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DOMAIN DECOMPOSITION ALGORITHMS FOR MIXED 
METHODS FOR SECOND-ORDER ELLIPTIC PROBLEMS 

ZHANGXIN CHEN, RICHARD E. EWING, AND RAYTCHO LAZAROV 

ABSTRACT. In this paper domain decomposition algorithms for mixed finite 
element methods for linear second-order elliptic problems in JR2 and ]R3 are 
developed. A convergence theory for two-level and multilevel Schwarz meth- 
ods applied to the algorithms under consideration is given. It is shown that 
the condition number of these iterative methods is bounded uniformly from 
above in the same manner as in the theory of domain decomposition methods 
for conforming and nonconforming finite element methods for the same differ- 
ential problems. Numerical experiments are presented to illustrate the present 
techniques. 

1. INTRODUCTION 

This is the second paper of a sequence where we develop and analyze efficient 
iterative algorithms for solving the linear system arising from mixed finite element 
methods for linear and quasilinear second-order elliptic problems in IR2 and IR3. 
In the first paper [12], a new approach for developing multigrid algorithms for 
the mixed finite element methods was introduced. It was first shown that the 
mixed finite element formulation can be algebraically condensed to a symmetric and 
positive definite system for Lagrange multipliers using the features of the existing 
mixed finite element spaces. It was then proven that optimal multigrid algorithms 
can be designed for the resulting symmetric and positive definite system, which 
exactly corresponds to the system arising from certain nonconforming finite element 
methods. The advantages of this approach are that the convergence analysis for 
the multigrid algorithms with the V- and W-cycles for general second-order elliptic 
problems with a tensor coefficient can be given, and that these multigrid algorithms 
can be easily implemented. 

It has been known that, owing to its saddle point property, it is difficult to 
develop efficient domain decomposition methods for solving the linear system gen- 
erated by the mixed finite element approximation of second-order elliptic problems. 
There have been two types of substructuring domain decomposition methods for 
the mixed methods so far. The first method is based on a substructuring method 
for the flux variable (the gradient of the scalar unknown times the coefficient of 
the differential problems) on the space of divergence-free vectors. This approach is 
limited to two space dimensions [24, 25, 26, 27, 28, 31, 32, 40]. The other method 
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is the so-called dual variable method [19, 16, 18, 27, 28]. This approach makes use 
of a discretization of the flux operator (the coefficient times the gradient), which 
transfers the original saddle point problem to an elliptic problem for the scalar 
unknown and its approximations over edges or faces, i.e., the Lagrange multipliers, 
by eliminating the flux variable. Namely, the first approach is proposed in terms of 
domain decomposition methods for a positive definite problem for the flux variable 
on the space of divergence-free vectors, while the second approach is established on 
the domain decomposition methods for a positive definite problem for the scalar 
and Lagrange multiplier. Recently, an iterative procedure based on domain decom- 
position techniques [21] was proposed for solving the linear system for the scalar, 
the flux, and the Lagrange multiplier, but the convergence analysis is restricted to 
use of subdomains as small as individual finite elements. 

Our objective in this paper is to develop domain decomposition algorithms for 
mixed finite element methods based on the approach described in [12]. The algo- 
rithms are based on domain decomposition methods for the Lagrange multiplier 
variable only, and thus differ from the approaches summarized above. The main 
advantages of our approach are that it works for two and three space dimension 
problems, and the dimension of the linear system for which the domain decom- 
position algorithms are designed to solve is the smallest among all the existing 
approaches. Also, unlike to the elimination process in [19, 16, 18, 25, 26, 31, 32], 
where the elimination is globally done from the original linear system of the mixed 
finite element discretization, the elimination procedure is here carried out in terms 
of an algebraical, element-by-element condensation, which uses the features of the 
known mixed finite element spaces and does not need to introduce any extra oper- 
ators. This process generates a linear system which can be naturally obtained from 
the nonconforming finite element approximation of the same differential problems. 
As a consequence, the standard theory for the domain decomposition methods ap- 
plied to nonconforming (even conforming) finite element methods applies to the 
mixed methods. Finally, bubble functions have been used in [1, 2, 10] to establish 
the equivalence between mixed finite element methods and certain nonconforming 
methods. The approach under consideration does not make use of bubble functions. 
The present approach is exploited for the first time to design domain decomposition 
algorithms for mixed methods. 

In the next section we introduce the continuous problem and its mixed finite 
element discretization. Then, in ?3 two-level and multilevel Schwarz algorithms for 
the mixed finite elements on triangles are considered. An abstract convergence the- 
ory is established in a rather general setting. It is proven that the condition number 
of the Schwarz methods is bounded uniformly from above in the same manner as 
in the theory of domain decomposition methods for conforming and nonconforming 
methods for the same differential problems. Specific examples are given to verify 
the abstract theory. In ?4, we show that the same algorithm and analysis can be 
carried out for the mixed methods on rectangles. Their extensions to simplexes, 
rectangular parallelepipeds, and prisms are given in ?5, ?6, and ?7, respectively. 
The overall convergence analysis is carried out as follows. We first analyze the 
domain decomposition method for the nonconforming finite element method, and 
then apply the resulting analysis for the mixed method. Also, a detailed analysis is 
given for triangles and simplexes, and the analysis for rectangular parallelepipeds 
and prisms follows from the triangular case by establishing certain isomorphisms 
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between the triangular and rectangular elements. Finally, numerical experiments 
are given in ?8 to illustrate the present theory. 

2. MIXED FINITE ELEMENT METHODS 

Let 2 be a bounded domain in IRd, d = 2 or 3, with the polygonal boundary 
02. We consider the elliptic problem 

(2.la) -V -(AVu) =f in 2, 

(2.1b) u=O on OQ, 

where A(x) is a uniformly positive definite, bounded, symmetric tensor and f(X) E 
L2(2) (Hk(2) - Wk,2(2) is the Sobolev space of k times differentiable functions 
in L2(2)). Let (, )s denote the L2(S) inner product (we omit S if S = 2), and 
let 

V =H(div; ) ={v E (L2 (Q)) d V v V E L2(Q)J}, 

W=L2 (2). 

Then (2.1) is formulated in the following mixed form for the pair (a, u) E V x W: 

(2.2a) (V - , w) = (f, W), VW E WI 

(2.2b) (A-la, v)-(u, V v) = O, Vv E V. 

It can be easily seen that (2.1) is equivalent to (2.2) through the relation 

(2.3) a = -AVu. 

To define a finite element method, we need a partition 5h of 2 into elements E, 
say, simplexes, rectangular parallelepipeds, and/or prisms. In 5h, we also need that 
adjacent elements completely share their common edge or face; let 05h denote the 
set of all interior edges (d = 2) or faces (d = 3) e of Eh 

Let Vh x Wh C V x W denote some standard mixed finite element space for 
second-order elliptic problems defined over 5h (see, e.g., [6, 7, 8, 14, 22, 34, 35, 
36]). This space is finite-dimensional and defined locally on each element E E Sh; 

so let Vh(E) = Vh|E and Wh(E) = WhIE. The constraint Vh c V says that the 
normal component of the members of Vh is continuous across the interior boundaries 
in aSh. Following [2], we relax this constraint on Vh by defining 

=h -{v E L2 (): VIE E Vh(E) for each E E ?h}. 

We then need to introduce Lagrange multipliers to enforce the required continuity 
on Vh, so define 

Lh= {MEL2( U e) :beEVh.vIeforeacheEash}, 
e E &&h 
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where v is the unit normal to e. The hybrid form of the mixed method for (2.1) is 
to find (Uh, Uh, Ah) E 1h x Wh X Lh such that 

(2.4a) Z (V Ch,W)E =f,W), VW E Wh, 
EESh 

(2.4b) (Bhgh,v)- E [(Uh, V * V)E - (I\h, V * VE)aE\an] - O, VV E 1h, 

EESh 

(2.4c) S (ah * VE, I')E\&9 = 0, V/ E Lh, 
EESh 

where Bh = PhA-1 (component-by-component) and Ph is the L2-projection onto 
Wh. Note that (2.4c) enforces the continuity requirement mentioned above, so in 
fact Ch E Vh. Also, (2.4) has a unique solution [2, 10]. Finally, the projected mixed 
finite element method is used here. The reason for this is that this projected version 
produces a much simpler linear system than the usual mixed method, as shown in 
[12]. We emphasize that the present theory applies to the usual mixed method 
since the convergence analysis for both cases are the same; for more information 
on the relationship between the usual and projected mixed methods, refer to [12]. 
The next six sections are devoted to designing domain decomposition algorithms 
for solving the linear system arising from (2.4). 

3. TRIANGULAR CASE 

In this and the next sections we consider the two-dimensional case. We first 
analyze the lowest-order Raviart-Thomas space [36] (equivalently, the lowest-order 
Brezzi-Douglas-Marini space [8]) on triangles. 

3.1. Linear system of algebraic equations. The lowest-order Raviart-Thomas 
space [36] over triangles is defined by 

Vh(E) = (Po (E))2 e ((x, y)Po (E)), 

Wh (E) = Po (E), 

Lh(e) = Po(e), 

where Pi (E) is the restriction of the set of all polynomials of total degree not bigger 
than i > 0 to the set E. Let fh = Phf, Jf - fh(X,y)/2, and 1h = (aij). Then it 
is shown [12] that the Ah from (2.4) satisfies the equation (3.1) below. 

Lemma 1. Let 

Mh(X, /) = (X, VE)aE 
E 

(, VE) E, X, I E Lh, 
EE&h 

1:(Jf 1) E.(v) 
Fh(A)=- 

h i 
(L,JVE)E + E (AJf,VE)&E, / E Lh, 

EeSh EESh 

where 13E = (:iEj) = ((aij, 1)E)-1, VE is the outer unit normal to E, and JE 
denotes the area of E. Then Ah E 1h satisfies 

(3.1) Mh(Ah,A) = Fh (), Vb E Lh, 
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where 
Ch = {/1 Lh : /,e = 0 for each e C &Q}. 

Let the basis in Lh be chosen as usual. Namely, take ,u = 1 on one edge and 
= 0 elsewhere in (3.1). Then it follows from (3.1) that the contributions of each 

triangle E to the stiffness matrix and the right-hand side are 

(3.2) mE=ThEfiE4 F -E h (Jf VJ 

where iE ieI vi and Iei I is the length of the edge ei . Hence, we obtain the 
linear system for Ah: 

(3.3) MA = F, 

where M = (mij), A is the vector of degrees of freedom of Ah, and F = (Fi). 
The following lemma [12] says that (3.3) can also be obtained from the P1 non- 

conforming finite element method. 

Lemma 2. Let 

(3.4) Nh =z{v E L2(Q): VIE E P1(E), VE E 5h; v is continuous at the midpoints 

of interior sides and vanishes at the midpoints of sides on &Q}. 

Then (3.3) corresponds to the linear system arising from the problem: Find 'Vh E Nh 
such that 

(3.5) ah (Vh, (fP) = (fh,) ( V) v(P E Nhv 

where ah('bh, 0) = EEeSh 3V?h,V(p)E. 

The equivalence stated in Lemma 2 is used to develop the domain decomposition 
algorithm for (3.3). 

After the computation of Ah, we can easily calculate Ch and Uh from (2.4) if they 
are needed. For each E in ?fh, set ChIE = (a' + bEX, a2E + bEY)- It follows [12] that 

3 

(3.6a) a-E =- e -(3j1VE() + /Vjov )AhIe' 

_fE 
2 

-2 Z(I((ai1X+ai2Y),1)E, j=1,2, 
i=l 

(3.6b) bE 2 fE 

where fE = fhIE and vE = (V1),zV()), and that 

(3.7) UhIE = E| ((BhJhv (Xv Y)h)EE + A3h lhe' ((X, Y), E) e,) 

We end this subsection with three remarks about (3.3). First, there are at most 
five nonzero entries per row in the stiffness matrix M. Second, it is easy to see that 
the matrix M is a symmetric and positive definite matrix; moreover, if the angles 
of every E in 5fh are not bigger than tr/2, then it is an M-matrix. Finally, while 
(3.3) can be obtained by means of the usual approach [12], the present approach is 
much simpler. 
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3.2. Two-level additive Schwarz method. We now develop a two-level addi- 
tive Schwarz algorithm for (3.3). We need to assume a structure to our family of 
partitions. In the first step, let SH be a quasi-regular coarse triangulation [15] of 2 
into nonoverlapping triangular substructures Qi, i = 1,.. , n. Then, in the second 
step we refine &H into triangles to have a quasi-regular triangulation 4h. Finally, 
let { 2}nUI be an overlapping domain decomposition of 2 by extending 2i with the 
overlap parameter 6. The decomposition is assumed to align with the boundary a0, 
and the parameter 6 is defined by 6 = min{dist(02, \ a2, a02 \ a0), i = 1, ... , n}. 
Associated with each 2', let NhJ be the P1 nonconforming finite element space whose 
elements have support in 24, as defined in (3.4). The finite element space Nh is 
represented as a sum of n + 1 subspaces: 

(3.8) Nh=N +N +...+N 

where the coarse space Nh? will be defined later. We now define the operators 
Hi :Nh --h Ni = 0 ... n, by 

(3.9) ah(Hliv,w) = ah(V,W), Vw E Nt, 

and the operator H : Nh -4 Nh by 
n 

(3.10) 1=Z E ni. 
i=O 

Two-level additive algorithm. The additive Schwarz algorithm for (3.3) is given 
by 

n 

(3.11) HOh 
= 

fh, fh = fi, 
i=O 

where fi satisfies 

(3.12) ah(fi,V) =(fh,V), lVVE Nhiii =0,1, . .. , n. 

Note that (3.5) and (3.11) have the same solution and thus produce the same 
system (3.3). 

3.2.1. Convergence theory. We now develop an abstract convergence theory 
for bounds on the condition number of H. Specific examples to which the abstract 
theory applies will be given in the next subsection. Following Dryja and Wid- 
lund's framework [23], the abstract theory is written in terms of the following two 
assumptions: 
(Al) There is a constant C such that every v E Nh can be represented by v = 

n vi with vi E N' satisfying 
n 

E ah(Vi, Vi) < Cah(V, v)* 
i=O 

(A2) Let n = (ij) be a symmetric matrix with Kij > 0 satisfying 

Iah(vi,vj)I < Kijah(vi,v) 1/2ah(vj,vj)1/2, Vv E Ni, vj E NhJ, i,j = 1,... ,n. 

Then the next lemma can be found in [23]. 
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Lemma 3. Assume that the assumptions (Al) and (A2) are satisfied. Then 

(3.13a) Amin(H7) > C1X 
(3.13b) Amax(HU) < p%) + 1, 

where p(i) is the spectral radius of ti. 

3.2.2. Convergence results. We now give two examples of the coarse space No 
so that the assumptions (Al) and (A2) are satisfied. Namely, we estimate the two 
constants C and p(4). For this, let Rh be the nodal interpolation operator into 
Nh, and let,JH be the conforming space of linear polynomials associated with EH. 

Then, following [17], we define No? as follows: 

(3.14) Nho = {v E Nh: v = Rhp, p E UH}. 

To give the second example, let Eh be the finest triangulation and let ?h = EH, 
for some J > 1 where ?Hk = ?k (Hk = 2-kH, 0 < k < J) is constructed by 
connecting the midpoints of the edges of the triangles in 8k-1. Then, following 
[17], we define the operator Ik : Nkk- Nh as follows, where N- NHk iS 
the P1 nonconforming space associated with 5k (in particular, Nh -NHJ). If 
v Nk-1 and E E Sk-i with the vertices (xi,yi) and the midpoints (ii, y) of its 
edges, i = 1, 2, 3, then 

(3.15a) kkv( , Yi) = ( I i = 1,2,3, 

(3.15b) Ik_IV(Xi, z) = XZv(i,l[) if (xi,yi) f as?, 
3 

(3.15c) Ik-V(Xi,Yi) = N v (X, YJ') if (xi, yi) E aS?, 
3 

where JV1 and JN2 are the number of the adjacent midpoints (X1, I I) and (xl!, !) 
to (xi, yi) of the edges in O&k-1 and the edges on OS? of the elements in &k-1, 

respectively. Alternatively, following [37], I kkl : Nk-l - Nk can be equivalently 
defined by 

(3.16a) k1v((i,yi) = v(,) i = 1,2,3, 

(3.16b) k- VIV (Xi,i)=N E |K(iY,) if (Xz,,Yi) V (9S? 
(x ,y%)E K3 

(3.16c) k_1v(xi,y i) = E v(!, y') if (x,, Yi) E MQ, 

where JVA1 is the number of elements Kj E 5k-1 meeting at (x,, yi) and A2 is 
defined as in (3.15). Note that (3.15) and (3.16) define the value of Ikk_1v at the 
vertices of elements in 5k and thus can be used to define the continuous piecewise 
linear function Ik_1 on 4l. Hence, I 1V is obviously in Nk from its construction 
(3.15c) and (3.16c) on the boundary O90. It is also a function in Nh. Now, the 
second definition of Nho is given by 

(3.17) Nh = {v E Nh: v = IHp, p E NH}, 

where H =-I and NH = NHO. In the context of nonconforming finite elements, 
the space in (3.17) is a more natural choice for the coarse space Nho. Since UH C NH, 
the space in (3.14) is a subspace of the space in (3.17). Hence, the following proof 
applies to both cases. 
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Theorem 4. Assume that the additive Schwarz operator I is defined by (3.10) with 
the coarse space given by (3.14) or (3.17). Then there is a constant independent of 
h, H, and 6 such that the condition number c(H) of H satisfies 

(3.18) c(H) < C(1 + H/6). 

It follows from Theorem 4 that if we use a generous overlapping, then the condi- 
tion nlumber of H is uniformly bounded. The proof of this theorem is given in the 
next subsection. 

3.2.3. Proof of the convergence result. We show (3.18), using a similar result 
from the conforming elements through an adaptation of Cowsar's arguments [17]. 
To that end, we need the following two technical lemmas. Below we use the notation 

/ \ 1/2 

IVIk vISk = ( IVIH1(E)) , k = 0,1,. . ., J. 
\EE?Ek/ 

Below we use |v|h = |v?h. 

Lemma 5. There are constants Ci and C2 independent of h and H such that for 
all v E Nk-l, we have 

(3.19a) C1fIvHIL2(Q) ? IIk 11)1vL2(Q) < C211VIIL2(Q), 

(3.19b) Cliv|k-1 ?< IkkltvH1(SX) < C21V|k-1 

Proof. The inequality (3.19a) is trivial from the definition of Ikk_ Also, the lower 
bound in (3.19b) is obvious since the degrees of freedom of Nk-l are contained in 
those of the range of the operator Nk. Thus, it suffices to prove the upper bound in 
(3.19b). Toward that end, note that for every v E Nk-1, IvIk-1 is a norm in Nk- 
equivalent to 

/ 3 \1/2 
(3.20) (E E (v(:iYi) -(Xj, j)) 12, 

EE?k-I i,j=1 

where the (xi, Yi) are the midpoints of the edges of E. A similar result holds for 
every v C Nk. Then the upper bound in (3.19b) follows easily from the definition 
of _I X (3.20), and a simple algebraical computation. O 

From this lemma we have the corollary. 

Corollary 6. There is a constant C independent of h and H such that for p E NH 

(3.21a) 11IT H(P |h < Cl 191 I?,, 
(3.21b) 11THSO - |IL2(Q) < CHIjSjIjj, 7 

where we recall that 'H = 10 

The following lemma was proven in [23] for the conforming finite elements. 
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Lemma 7. Let 1h/2 be constructed by connecting the midpoints of the edges of the 
triangles in Fh, and set 

Uh/2 = {V E CC(Q) :VE c P1(E), VE c 4h/2, V|aQ = 0} 

Then for every v c Uh/2, there is a decomposition v = =Ov with vo UH and 
vi E Uh/2 n Ho1 (Qi) such that 

n 

(3.22) Vi () < C(1 + H) I1 
i=O 

where C is independent of h, H, and &. 

Proof of Theorem 4. Let Nho be given in (3.14). Note that 

n 

(3.23) ah(IIV,v) = E ah(ITiV, V) 
i=O 

Then it follows from Schwarz's inequality and the facts that the Hi are projections 
and the maximum number of the substructures Qfi that intersect at any point is 
uniformly bounded that the spectrum of H is bounded above by 

1 + max {#(i:(x, y) c i} 

So we see that the spectrum of H can be obtained without use of the assumption 
(A2). 

Next, let 1h -J+1 Nh -> Uh/2 be defined as in (3.15) or in (3.16), and for 
every v c Nh, let (?Ehv)i be the decomposition of Ihv constructed according to 
Lemma 7. Then we see that vi = Rh((1?hv)i) C Nh and v = Z>ovi. Thus, it 
follows from Lemmas 5 and 7 that 

n n 

Zah(vi,vi) < C? Rh((hV)i) h 
i=O i=O 

n 
< C E I (_ThV), I12(Q 

i=O 

< C (1 + H/l) IhVIH1(Q) 

< C (1 + H/l) ah(V, v). 

Namely, the assumption (Al) is true, and thus we have the desired result (3.18).EI 

We close this subsection with two remarks. First, a different coarse space from 
that given in (3.14) and (3.17) was introduced in [37], and the condition number of 
the resulting additive Schwarz operator H was shown bounded by a constant times 
(1 + log(H/h)) (1 + H/l). His arguments showed that the constant is independent 
of jumps in the coefficient a across subdomain interfaces. If the present technique 
were used to derive (3.18) with C independent of the jumps in the coefficient, the 
same log factor would appear in (3.18). Second, while the simple model (2.1) was 
analyzed, the analysis in this section applies to more general equations, as noted in 
[12]. 
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3.3. Two-level multiplicative Schwarz method. We now develop a two-level 
multiplicative Schwarz algorithm for (3.3). 
Two-level multiplicative algorithm. Starting from any initial guess 'bo c Nh, 

we find t/ C Nh as follows: 
(1) Set v_1 = f0-1; 
(2) For j = 0,1,... ,n, compute vj by 

Vj = Vj-l + Hj(Qbh -Vj-1); 

(3) Set fbi = v, . 
The computation of Hj'bh in the second step can be easily done through the 

relation as in (3.12): 

ah(Hl/jh, W) = (fh,W) Vw E Nh, 

by (3.5) and (3.9). Note that the error ei = 'ih- satisfies eji+ = Qei, where 

Q = (1- I1n)(1 - -n-1)*** (I - I0). 

Thus, the convergence of the multiplicative algorithm is measured from the norm 
estimate of Q. The following abstract theory about the convergence of this multi- 
plicative algorithm is a refinement of a result given in [3]. 

Lemma 8. Assume that the assumptions (Al) and (A2) are satisfied. Then 

H[QHla 
? 

/1- (2p(,)2 + l)C 

where the operator norm II a is measured in the ah(*, .)-inner product. 

Applying this lemma and the same ideas as in the previous section, we have the 
next result. 

Theorem 9. Assume that the coarse space Nho is defined by (3.14) or by (3.17). 
Then there is a constant C independent of h, H, and 6 such that 

I6 
IIQIla _< \/ (6H 

3.4. Multilevel Schwarz methods. In this subsection we extend the previous 
two-level additive and multiplicative Schwarz methods to the corresponding multi- 
level methods. 

Let SH = g1H0 be given and the family {fH, }k>j be constructed as before. Let 
Sh = SH, be the finest triangulation of Q2, i.e., h = 2-JH. Again, NHk = Nk 

denotes the P1 nonconforming finite element space of level k associated with the 
triangulation Sk. Define (, *)k on Nk by 

(VI W)k = Hk v v(xi,y )w(Ti,Yi), v, w E- Nk, k = 0, 1, .. I J, J 
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where M k indicates the set of midpoints of edges in &Sk. We now introduce several 
operators. Let Ak: Nk -> Nk be given by 

(Akv,w)k = ak(v,W), Vw c Nk, 

where ak(*,*) = aHk(., .). As mentioned before, the operator Ik_ Nkl -> Nk as 
defined in (3.15) or (3.16) has the property that Ijk_v is a continuous piecewise 
linear function on 8k for v C Nk-l, so in fact Tk _1v C Nh. Hence, let 1k- k 

Nk -+Nh, = 0 1,-... , J -1. Also, define Ik : Nh --+Nk and ik : Nh -+Nk by 

ak(Iv, w) = ah(V, ?kW), Vw C Nk, 

(?kV,W)k = (V,?EkW)J, Vw c Nk. 

Finally, let Ak: Nk -- Nk be a symmetric and positive definite operator with 
respect to the (, )k-inner product. Assume that there are constants -YO and -yj 
independent of k such that 

(3.24) YO(v,v)k ? (Akkv,v)k < -Y1(v,v)k, Vv E Nk. 

The operator Ak should be more easily inverted than Ak; the identity operator on 
Nk is of practical interest among many choices of Ak. From these operators we 
define Sk by 

Sk =TkAk Ak?, k = 0,1, ... ,J 

Sk =Cl Hk2Sk k = o, 1 ,. .., J, 

where we assume that Ij - J is the identity operator on Nh, and C1 satisfies 

(3.25) 0 < Sk ? (ClHk2), 

where Sk is the largest eigenvalue of Sk- It was shown [39] that there is a constant 
C1 independent of k such that this inequality is indeed satisfied. So the operator 
Sk is well defined. We are now ready to define the multilevel algorithms for (3.5) 
and thus for (3.3). 

Multilevel multiplicative algorithm. Starting from any initial guess o E Nh, 
we find /f E Nh as follows: 

(1) Set v-1 = f0-11 
(2) For k = 0,1,... , J, compute Vk by 

Vk = Vk-1 + Sk(h - Vk-1); 

(3) Set 'f = vj. 

Multilevel additive algorithm. Find 'ih E Nh such that 

J 

Sbh ZSkOh = fh, 

k=O 

where f E = E k= Skh - 
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As remarked in the last two subsections, Sk bh can be easily obtained from the 
right-hand side function f thanks to the relation 

Ak_Tk - jkAi. 

The following theorem states a convergence result for the above multilevel ad- 
ditive and multiplicative algorithms, which can be obtained from an application of 
the abstract theory [3, 4, 23] of multilevel algorithms to the present situation, as 
shown in [39]. Set 

Q = (I -Si)(I -SJ_O. (ISO). 

Theorem 10. There are constants Co, C, and 8 c (0, 1) Zndependent of h and H 
such that the conditzon number c(S) of S and the norm IlQHla of Q are bounded as 
follows: 

c(S) < C(1 + 6) - Co(1-)' 

HIQla? 1- C(1 -6)2 
(1 - + C06)2 

4. RECTANGULAR CASE 

In this section we consider the lowest-order Raviart-Thomas space over rectangles 
[36] (or equivalently the lowest-order Brezzi-Douglas-Fortin-Marini space [7]). 

4.1. Linear system of algebraic equations. Let Sh be a family of quasi-regular 
partitions of Q into rectangles oriented along the coordinate axes, and let Qi,3 (E) 
be the space of polynomials of degree not larger than i in x and j in y on E. The 
rectangular mixed space [36] is defined by 

Vh(E) - Q1,o(E) x QOj(E), 

Wh (E) = PO (E) 

Lh(e) = PO(e). 

For each E C 5h, let AXE and AYE denote the x-length and the y-length of E, 
respectively, RE =/XE E, / and let (XE, YE) denote the center of the rectangle 
E. Let fh be defined as before, and define Jhf such that for each E C Sh, Jhf |E 

fE(\y2X, X 4X2 y)/RE. For expositional simplicity, let Bh = a be a scalar. Then 
we again have the next lemma [12]. We emphasize that a similar result holds for a 
tensor coefficient; see [12] for more information. 

Lemma 11. Let 

12 ES 12 
I) 

+ (a Il)ER ((X(X, Y), E)DE -(SE, YE) (X, iE)BE) 

X ((P(X, Y), BE)DE - (XE, YE) (It,i )BE), X, i C Lh, 

Fh4(P) (Jf, 1)E *,VE)aE + E (wJf, vE)kE, t E Lh, 
ECSh ECSh 
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where VE = (VE ),-E( )) Then Ah C 4h satisfies 

(4.1) Mh(Ah , U) =Fh (b), VA z Ch. 

Let the basis in Lh be chosen again as usual, and for each E E Sh, set Iz44 = 

IVi(1) I - IVi2) 1. Then it follows from (4.1) that the contributions of each rectangle 
E to the stiffness matrix and the right-hand side are 

E 1 31E 12 I4II~I' (4.2a) M. = _E ___E + IV 

(4.2b) FtE = J_ h4E h (Jif 47)eE 

Namely, we have the linear system for Ah: 

(4.3) MA = F. 

Lemma 12. Let 

(4.4) Nh = 6:6IE-=ai +a 
2 

x + a 3 y + a 4 (X2 _ y2) a' E IR VE C:Sh 

if Ei and E2 share an edge e, then JeIaEi ds = j IaE2 ds; 

and Ens IQ ds=O}. 

Then (4.3) corresponds to the linear system generated by the problem: Find "/h C Nh 
such that 

(4.5) ah (X/h,(p) = (fh, p), V1p e Nh. 

The equivalence in Lemma 12 is used again to develop the domain decomposition 
algorithm for (4.3). 

After the computation of Ah, we can calculate Uh and Uh from (2.4) if they are 
needed. Setting OhIE = (aE +bEX,cE +dEY), we find [12] that 

aE_= 
E Z 6(E I il) I - i(2) 

I - 1 vi(1) lAhi|t XEAY fE 

(a, 1 i=E REl} 
/ E 

XE 
E 

E RE 

bE = EI _ 

IV_i__)i + IVi(2)1_ + _E 

(a,1)ERE 
Z E E 

RE 

_ EF 4f E1i()1 ?+ i(2)1, li(24A YEAX 
2 

fE 
(e, 1)E E (-EvE + El) _ y VEfhle- RE 

dE = I IF (1)I-IVi2) + E 

Also, for each E in ?h, 

1 4o)IFf 
UhE R E (AYE IViE1 I + AXS2 I Vi2) I A h l,1 + (a, 1) E |E |fE UhE=2RE Z E E~M~2l E hlE~ 12RE 

We remark that the matrix M in (4.4) has at most seven nonzero entries per row. 
It is symmetric and positive definite. However, in general, it is not an M-matrix. 
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4.2. Two-level additive Schwarz method. Let gH be a quasi-regular coarse 
triangulation of Q into nonoverlapping rectangular substructures S2j, i = 1,.... n, 
and let ?h be a quasi-regular refinement of 8H into rectangles. Again, let {?Q'} be 
an overlapping domain decomposition of Q which aligns with the boundary 09Q. 
The overlap parameter 6 is defined as before. Associated with each Q?', let Nh 
be the restriction of the nonconforming finite element Nh to Q2'. With these, the 
form of the additive Schwarz method given in (3.11) and (3.12) remains the same. 
Moreover, a parallel analysis could be given here. However, we here show how to 
use the established results of the triangular elements to analyze the rectangular 
case. 

Let 8h be the triangulation of Q into triangles obtained by connecting the two 
opposite vertices of the rectangles in Sh, as illustrated in Figure 1. Associated with 
Sh, let Nh be the P1 nonconforming finite element space as defined in (3.4). Then 
we define the operator ih: Nh -4 Nh as follows. If v C Nh and e is an edge of a 
triangle in Nh, then IThv E Nh is defined by 

I - ~~~1 
(4.6) e (IhV, 1)e = (v, 1)e. 

lel elet 
, )e 

Lemma 13. There is a constant C independent of h such that for all v E Nh 

(4.7a) I| hVllL2(Q2) ? C|IVIIL22(Q), 

(4.7b) tt?EhVHh < CH|VHlh. 

Proof. We first prove the inequality (4.7a). From (4.6) it follows that 

|Tthv IL2(n) Z E IhVHL2(E) 
EESh 

< C E E (X [fhvI de) 

EE?h i=1 eE 

3 2 

< C Ev E vde| 

< C||V|I12() 

from which (4.7a) follows. 

FIGURE 1. A triangular refinement of rectangles 
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We now prove the second inequality, which follows from the first one. Given 
v C Nh, define ( C Nh, w c Nh, and z C Ho (Q) by 

(4.8) ah(V,) =V()))8 E Nh, 

ah(w,() = V( V E Nh, 

ah(z,() = (u(), V C Ho(Q). 

Note that IIZIIH2(Q) ? CMIIL2 Qr) by elliptic regularity, and that v and w are ap- 
proximations to z with the usual error estimates [1]. Thus, it follows from an inverse 
inequality and (4.7a) that 

1ThVlh < 1Th(V - W)Hh + ||W||h 

? C (h-i H?Eh(V - W)|L2(Q) + ||V - Wlh ? VHh) 

? C (h | Iv-wI IL2(Q) + I HVH |h) 

? C (h (||v - 
ZHL2(Q) + HW - ZlL2(Q)) + IIVIHh) 

? C (hjj(||L2(Q) + ||VIHh) 

Finally, by (4.8), we see that 

| =IL2(Q) ah(V,W) < C||VHIhI1(||h < Ch 1IVIIhII0L2(Q)) 

and (4.7b) follows. C 

Let Rh be the interpolation operator into Nh, and define the coarse space Nho by 

(4.9) Nho = {V Nh: v = Rhpp, c E Nh}, 

where N2 is a triangular coarse space such that RhS is well defined for every 

Theorem 14. Assume that Rho is such a triangular coarse space that the result in 
Theorem 4 is true and that the rectangular coarse space Nho is given by (4.9). Then 
the condition number c(H) of the additive Schwarz operator H in the rectangular 
case satisfies 

(4.10) c(H) < (1 -+ H/69, 

where C is independent of h, H, and &. 

Proof. The spectrum of H can be bounded as before. It again suffices to prove 
the assumption (Al). For every v C Nh, let (Ehv)i C Nh be the decomposition of 
IhV C Nh constructed from the triangular case. Let vi = Rh((IhV)i) C Nh. Then 
we see that v = En=O vi. Thus, by Theorem 4 and Lemma 13, we obtain 

n n 

E ah(Vi, Vi) < CEah((?EhV)i, (?EhV)i) 
i=O i=O 

< C (1 + H/1) ah(?hv,? hv) 

< C (1 + H/6) ah(v, v), 

and (Al) follows. C 
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Let 5h = 5HJ for some J > 1 where 5Hk = 5k (Hk = 2-kH, 0 < k < J) is 
constructed by connecting the midpoints of the edges of the rectangles in 5k-1. For 
each 0 < k < J, let 5k be the triangulation of Q into triangles corresponding to 
5h. Associated with each gk, let Nk be the Pi nonconforming finite element space 
as defined in (3.4). Then it is easy to see that Nh can be constructed from No by 
means of (3.14) or (3.17). 

The same idea also applies to the analysis of the two-level multiplicative algo- 
rithm, and the same result given in Theorem 11 remains valid here. 

4.3. Multilevel Schwarz methods. Let SH = 5Ho be given and the family 

{V'H,}kk> be constructed as above. Let 4Eh = EHJ be the finest triangulation of Q, 
i.e., h = 2-JH, for some J > 1, and let NHk = Nk denote the nonconforming finite 
element space of level k associated with the triangulation 'Ek, as defined in (4.4). 
For each k, we introduce the continuous bilinear functions 

Uk = {C E C?(Q): (1E C Q1,1(E), VE E sk and (Jas = 0}. 

Unlike the triangular case, Uk t Nk. Thus, the intergrid transfer operator k 

Nk-l - Nk cannot be defined as in (3.15) and (3.16). Hence, the convergence 
analysis in ?3.4 does not apply here. Fortunately, we can use the idea of the proof 
in Theorem 14 to construct the operator Ik. 

For each k, let gEk be the triangulation of Q into triangles obtained from gEk using 
the above manner (see Figure 1), and let 'k: Nk -> Nk be defined as in (4.6). Let 

Ik: Nk >4 Nh be defined as in (3.15) or (3.16). Then we define 'Tk: Nk -> Nh by 

(4.11) Ik = Rhlklk 

Define (-, )k on Nk by 

(V, W)k = Hk (V, W)e- 

We can now introduce the operators Ak, Ik, _k, Ak, and Sk as before. Namely, 
Ak Nk > Nk is given by 

(Akv,w)k = ak(V,W), Vw c Nk, 

k Nh Nk and ik: Nh -> Nk are given by 

ak(_ V,W) = ah(V,?EkW), Vw C Nk, 

(?kVv,w)k = (V,?kW)J, Vw c Nk, 

and Ak Nk -> Nk is a symmetric and positive definite operator with respect to 
the (, )k-inner product such that there are constants -yo and -yl independent of k 
satisfying 

-YO(V,V)k < (Akv,V)k < Y1(V,V)k, Vv c Nk. 
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FIom these operators we define Sk by 

SkI =kAk AkIk, k = 0,1, ... , J, 

Sk = ClH2 Sk k = 0 ,1,..., J, 

where C1 satisfies an inequality similar to (3.25). With the operators Sk, the mul- 
tilevel additive and multiplicative Schwarz algorithms can be defined as in ?3.4, 
and the convergence results directly follow from those in Theorem 10 by means of 
Lemma 13. 

5. SIMPLEXES 

Let now 'h be a partition of Q into simplexes. The lowest-order Raviart-Thomas- 
Nedelec space [36, 34] defined over &h is given by 

Vh(E) = (Po(E))3 e ((x, y, z)Po(E)), 

Wh(E) = Po(E) 

Lh(e) = Po (e) . 

In the present case the results in Lemmas 1 and 2 remain the same if we define the 
nonconforming finite element space 

Nh ={v E L2(SQ) : VIE E P1(E), VE E 6h; v is continuous at the barycenters 

of interior faces and vanishes at the barycenters of faces on 8Q}. 

Moreover, for each simplex E E Eh, its contributions to the stiffness matrix and 
the right-hand side are 

where Jhf = fh(x,y, z)/3. For each E E &h, let a7hlE = (a4 + bEX,a 2 + bEY, a43 + 

bEZ). Then ah and Uh are computed from the following relations: 

bE - fE 
3 

4 

4 = - le I ~( El)v1 ? i+2 i(), e iE = E OilE|(1jVE )+ pJ2VE2E) + OA E3E )h eE 

i=l 
3 

- E(4(ailX + ji2Y + ai3Z), I)E, j = 1, 2,3, 3 1 

UE =7 h V a5ch, (X, Y, Z))E + E Ah lei ((X, Y, Z), ViE)e ). 
iJLj Ei11 

E / 

The two-level Schwarz method can be defined as in ?3. If t'HQ is given and each 
?Hk+1 is a regular refinement of &Hk into eight times as many elements by joining the 
barycenters of the faces of the elements in EHk, then the definition of the multilevel 
Schwarz method remains unchanged provided that the intergrid transfer operator 

Zkk_1 : Nk -1 -4+ Nk is given as in (3.15) or (3.16). 
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6. RECTANGULAR PARALLELEPIPEDS 

Let now Sh be a decomposition of S? into rectangular parallelepipeds oriented 
along the coordinate axes. The lowest-order Raviart-Thomas-Nedelec space [34] 
defined over Sh (equivalently, the lowest-order Brezzi-Douglas-Fortin-Marini space 
[7]) is given by 

Vh(E) = Q1,o,o(E) x Qo,X,o(E)x QOxO,l(E), 
Wh (E) = Po (E), 

Lh(e) - PO (e). 

In this case the nonconforming space Nh is given by 

Nh= {Ea|E?aE + 2x + aEy + a4Ez + aE(xY2 _ 2) + a6 (2 _2) 

az E , IVE E gh; if E1 and E2 share a face e, 

then jEJ, ds= SJc E2 ds; and J E Js ds =O}. 
e e A~~~~~EnasQ 

Then the results given in Lemmas 13 and 14 can be extended to the present case. 
For each E E Sh, set 

RE = X2E + y2 + AZ 

Jhf |E = Z2'\2 ' Az2)' 

and 

E AXE 
I 

AYE ' AZE ) 

IV iiil) 
i(2) 

? Vi( 
|V| =IVE I +I VE I EI 

A4X AY AzE 

Then the contributions of the rectangular parallelepiped E E sh to the stiffness 
matrix and the right-hand side are 

m = 1 ( I) (VE 'V - RE IVE 

FE (Ja,I4)E (,IE 
E 

R 

Fi - h IE E + (Jhf VE)e 

For E E Sh, let UhIE = (aE + bEX, CE + dEy, SE + tEZ). Then it follows from (2.4) 
[12] that 

6.tEjEI 6 i(1)~ i(2)1 
aE = -Z {(I-i 'XRE) ? A + E 

( 2e, 1)EA4RE _ v A| +E)_ 

IVi() AXE RE i(1)> - _EfE_ ? 2? 6 -E hE~ Ax2RE' AE UXE ) EJ 



DOMAIN DECOMPOSITION ALGORITHMS FOR MIXED METHODS 485 

bE = ~61EI1 Z{1-x,E 1 I4 I vi(2)f 

(bE, 1)EA4RE ( ?_ XRE) I I + E I 

+ EIA ? fEh(, + 1)E 

similar expressions hold for CE, dEo SE, and tE. Finally, 

leeipe givn anah into six trahera,ulas ilsratiedmint ofigr 2,or into fihives trahedra,yee 

mets,tehe multilevel Schwarz method can as iial be defined a ntercaglrcs. IfreovHr 

the convergence result follows from that for the simplexes if an appropriate opera- 
tor can be defined from the nonconforming space on rectangular parallelepipeds to 

that on simplexes. This can be done as follows. 
Let Sh be the triangulation of Q? into simplexes obtained by dividing each paral- 

lelepiped in Fh into six tetrahedra, as illustrated in Figure 2, or into five tetrahedra, 
as shown in Figure 3. Also, let Nh be the corresponding Pi nonconforming space 
as given in the previous section. Then, if v CE Nh and e is a face of a tetrahedron 
in Nh, we define lhv by 

(6.1) i(hVi l)e= (v, )1e. 

FIGURE 2. A rectangular parallelepiped divided into six tetrahedra 
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4 4 

FIGURE 3. A rectangular parallelepiped divided into five tetrahedra 

It can be shown as in Lemma 13 that the stability results similar to (4.7) hold for 
.Th. Thus, if the coarse space is given as in (4.9), the convergence result in Theorem 
14 remains the same for the rectangular parallelepipeds. 

7. PRISMATIC ELEMENTS 

Let now 2 be of the form 6 = G x [0,1] with G C IR2 and Eh be a partition of 6 
into prisms with three vertical edges parallel to the z-axis and two horizontal faces in 
the (x, y)-plane. The lowest-order Nedelec space [35] defined over Sh (equivalently, 
the lowest-order Chen-Douglas space [14]) is given by 

Vh(E) = (Po(E))3 ED (((x, y)Po(E), zPo(E))), 

Wh (E) = Po (E), 
Lh(e) = Po(e). 

The corresponding nonconforming finite element space is given by 

Nh = R aE +a 2X + a3 y + a4 Z + a&(X2 + y2 - 2Z2) a ER EEh; 

if E1 and E2 share a face e, then j1JaE1 ds = j1k9E2 ds; 

and J ,Q ds = 0}. 
AEnafQ 

Again, the results given in Lemmas 11 and 12 remain the same. Furthermore, 
for each prism E E gh, its contributions to the stiffness matrix and the right- 
hand side and the restriction of 0h and Uh to E can be explicitly determined as in 
the triangular and rectangular cases; for more details on these expressions for the 
prismatic elements, refer to [12]. 
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The two-level and multilevel Schwarz methods can be defined as before. The 
convergence result follows from the corresponding result for the simplexes if each 
prism is divided into three tetrahedra as in Figure 2 and the operator 1h: Nh -* Nh 

is defined as in (6.1). We end this section with a remark that with a linearization 
approach the problem of solving quasilinear problems reduces to one of solving 
symmetric linear problems [9], and the theory of the paper applies. 

8. NUMERICAL EXAMPLE 

In this section the two-level additive Schwarz algorithm described in ?3 is applied 
to the model problem 

(8.1a) - Au =f in Q = (0,1)3, 

(8.1b) u = 1 on 9Q. 

Comparison of numerical experiments among the domain decomposition methods 
developed in the previous sections will be reported in a forthcoming paper. The 
right-hand side f is given by 

f (x, y, z) = 37r2 sin(7rx) sin(7ry) sin(7rz), 

so that the exact solution is 

u(x, y, z) = 1 + sin(7rx) sin(7ry) sin(7rz). 

The domain Q2 is first divided into uniform cubes, and then each cube is parti- 
tioned into five tetrahedra, as shown in Figure 3. The lowest-order Raviart-Thomas 
space over a uniform decomposition of Q2 into simplexes is exploited here. The con- 
jugate gradient method is exploited with the stopping criterion that the relative 
residual as measured in the energy norm is less than 10-8. The experiments in 
Tables 1 and 2 report the condition number in the cases of the overlap parameter 
6 = H/4 and 6 = h. In the tables, n is the number of the subdomains, c(H) is 
the condition number of the two-level additive Schwarz algorithm, and # is the 
number of iterations needed to achieve the desired accuracy. From these results we 
see that the condition number depends linearly on the ratio of the subdomain size 
to the overlap parameter and is uniformly bounded. Also, the number of iterations 
is bounded independently of the mesh sizes and the number of decompositions. 
Hence, the experimental results coincide with the theory established before. An 
extension of the present approach to other substructuring methods such as those 
in [38, 29, 5] will be discussed in a forthcoming paper. 

TABLE 1. The condition number with 6 = H/4 

1/h 16 16 24 24 32 32 

n 8 64 8 27 8 64 

c(1T) 5.86 5.12 6.08 6.67 6.51 6.81 

# 8 9 9 8 8 9 
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TABLE 2. The condition number with 6 = h 

1/h 36 36 48 48 

n 8 64 8 64 

c(H) 13.74 12.04 12.96 12.55 

# 12 12 13 12 
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