the space {Vw: w E W(T)} are no more than the degrees of freedom of the space 
Vo(T) -{X E V(T): X n = 0 on the edges E of T}. Furthermore, there is a 
constant c, independent of h and w, such that 

( f2 V~~ fT?i. Vw dx 
(2.8) ( IVW2 dX 

< 
C SUP 

\JT / CXVo(T) IIXI O,T 

for all w E W(T). 

Assumption (A-II). For any X E Vh its divergence, V X is in Wh. E 

The assumptions (A-I) and (A-II) imply the Babuska-Brezzi condition (2.2). We 
refer to [15] for this well-known result. 

We remark that Theorem 3.1 below, which is proved by only using the main 
assumption (A-I), implies a version of the Babuska-Brezzi condition in proper mesh- 
dependent norms. 

In order to carry out the construction of the additive Schwarz preconditioner 
in ?4 below, two extra technical assumptions will be needed. We will assume that 
Q is a fixed convex, bounded, polygonal domain which is an extension of Q. We 
emphasize that the domain Q is only needed in theoretical arguments and does 
not contribute to the construction of the computational method. Furthermore, if Q 
itself is convex we can take Q = Q and the two assumptions below will be simplified. 

An important tool in the construction of a Schwarz preconditioner is a proper 
coarse grid. 

Assumption (A-III). There exists a coarse family of quasi-uniform triangulations 
TH of Q, with characteristic diameter H > h, such that 7,h corresponds to a refine- 
ment of TH. Furthermore, Th and TH can be extended to quasiuniform triangula- 
tions 7,h and TH on Q with a corresponding refinement property. D 

Note that as a consequence of these extension properties we can define piecewise 
polynomial spaces Vh and Wh on Q such that Vh and Wh correspond to restrictions 
of the extended spaces to the domain Q. 

We shall also assume Vh and Wh are contained in higher-order piecewise polyno- 
mial spaces Vh and W1 which is a stable pair with respect to the Babuska-Brezzi 
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condition (2.2), and such that the corresponding mixed method admits error esti- 
mates of order h2 for solutions which are H2-regular on Q. With respect to these 

higher-order spaces on Q we define an operator B= Bh: Vh - W,h similar to the 
definition of B above (cf. (2.4)). Furthermore, B* denotes the L2-adjoint of B. We 
also let L = BB*, and Q Qh is the L2-projection of L2(Q) onto Wh. 

With this notation introduced the last assumption can be formulated precisely. 

Assumption (A-IV). The spaces Vh and Wh are contained in spaces of higher- 

degree piecewise polynomials Vl and W1 which satisfy the assumptions (A-I) and 
(A-II). Furthermore, if p E H2(Q) n Ho (Q) and Ph = L-1 (- A)13 then 

IIP -Ph 1o1? < ch2HIIPII2,Q. 

Here A\ denotes the Laplace operator and the constant c is independent of h and 
P. O 

Of the four assumptions given above, (A-III) can be satisfied by a proper con- 
struction of the grid. 

For the particular Raviart-Thomas spaces introduced above, depending on a 
degree parameter r > 0, the three other assumptions also hold. It is well known, 

and easy to verify, that (A-II) is satisfied. Assumption (A-IV) holds with Vh = Vh 

and Wh = Wh if r > 1 (cf. Falk and Osborn [23] or Brezzi and Fortin [15]). 
Then, since the lowest-order Raviart-Thomas spaces (r = 0) are contained in any 
higher-order space (e.g. r = 1), the assumption also holds when r = 0. 

The verification of (A-I) is essentially done already by Raviart and Thomas [30]. 
For rectangular elements (2.6) takes the form 

f X nq dp = FE(q), for all q E Pr(E) and all edges E of T, 
E 

fX q dx = GT(q), for all q E Qr,-,r(T) x Qr,r-i(T). 
T 

These equations specify 4(r + 1) + 2r(r + 1) = 2(r + 1)(r + 2) degrees of freedom 
of X E V(T), i.e., precisely the degrees of freedom in Qr+i,r(T) x Qr,r+i(T). 
Similarly, for triangular Raviart-Thomas elements, (2.6) reads 

fJ X nq dp = FE (q), for all q E Pr(E) and all edges E of T, 
E 

fX* q dx = GT(q), for all q E Pr-i(T)2. 
T 

These equations specify 3(r + 1) + r(r + 1) = (r + 1)(r + 3) degrees of freedom for 

X E V(T), which are exactly the degrees of freedom in Pr (T)2 U { [xo] } where 
v0 runs over the homogeneous polynomials of degree r. 

3. THE SPECTRALLY EQUIVALENT LOCAL OPERATOR 

In the rest of this paper we will usually drop the subscript h which indicates 
that for example operators or spaces depend on the fine grid Th, while dependence 
on the coarse grid TH will be explicitly indicated. The analysis done in this section 
only relies on the assumption (A-I). 

Many different approaches have been suggested in order to construct iterative 
methods for systems of the form (2.5). In our computations, presented below in 
?5, we have used the minimum residual method, or the SYMLQ method, originally 
proposed by Paige and Saunders [28] for general symmetric, indefinite problems. 
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Alternative iterative methods for saddle point systems can e.g. be found in Bramble 
and Pasciak [7], Bramble, Pasciak and Vassilev [11], Verfiirth [37], Elman and 
Golub [21], Queck [29], Bank, Welfert and Yserentant [5], Axelsson [2], Axelsson 
and Vassilevski [3, 4]. 

The minimum residual method generates approximations of the solution of the 
linear system in the Krylov space generated by the symmetric operator 

(A B*) 
tB O 

defined on the product space V x W. Therefore, only actions of this operator 
have to be computed during the iterations, and, owing to the symmetry of the 
operator, short recurrence relations are obtained. The convergence rate of the 
minimum residual method applied to systems of the form (2.5) will depend on 
spectral properties of the positive definite operators A and L = BA-lB*. If each 
of these operators are well conditioned, and they are properly scaled relative to 
each other, fast convergence of the iterative procedure can be guaranteed. For 
discussions on the application of the minimum residual method to systems of the 
form (2.5) we refer to Rusten and Winther [31, 32], Silvester and Wathen [33] and 
Vassilevski and Lazarov [34]. 

By the assumptions on the coefficient matrix k it follows that there are positive 
constants ao, a1 > 0 such that 

aol? < k-(x) < ?al for all x E Q, 

where I denotes the 2 x 2 identity matrix. Hence, the operator A is well conditioned, 
independent of h, in the sense that 

(3.1) ao(X,X) < (AX,X) < ?a,(X,X) for all X V. 

Therefore, the performance of the minimum residual method will essentially be 
governed by the operator L = BA-lB*, which we recall is a discrete, nonlocal 
analog of the differential operator -V . (kV). Furthermore, since A is spectrally 
equivalent to the identity operator on V, L is spectrally equivalent to BB*, which 
is a nonlocal discrete analog of the negative Laplace operator. 

The stability condition (2.2) will imply that 

(BB*w,)= sup(B*w, X)2 b(X, W)2 2 2 
XEV X 0 XEV IX 2IH(div;Q) 

Hence, the smallest eigenvalue of BB* is bounded below, independent of h. How- 
ever, since BB* is a discrete analog of the negative Laplace operator, the largest 
eigenvalue will grow proportionally to h2. Consequently, a preconditioner for BB* 
is necessary in order to obtain an efficient iterative method. 

Following the ideas from [32], we introduce a positive definite operator N on W 
and consider the preconditioned system 

(3.2) (N AB ) (Ph) (-N21Qf)' 

which is equivalent to (2.5). Furthermore, the coefficient operator is symmetric 
if the L2-inner product on W is replaced by (N., .), and, if the preconditioner N 
is chosen such that the condition number of N-'BB* is independent of h, the 
minimum residual method applied to (3.2) converges with a rate independent of h. 
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We remark that in order to compute the action of the coefficient matrix of (3.2) we 
need to compute the action of N-1, while the action of N is never required. 

We should emphasize here that every effective iterative method for the system 
(2.5) requires a preconditioner for the operator L, or BB*. Hence, our discussion 
of preconditioners is not limited to the minimum residual method. For a discussion 
of the relations between several of the suggested iterative methods for saddle point 
problems we refer to Bramble and Pasciak [8]. 

The main purpose of the present paper is to construct a family of domain de- 
composition preconditioners for the discrete Laplace operator BB*, i.e., precondi- 
tioners constructed by solving corresponding problems on overlapping subdomains. 
However, if we apply this approach directly to the nonlocal operator BB*, the sub- 
domain problems will be nonlocal, which obviously is not desirable. However, we 
will show below that BB* is spectrally equivalent to a local operator. This local 
operator will then be used to define the preconditioners. 

Let S denote the set of all edges of elements in T. For each edge E C S let 
n = nE (x) be a fixed unit vector normal to E, and for w C W let [wI (x) = [wI E (x) 

denote the jump of w, i.e. 

[w](x) = w(x + On) - w(x - On). 

Note, that by extending w by zero outside Q, [w] is also defined on boundary edges. 
We define the bilinear form A = Ah on W x W by 

A(w, 0) = j v w . V dx + ? h-1 J [w ][q ] dp. 
TET EE? < 

We observe that this bilinear form corresponds to the interior penalty discretization 
of the negative Laplace operator with a homogeneous Dirichlet boundary condition 
(cf. [1]). Note also that since the boundary of Q is included in 8, the form A is 
positive definite on W. Furthermore, the bilinear form A, and hence the associated 
operator, is local with respect to w and 0. For convenience, we will also let A 
denote this associated operator on W, i.e., A W WF- W is the positive definite 
operator 

(Aw, q) =A(w, q) for all w, ? E W. 

The following equivalence result will be established. 

Theorem 3.1. There exists a positive constant -yo, independent of h, such that 

(3.3) -y51'A(w, w) < (B*w, B*w) < -yoA(w, w) for all w E W. 

Proof. Let w E W be given. We first establish the right inequality. To do this, we 
let x = -B*w, use the definitions of B* and b(., .), and an integration by parts to 
obtain 

(B*w, B*w) = wv x dx -f x Vw dx + z x n[w] dp. 
TETJT TETJT EES E 

Repeated use of the Cauchy-Schwarz inequality implies 

1/2 

IE - xvw dx < E JJXHO ,THJVWHJO,T < 
Hxo (z flVWH1 T T) 1 

T(f T TET TET 
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and 

E jx rn[w] dp < 5 lix nilIO,EII [W]lO,E 
EEC EE? 

( 1/2 ( ) 1/2 ?< ~ hflx . ThIio h,\-' fl [WJ 112E 

\EES \EES 

Furthermore, the inverse inequality hllx * nf1f E < cllIXlOT1 where E is an edge of 
T, gives 

5 hllx nllO,E <cllxllO 
EEC 

Hence, since x = -B*w we have shown that there is a constant c, independent of 
h, such that 

IIB*wII2 < cI|B*wIjoA(w,W)112, 

and this implies the right inequality of (3.3). 
Next, we establish the left inequality of (3.3). First we bound the sum over the 

elements, then the sum over the edges. Let T e T be given. Note that by extending 
elements of Vo(T) = {_ C V(T): X n = 0 on AT} by zero outside T, this space 
can be identified with a subspace of V. Using (2.8) and integration by parts, we 
obtain 

b (X,w) _ _ (X, B*w) 
<cIBwl, IIVWIIO,T < c sup ll'lo, p - ? cXlBww, 

XCVo(T) IIXIIOT XGCVo(T) IIXIIO,T 

and the desired result follows by summing over the elements. 
Finally, we bound the sum over the edges. By (2.6), for any given w E W, we 

can define X c V, element by element, such that 

SJXr n[v]dp-S jx vv dx= J[w][v] dp forallv W, 
EEN E Tc T' EES E 

and (2.7) implies that 

(3.4) IXll < c E h J [w]2 dp. 

Using the definition of B*, integration by parts, and the properties of X, we obtain 

-(B*w,X)=-b(x,w)= E j[w]x ndp-E Jx.vv dx= E [W]2 dp. 
EE? - TTET T EGE 

However, together with (3.4), this implies that 

h-1 J[w]2 dp < cllB*wloI h-1 [W]2 dp) 
EES EES E 

and the desired result follows. [ 

The mesh-dependent norm associated with the form A will be denoted I 11,h, 
i.e., 

IWl1,h = A(W,W). 
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Observe that Theorem 3.1 implies a Babuska-Brezzi condition of the form 

(0W IW1,h < supbXw for all w E W. 
xc v HlXHo 

Observe also that the proof of the theorem above only depends on assumption (A- 
I). Hence, if (A-JI)-(A-IV) hold, the proof also applies to the operator B* defined 

from the spaces V and W1. In particular, the following corollary will be useful 
below. 

Corollary 3.1. Assume that the additional assumptions (A-Il)-(A-IV) are satis- 
fied. Let v c W, and let v C W c W1 be the extension of v by zero outside Q. 
Then the two norms 

JV11,h and Ajb*vflo Q 

are equivalent, Zndependently of h. 

4. THE ADDITIVE SCHWARZ METHOD 

In the rest of this paper we assume that all the four assumptions (A-I)-(A-IV) 
hold. 

It follows from Theorem 3.1 above that the interior penalty method can be used 
to construct effective preconditioners for the mixed system (2.5). As an application 
of this result we shall in this section define and analyze an additive Schwarz pre- 
conditioner based on the local form A. The analysis relies on the construction of a 
specific coarse space WH. We remark that part of the analysis below is rather sim- 
ilar to what is done in the analysis of Schwarz preconditioners for conforming finite 
element methods. However, the analysis related to the coarse space, cf. Lemma 4.2 
below, has additional difficulties caused by the nonconformity of the spaces. 

Let {QI J_1 be the elements of the coarse triangulation TH. By extending each 
Qj to a larger domain Q', we obtain an overlapping covering of Q. The domains 
Q' are also assumed to be mesh domains, i.e., the boundaries consist of element 
edges. We assume throughout the paper that there is a constant /13, independent 
of H, such that 

(4.1) dist(DQ%, aQ3) > /1H for j = 1, 2,... , J. 

This condition expresses that the overlap is sufficiently large. On the other hand, we 
also need to limit the maximum number of overlaps. Let i, denote the characteristic 

functions on Q3, where Q is the union of Q' and all its neighbor elements in Th, 

and let 
J 

-=1 

We then assume that 

(4.2) sup (X) < 2, 
XGQ 

where /2 is independent of H. In practice, /2 can usually be taken to be 4. 
We define subspaces WI of W by 

W3 ={vEW :suppvCQ} forj=1,2,... ,J. 
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F'urthermore, the projection of W onto Wj with respect to the form A is denoted 
by Pj, i.e., Pj: W |-4 Wj is determined by 

A(Pjv, w) = A(v, w) for all w E Wj. 

As is the case for conforming finite element methods, the construction of a Schwarz 
preconditioner also requires a proper coarse space. Recall that WC denotes the 
subspace of W consisting of piecewise constants with respect to T. Also, let SH C 
HO? (Q) be the conforming finite element space associated with the triangulation TH 

of piecewise linear (or bilinear) polynomials. The coarse space WH is defined by 

WH = {Qcb : b E SH } 

where QC is the L2-projection onto the space WC. Furthermore, PH: W F-* WH 
is the projection onto WH with respect to the form A. Frequently below we will 
write PO instead of PH. 

Let P = PH + E'i1 Pj = EJ'0 Pj and define the preconditioner N-1: W I ) W 
by 

N-1 = PA-1. 

Then the action of N-1 can be computed by solving a global problem on WH and 
a sequence of possible parallel local problems. Furthermore, the operator N-1A, 
which essentially determines the convergence properties of the minimum residual 
method, is equal to P. 

The following result shows that the condition number of P is bounded indepen- 
dently of h and H. 

Theorem 4.1. There exists a positive constant -y1, independent of h and H, such 
that 

(4.3) -yj1A(v, v) < A(Pv, v) < -yiA(v, v) for all v E W. 

Proof. We first establish the upper bound of (4.3). First use the Cauchy-Schwarz 
inequality 

(4.4) A(Pv,v) < |PV11,hlV|l,h- 

Then, if we let no -1, we obtain by the Cauchy-Schwarz inequality again 
J J 

A(Pv PV) S E jVPiv d Pv d5+ E h-1J [Piv][Pjv] dp 
iJ=O TET i,j=O EE& 

J J < E E J Kj2lVpi2 dx + E Eh-1 J n[i] dp 
i,j=O TET Ti,j=O EES 

J 

< (1 +I32)2 E A(Piv, Piv) = (1 + 32)2A(Pv, v). 
i=O 

Together with inequality (4.4), this implies the desired uniform upper bound. 
In order to show the lower bound of (4.3) we need two lemmas, which will be 

established below. 

Lemma 4.1. For any v E W there exists a decomposition v J v;, v W E 

satisfying 
J 

(4.5) EA(vj, vj) < c(H-211vII2 + A(v, v)) 
j=1 

for some positive constant c independent of h and H. 
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Lemma 4.2. There exists a proper decomposition of any v E W of the form v = 

(V - VH) + VH where VH E WH satisfies the properties 

(4.6) IIv - VH 0< cHjvj1,h 

and 

(4.7) |VH11 ,h _< CjVj|l,h, 

where the constant c is independent of h and H. 

FRom these two lemmas the desired lower bound follows by standard arguments 
(cf., e.g., Lions [26], Matsokin and Nepomnyaschikh [27] or Dryja and Widlund 
[19]). By applying Lemma 4.2 to an arbitrary element v E W and thereafter using 
the decomposition of Lemma 4.1 on the element v - VH, we obtain 

J 
V = VH + EVj, 

j=1 
where VH E WH,Vj E Wi and 

J 
A(VH,VH)+ EA(vj, vj) < A(VH,VH)+ c(H 2 IIv - VH 112 + A(v- VH,V -VH)) 

j=1 

< cA(v, v). 

From the Cauchy-Schwarz inequality we then derive 
J 

A(v,v) = A(V,VH)+ EA(v,vj) 
j=1 

J 
= A(PHV,VH)+ E A(PjV, vj) 

j=1 

? A>(VH, VH) + EA(vj, vj)) (E,(Pjv v)) 
j=1 j=o 

J 

? C(A(v, v)) 
I 

(A(Pv, V))2 

This shows the lower bound of (4.3). In order to complete the proof of Theorem 
4.1 we have to establish the Lemmas 4.1 and 4.2. This will be done below. C 

Proof of Lemma 4.1. Let v E W be given. The desired decomposition of v is con- 
structed by a standard argument which is similar to what is used for conforming 
methods (cf. Dryja and Widlund [19] or Dryja, Smith and Widlund [20]). Because 
of the properties of the covering {Q }fI-1 of Q given above, there exists a partition 
of unity of smooth functions on Q, {O }O , such that 

03 =1, O<03l <inQ; 
j=1 

supp Oi c Qj; 

(4.8) 11VOJIIL?(Q) < cH-1, 
where c is independent of H. 
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Let Ih be a local interpolation operator defined for piecewise continuous functions 
(with respect to the elements of T) into the space W. Such an operator will have 
the restriction property 

(4.9) Ih(V)IT = VIT if v E W(T), 

and satisfy 

(4.10) 1lIh(fIIL-(T) < c IlfIjLoo(T), 

where the constant c is independent of h. We now define vj E Wj by vj = Ih(0jv). 
From (4.9) it follows that v = 1 vj. Hence, it remains to establish the inequality 

(4.5). 
Define for convenience the sets of triangles T = {T E : T C Q } and the 

sets of edges Fj = {E E 8 : E C Q }. Since vj E Wj, we obviously have 

A(vj,vj) = Zi 1,VVj12 dx + Z h-J A [Vj]2 dp. 
TETj TEES3 

We estimate now each term in this expression separately. Let T E 1j be fixed, and 
let Qj be the average value of Oj on T. We then have 

j VIh(0jV)12 dx < 2 J VIh((0j -Oj)v) 12 dx + 2 jOIVV12 dx, 

where we have used (4.9). FRom (4.10) we derive 

| VIh ((0j _ Oj)v) 12 dx < cIIIh ((Oj -_ LV (T) ? c (0c -j)v _ (T). 

Since, by the approximation property of the mean value and (4.8), 

l l HO - j IL- (T) < ch I V10j I I L- (T) < chH- 

and 

|IVIILOo(T) < ch |IVIIO,T, 

we obtain the local estimate 

(4.11) J VVjl2 dx < c(H-21VIIT + J VV2 dx). 
T~ ~ ~~~~, T 

The edge integrals are estimated similarly. Let E E 8j and let T+ and T- be the 
two neighboring elements in T. By arguments similar to the ones given above we 
easily establish 

(4.12) h-1 J[vj]2 dp < c(H-2I1vI V ?uT + h-1 J[V]2 dp). 

The desired estimate (4.5) follows by summing up the local estimates (4.11) and 
(4.12). For convenience we introduce the set 19' = {T E T: T is a neighboring ele- 
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ment to E E Sj}. We then have 

Z (vj,vj) <?> ( 1 j,VVj12 dz+ E h1J[vi]2 dp) 
j=1 j=1 TETj EEj 

? = ( H-21VII+ Vv12 dx) + h1 lB dp) 

? c(H-211vII2 + A(v, v)). 

Here the final constant c is independent of h and H, but it depends on the number 
of overlaps /32. 

Proof of Lemma 4.2. Let SH C HO (Q) be the conforming finite element space as- 
sociated with the triangulation TH of piecewise linear (or bilinear) polynomials. 
Hence, by extending elements of SH by zero outside Q, SH can be identified with 
a subspace of SH. Let Z be the set of interior nodes corresponding to the triangu- 
lation TH, and let {?fo}zE be the corresponding nodal basis of SH such that any 

E SH has the representation 

q(x) = E q(z>+b (x). 
zEz 

If Z C Z denotes the set of interior nodal points in TH, we define a "restriction 
map" RH: SH I- )SH by 

(RH q)(X) = Xq(Z)bz (X). 
zCZ 

By utilizing the equivalence between the L2-norm and the discrete norm 

(H2ZE 2(Z)) 1/2 

on SH, we obtain the estimate 

(4.13) 11X- RHOA!O,Q < C? Ok!O,f\Q) 

which will be useful below. By a similar equivalence between the H1(Q) norm and 
a corresponding discrete finite difference norm obtained from the nodal values we 
also obtain 

(4.14) I!RHSIb !!< C(!kb!!1,fQ + H-111q$011Q\Q). 

We introduce the L2-projection of L2(Q) into SH which will be denoted by QH. 
Let v E W be given. In order to define the desired element VH E WH, we first 

let v E W C W1 be the extension of v by zero outside Q. Recall that L = BB*: 
W Wl is an approximation of the negative Laplace operator on Q. Note, in 
particular, that it follows from Corollary 3.1 that 

(4.15) l!B*vllo0 < CIV11,h 

and hence, by an inverse inequality, 

(4.16) tLhe cntn i < Chs de nV,hn 

Here the constant c is indempndent. of h- 
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Since Q is convex and Lb E L2 (Q), it follows from elliptic regularity that there 
is a unique p E H2(Q) n Hj(Q) such that 

(4.17) - AP = Lb in Q. 

Furthermore, from (4.16) we derive that there is a constant c independent of h such 
that 

(4.18) IIPI12,f < ch-LIvI1,hv 

By multiplying (4.17) by p and utilizing that Lb = V (B*v), we also obtain from 
(4.15) that 

(4.19) IIVp0I ? < CIVI1,h. 

Note that it follows from (4.17) that v = L-1Q(-/\)p. Hence, by assumption 
(A-IV) and (4.18), 

IlK -110,Q < ch2 2Q < chlvl1,h 

Then we also get the estimates in the subdomains Q and Q \ Q, 

(4.20) liv -kP11o, < chlvl?,h, 

and, since v = 0 outside Q, 

I,PIIHo,\Q < chIvIl,h. 

Define now VH = QCRHQHPI In order to derive the proper estimates for V - VH o 

and IVH11,h, we first observe that it follows from (4.19) and the approximation 
property of SH that 

(4.21) j QHPIIO,Q\Q < C( kIPIIOQ,\Q + (I - QH)Pjjo,n\Q) 
< C(IjPjj0 Q\Q + HI V3PI1 Q) < c(h + H) V11,h < cHjVj1,h, 

where c is independent of h and H. Hence, we derive from (4.13) and (4.14), and 
by using the approximation property of SH and (4.19) once more, that 

IIP - VHO < IIP - QHPIIO, + (I - RH)QHPH1oQ, + (I - Qc)RHQHPIIO 

? c(HIIVPk!o,n + 11QHP110,n\Q) 
? cHIVI1,h- 

However, together with (4.20) this implies the estimate (4.6). 
Finally, we have to show (4.7), i.e., 

IVH11,h = IQcRHQHPI1,h < CIVI1,hh 

FRom (4.14), (4.19), (4.21) and the fact that QH is uniformly bounded in H1 it 
follows that 

|LRHQHPI1l < C(HIQHPIIj,Q + H-11QHPIIo,Q\Q) < CIVI1,h 

Therefore, it is enough to show that 

/A 22) IQ I1h< CI _IIli 
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for any q E SH. However, from the quasi-uniformity of Th, and since QCq is 
piecewise constant, we have 

,h= h-1 j[QCq]2 dp < c E[QCq]2. 

Ec&,F EES 

Furthermore, for any E E 8 and any q E SH we obtain, by adding and subtracting 
values of 0 on E, 

[QCq]2 < ch-4( q(x) dx - q(x) dx)2 < ch-4( e(x) .Vq0(x) dx)2, 
T + TT+ UT- 

where le(x)l is the distance from x to E and T+ and T- are the two neighboring 
elements sharing E as a common boundary. Since 

ITjuTh e(x)12 dx < ch4 
T+UT- 

we obtain from the Cauchy-Schwarz inequality that 

[QCq$]2 < Co IVf2 dx, 
T+UT- 

and hence (4.22) is obtained by summing this inequality over all E E E. This 
completes the proof of Lemma 4.2. 

5. NUMERICAL RESULTS 

The purpose of this section is to present some results of numerical experiments 
which seem to conform the theoretical results derived in this paper. 

Throughout this section Q will be taken to be the unit square, (0,1) x (0,1). 
Furthermore, the spaces V and W will be the rectangular Raviart-Thomas spaces 
of order zero. The triangulations Th and TH are uniform and consist of rectangles 
of size h x h and H x H, respectively, while the overlapping domains Q' are of size 
2H. 

In the examples below we will apply the preconditioned minimum residual meth- 
od to the discrete system (2.5). The additive Schwarz preconditioner N is con- 
structed as indicated in ?4 above. In particular, we shall be interested in the 
number of iterations required to reach the tolerance 

(5.1) JJrk /1'roJ < 10-4, 

and the condition number of the operator N-lBB*. Here, rk is the residual in 
iteration k and, with rk - (X, W), 

11rkH1 = (KIXHI2 + (Nw,w)) 1/2 

Example 5.1. In the first example we choose k = I, where I is the 2 x 2 identity 
matrix, and f = 1. In this case ao = a, = 1 in the inequalities (3.1). In Table 1 
(next page) we list the number of iterations needed to reach the tolerance (5.1) 
for different choices of h and H. Also, an estimate of the condition number of the 
operator N-1BB* is given in parentheses. The condition numbers are estimated 
using the conjugate gradient method. The table indicates clearly that the condition 
number of N-lBB* is bounded independently of h and H. In fact, the eigenvalues 
of the operator N-1BB* are contained in the interval [0.95, 4], hence we expect 
that the number of iterations of the preconditioned minimum residual method is 
uniformly bounded. The iteration counts in Table 1 confirm that this is the case. 
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TABLE 1. Iteration counts and condition numbers for Example 5.1 

|___ ||_ h= 1/8 | h=1/16T |h= 1/32 h= 1/64] h= 1/128] 
H = 1/4 14 (4.0) 16 (4.0) 18 (4.0) 16 (4.0) 16 (4.1) 
H = 1/8 14 (3.7) 14 (4.0) 16 (4.0) 16 (4.0) 

H = 1/16 12 (4.0) 14 (4.0) 14 (4.0) 
H = 1/32 12 (3.7) 12 (4.0) 

TABLE 2. Iteration counts for Example 5.2 

|_____ || h= 1/8 [ h= 1/16 ] h= 1/32 [Fh= 1/64 Th= 1/128 I 
H= 1/4 70 84 90 92 92 
H= 1/8 85 91 93 94 

H= 1/16 90 96 97 
H= 1/32 93 95 

Example 5.2. In the second example we choose 

k(x) - 14( 2) xx k _ t1 +4(X12 
+X2)j3XX2 

A 
2 

(X)-V 3X1X2 1 lxl+2) 

Here the inequalities (3.1) hold with aoG = 1 and ai = 25. We use the same precon- 
ditioner as in Example 5.1. Hence, we do not take the variation of k into account 
in the construction of the preconditioner. We observe that the preconditioned min- 
imum residual method requires more iterations to converge, cf. Table 2. However, 
the number of iterations still seems to be uniformly bounded. We remark that 
the actual number of iterations would be reduced if the variable coefficient k was 
included in the preconditioner. 
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