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A CONTINUOUS SPACE-TIME FINITE ELEMENT METHOD 
FOR THE WAVE EQUATION 

DONALD A. FRENCH AND TODD E. PETERSON 

ABSTRACT. We consider a finite element method for the nonhomogeneous 
second-order wave equation, which is formulated in terms of continuous ap- 
proximation functions in both space and time, thereby giving a unified treat- 
ment of the spatial and temporal discretizations. Our analysis uses primarily 
energy arguments, which are quite common for spatial discretizations but not 
for time. 

We present a priori nodal (in time) superconvergence error estimates with- 
out any special time step restrictions. Our method is based on tensor-product 
spaces for the full discretization. 

1. INTRODUCTION 

The continuous time Galerkin (CTG) method is a finite element technique which 
provides time discretizations for evolution problems using approximation spaces of 
continuous functions. This approach is particularly appropriate for wave problems 
as it retains discrete versions of the important energy conservation properties pro- 
vided by the initial/boundary value problem being approximated (see [11]). Com- 
putations and analyses have shown this is especially useful in the approximation of 
solutions to nonlinear wave problems (see, for instance, [12], [13], or [18]). Recent 
work by DePrutos and Sanz-Serna [7] indicates that the constants in long-time esti- 
mates may be smaller for such methods. Another advantage of the CTG approach 
is that CTG methods of any desired order of accuracy are easily formulated. 

The main purpose of this paper is to demonstrate new variational techniques 
to analyze these high-order accurate space-time finite element methods. We will 
prove both global convergence and nodal in time superconvergence error estimates. 
The global error estimates we present have also been obtained by [4] (see also [5]), 
however, by nonvariational arguments, and in earlier work of the authors [10], but 
by different techniques, which required a time step restriction. The approximation 
of the heat equation by CTG methods was studied by Aziz and Monk [1]. Our 
report complements theirs; however, we note that the stability estimates for the 
wave equation are more complicated (see ?3), and our proof of superconvergence is 
shorter and, we feel, more straightforward. The techniques we use would also apply 
to the heat equation. 
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We remark that these CTG schemes in the homogeneous case (f = 0) are equiv- 
alent to Gauss-Legendre implicit Runge-Kutta (IRK) methods (see [11]). In this 
connection see also [3]. For three other nonclassical finite element treatments of 
the wave equation, see Babuska and Janik [2], Johnson [14], and Richter [17]. 

It may seem unusual to use an implicit method for approximation of the wave 
equation. However, for some wave problems, particularly nonlinear problems where 
there may be "blowup" or highly singular behavior, there is growing evidence of the 
advantages of implicit schemes. Bona et al. [6] use the Gauss-Legendre IRK meth- 
ods to solve the generalized KdV equation efficiently. Strauss and Vazquez [18] note 
that certain explicit methods fail while an implicit energy-preserving scheme gives a 
sensible approximation to the generalized Klein-Gordon equation. In addition, the 
variational formulation of space-time finite element methods seems to facilitate the 
derivation of a posteriori error estimates, which may serve as the basis for rational 
adaptive grid refinement (see [14] for an example for the wave equation). Based on 
these observations, we consider the CTG method a viable approach to many wave 
problems, and hope that the analysis presented here for the linear wave equation 
will lay the foundation for future work on the sort of nonlinear problems mentioned 
above. 

The outline of this paper is as follows. In ?1 we specify our notations, collect 
important approximation results, and describe a useful reformulation of the wave 
problem. Our main estimate will involve the decomposition 

y -Y = (y -PXY) + (Pxi -Y) + (Y -Y) = p+0+, 

where y is the partial differential equation solution, Y is the fully discrete approx- 
imation, y is a discrete in time and continuous in space approximation, and Px is 
projection in the spatial variables. In ?3 we present the fundamental arguments in 
an abstract setting from which the estimates of i1 for the wave equation will follow. 
We introduce yj and several necessary regularity results in ?4, and in ?5 we complete 
the estimate of the error y - Y, using the decomposition above and the theorems 
for y. Section 6 has the results of several numerical experiments with the scheme, 
where we explore the necessity of some of the assumptions on the initial data. 

2. PRELIMINARIES 

Let Q be a bounded region in Rd (d = 1, 2,3) with a smooth boundary &Q, and 
let [0, T] be a finite time interval. We consider the following initial/boundary value 
problem: find U = U(x, t) such that 

Utt-AU = f in Q x [0,T], 
(1) U=0 onaQ x[0,T], 

U (.,0) = Uo and Ut( ,0) Vo in Q. 

Our results easily generalize to the case where -/ is replaced by any uniformly ellip- 
tic selfadjoint second-order operator which is independent of t; the time-dependent 
case will be the subject of future work. 

For a domain S C Rfd, we will use the Lebesgue spaces L2(S) and Loo(S), and 
the Sobolev spaces HS(S) for s a positive integer, all defined in the usual way. We 
will also use Ho((Q) and its dual H-1(Q). For Ho(Q), we take the norm to be 

1IVIIH (Q) = IIVVIIL2(Q) . All of these spaces are Hilbert spaces except for L,(S). 
When S = Q, we will usually omit Q from our notation. For functions depending 
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on both space and time variables, given a time interval [a, b] and H any of the above 
Hilbert spaces, we define the Hilbert space L2 ([a, b], H) by 

lVl L2([a,b],H) = ( 11 lV(.Jt)1 H dt) 

There is an analogous definition for LO ([a, b], H). When [a, b] = [0, T], these will 
be denoted simply by L2(H) and Lo (H). We use C to denote a generic positive 
constant, not necessarily the same at different occurrences, but always independent 
of all discretization parameters, solutions, and of T. 

We reformulate (2) as a first-order system by introducing the function V = Ut. 
Letting 

y (V), F=(t), and A=[- [ I] 

we then have 

Yt+AY=F inQx[O,T], 

(2) Y=O on&Qx[O,T], 

Y('? 0) (V inQ, 

where the domain of A is D (A) = (H2 n Ho) x Ho. It will also be convenient to 
define a mapping T: H-1 - Ho by 

-A(Tv) = v in Q, 

Tv = 0 on &Q. 

Finally, we define 

B=( O T) 

with D(B) = L2 x H-1. Notice that BA and AB are identities on the appropriate 
domains. 

We next discuss the approximation spaces and their properties. Let Sh be a 
finite-dimensional subspace of Ho, depending on a discretization parameter h > 0. 
Define the L2 projection 7r: L2 __ Sh by 

(7rXU, X)L2 = (U, X)L2 VX E 

and define the Ho projection Px Ho __ Sh by 

(VPXU, VX)L2 = (VU, VX)L2 VX E SP 

We assume for Sh the following properties: 

(3) IIu - 7rXUIIL2 < ChrIIuIIHr, 

where u E Hr lHo and 0 < r < p + 1; and 

(4) IIu - PXUIIHS < Chr IIuIIHr, 

where u E Hr nHol, 0 < s < r < p + l and s = 0, 1. Define the discrete Laplace 
operator -Ah: Sh _ Sh by 

(-AhA, X)L2 = (VA, VX)L2 VX Ep 
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and define Th: H-1 - Sh by 

(VThA, VX)L2 = (A, X)L2 VX E SP . 

Note that Th restricted to Sh is the inverse of -Ah. We also define the following 
two operators: 

Ah=(- 0I) and Bh= (oI 

Notice that on Sh X Sh these are inverses of each other. 
Let [0, T] be partitioned by 0 = to < t <... < tN = T, and let 

In =[tn-1 Itn] I kn =tn -tn-1 1 k =max{kn :1 < n< NJ. 
For functions X which depend continuously on time, we will often use the notation 
On = 44(tn)- The space of polynomials of degree q on an interval [a, b] is denoted by 
Pq ([a, b]). We define Sk to be those continuous functions on [0, T] whose restriction 
to any In belongs to Pq(In). Define an operator lrt : L2(In) - Pq-i(In) by the 
equation 

(7rtu, X)L2(In) = (U, X)L2(In) VX E Pq-1 (In)) 

and also define Pt: H1([O,T]) -* S' by Ptu(O) = u(O) and 

(&t(Ptu),xt)L2([o,T]) = (Ut,Xt)L2([o,T]) V q E Sq 

Note that 

PtU(tn) = O(n), n = O, 1, ... ., N, 

and that there is no ambiguity if we talk of Pt: H1 (In) -- Pq(In) (i.e., Pt may be 
computed locally). Also note that lrt and Pt are projections into different spaces. 
We have the following approximation properties: 

(5) |u -rtUL2(I) < Ckr tUL2(In) 

where u E Hr(In) and 0 < r < q; and 

(6) <0(u-Ptu) L2(In) ? Ck7s110tU IL2(In), 

where u E Hr(In) and 0 < s < r < q+ 1, s = 0, 1. Any function E Pq (In) satisfies 
the following inverse properties: 

(7) |lLOI < Ck- 1/2IXIL( 

(8) ||~~~~11t11L2(In) <Cn lXL2(In)) 

(9) ||?>||L2(In) ? C{kn/2 lq(tn-1)l + 17rtc/11L2(In)}. 

(See Lemma 1, p. 42, in [9] for a proof of (9).) 
The space-time domains Q = Q x [0, T] and Sn = Q x In will be used in this 

paper. Our approximate solutions will be defined in the space Shk = Sh 0 Sk. 
The operators and estimates we have introduced for Sk and Sh can be extended in 
obvious ways to the space Shk* pq 

We now introduce the approximation scheme. The method is based on the 
formulation (2), so U, Ut are approximated separately by u, v E Shk. These approx- 
imations are defined successively on each slab of space-time as follows: 

(10) (Ut -VI rY)L2SnA = O Fy E q-(5 _1( 
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(11) (vt A)L2(Sn) + (Vu, VA)L2(Sn) = (f, A)L2(Sn) VA E SP X Pqi I (In). 

Also take u(., 0) = uo and v(., 0) = v0, where uo, vo E Sh are some suitable approx- 
imations of Uo, Vo. Note that the test functions X, A are one degree lower (q - 1) 
in time to account for the fact that u and v are fixed a priori by continuity at 
t = tn-1. Letting y = (u, v) and using the discrete Laplacian, we can reformulate 
this problem in the same way as was done for the partial differential equation. We 
obtain 

(12) (Yt + AhY, k)L2(In,Hl XL2) = (F, )L2(In,Hi XL2) Vq E [SP XPq-i(In)] 

One of the most appealing properties of this scheme is that it conserves energy 
in the same way as the continuous problem. Letting X = vt in (10) and A = ut in 
(11), we obtain 

En = en-1 + (f,ut)s, 

where 

fCn = 2 | L2 + 2VUTn JL2, 

and if f = 0, then the energy is observed. 

3. CTG APPROXIMATION OF AN ABSTRACT IVP 

In this section we consider the discretization in time of an abstract initial value 
problem. Let H be a real Hilbert space, and let A be an operator defined on a 
dense domain D(A) C H, which generates a strongly continuous semigroup, which 
we will denote by etA. We assume that (AV, V) > 0 and that |A*VIIH < CI IAVIIH 
for all V E D(A). Then Ile-t'VIIH < IIVIIH for all V E H. In particular, these 
assumptions are satisfied if A is skew-symmetric, which is the case for the wave 
equation; however, our analysis is more general, and would apply also for example 

to the heat equation if we took Y to be a scalar representing the temperature and 

A the negative Laplacian operator. We consider the problem 

(13) Yt + AY = F, Y(0) = Yo. 

Precise assumptions on Yo and F will be stated below. In this section we will denote 

lFt and Pt simply by rr and P, respectively. 

The time-discrete CTG approximation to (13) is an element y of D(A) 0 Sk 
which satisfies y(O) = Yo and for 1 < n < N 

(14) (Yt,q$)L2(In,H) + (Ay,q$)L2(In,H) = (F,q$)L2(qn,H) Vq E H(Pq-i(In). 
We first derive a basic stability estimate. 

Theorem 1. If y satisfies (14), then 

(a) IlYtIIL2(H) + IIAYIIL2(H) < C{T/ 2IIAYoIIH + TIIAFIIL2(H) + IIFIIL2(H)}b 

and for 0 < t < T 

(b) Hlyt(t)H + IlAy(t)IH < C{|AYoIH + T1 /2 4AF|IL2(H) + |lFIILoo(H)}. 

Proof. On each subinterval, (14) is equivalent to Yt = -7rAy + 7rF. Therefore, by 

(9), we have 

(15) Hl4AyIL2(In,H) 
< C{k /2 IHAYn-I1bH + II-xAY[IL2(In,H)} 

< C{kn IjAyYn-11H + HlYtL2(In,H) + IIFIL2(In,H)}- 
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Taking q A = Ayt in (14) gives 

(yt, IAyt)L2(In,H) + (Ay, Ayt)L2( In,H) = (F, Ayt)L2(In H)1 

1IjAYn 12 - IIAY4n-iIIH ? -(AF,Yt)L2(In,H). 

Summing over n gives 

(16) |IIAYnII12 < ? IIAyo 112 - (AF, yt)L2([o,tn],H)- 
On In let w(t) = t-t t, and write y = Yn - +wY with y E H?Pqi(In). Choosing 
q0=yin (14) gives 

(Yt, Y)L2(In,H) + (Ay, )L2(In,H) = (F, Y 

(Y, 7)L2(in,H) + (WYtY)L2(In,H) + (AYn-1i M)L2(In,H) 

+ (WAg , Y)L2(In,H) = (F, Y)L2(In,H), 

IYIIL2(In,H) + (WVt,M)L2(In,H) < -(AYn-1, )L2(In,H) + (F,M)L2(In,H). 

Integration by parts in time establishes that 

(W-tv )L2(IH) = - 2IYIIL2(In,H) ? 2kn I I'nIHI 

Thus, 

IIYIIL2(In,H) < IIAYn-1 IIL2(In,H) IIYIIL2(In,H) + IIFIIL2(In,H) IIYIIL2(In,H) 

- 

kl2IHAYn-iIIHIIYIIL2(In,H) + IjF IL2(In,H) IYIIL2(In,H)i 

whence 

(17) IIYIIL2(In,H) < 2{k 1,2IIAYn-lIIH + IIFIIL2(In,H)}. 

By the inverse estimate (8) and properties of w, we have 
(18) 

H1YtIIL2(In,H) = IIY+W YtIL2(In,H) < IIYIIL2(In,H) + IIWYtIIL2(In,H) < CIIYIIL2(I1yH> 
Equations (15)-(18) combine to give 

(19) IIYIIL2(In,H) + IIAYIIL2(In,H) ? C{knIIAyn-l|H ? IIFIL2(In,H)} 

< C{knlAyo 11 + knlIAFlIL2([o,tn],H)lIYtIIL2([O,tn],H) + IIFII2(In,H)} 

Summing over n yields 

(20) HYtIlL2([O,tn],H) + II'YIIL2([O,tn],H) 
< C{tn|IAyoI11 + tnlhIAFIIL2([0,tn],H) IIYtIL2([0,tn],H) + IIFIIL2([o,tn]H)} 

A simple kickback argument completes the proof of the first result. 
To obtain the pointwise in time estimate, by (7) and (19), 

Lt (In,H) + II*YHLo(In,H) ? Ckn {IIytHlL2(In,H) + IIwYIIL2(In,H)} 

? C{fIIAYOII + IIAFIIL2([0,tn],H) IYtIL2([0,tn],H) + kn1 fFIIF2(In,H)} 

? C{IAyoIIHi ? tnIIAFIIL2([o,tn],H) ? tn IIYtjL2([O,tn]H) + knLIIFIIL2(I,,H)}I 

Now by (20) we have 

IIYtLoo(I,,H) + l cAY ILo(In,H) 

? C{IlAyoIIH + tnIIAFlIL2([o,tn]H) + IIFIKL([o,tn],H)}- 

The desired result follows. O 
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If H is finite-dimensional, then existence and uniqueness of the CTG approxima- 
tion follow at once from the preceding stability estimate. The next theorem shows 
that this holds true in general. 

Theorem 2. Given Yo E D (A) and F which satisfies IIAFIIL2(H) + JIFHIL2(H) < X, 

there is a unique y E D(A) 0 Sk which satisfies (14). 

Proof. Let {q$n} be an orthonormal basis for H, with fn E D (A), and set Hn = 

span{i,. .. , q57O}. Let yn be the orthogonal projection of Yo into Hn. It suffices 
to consider a generic time interval, such as I = [0,1]. For each n there exists a 
unique solution to the (finite-dimensional) problem: find ynf E Hn 0 Pq (I) such that 
n(O) = yn and 

(yn + Ay , X)L2(I,H) = (F, X) L2(I,H) VX E Hnr OPq-1(I). 

By the previous theorem and the inequality 

IIYIIL2(I,H) < IIY(O)IIH + II lyt(t)II dt < IIY(O)IIH + IlYtHIL2(1,H) 

it follows that {Ilyn IL2(I,H) + IIAyn 1L2(I,H)} is bounded. Because A is necessarily 
closed (being the generator of a strongly continuous semigroup), from this we can 
deduce that there is a subsequence, still denoted yn, such that yn converges weakly 
in L2(I, H) to some y E D(A), and further that AyT converges weakly in L2(I, H) 
to Ay. Since 

(yt, X)L2(I,H) = _(Ynv Xt)L2(I,H) 3 (Y, Xt)L2(I,H) = (Yt, X)L2(I,H), 

we also have that yn converges weakly to yt. To show that y satisfies (14), given 
X E H 0 Pq-I (I), let Xm be the orthogonal projection of X into Hm 09 Pq-i(I )). 
Then for n > m 

(yn + Ay n, Xm)L2(I, H) = (F, Xm)L2(I,H)- 

Fix m, and let n -- oc, and then let m -- oc. It only remains to show that the 
initial condition is satisfied. But this is trivial: by construction yn (0) converges in 
H to YO, and it is also easy to deduce that yn (O) converges weakly in H to y(O); 
it follows that y(O) = Yo. This proves existence. Uniqueness follows immediately 
from the stability estimate. E 

The previous theorem guarantees that y(t) E D(A); standard arguments show 
that y(t) will have more regularity (i.e., lies in the domain of higher powers of A) 
under the appropriate assumptions on Yo and F, and this fact will be tacitly used 
below. The stability estimate also allows us to prove the following error estimate. 

Theorem 3. Let Y be the solution of (13), and y the CTG approximation defined 
by (14). Then forO< t<T 

I|Ay(t) - AY(t)H|H < Ck q+1{T /2 1Otq A y|1L2(1,H) + II&tSAY|L.(H)} 

Proof. Write y-Y = (y-PY)-(Y- PY) = 0 + p. Note that 0 E H X Skq 
and 0(0) = 0. A short calculation establishes that 0 satisfies, for any n and any 
? H? Pq-l(In), 

(Ot + AO,X) L2 (In, H) = (Ap,X) L2 (In, H) 

The stated estimate follows by applying Theorem lb to 0, and estimating p using 
(6). E 
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Our next goal is to derive a higher-order estimate for the error at time nodes 
t = t,. For this we will need the following stability result. 

Lemma 1. The solution y of (14) satisfies 

atWA Y 11 L2 ( H) ? CT /2 2q+lyO + 2T F 2(1 
q 

+ C E | (9t Aq i F I L2 (H) 
j=1 

Proof. Recall that on each subinterval In,, y satisfies Yt + wrAy = 7rF. Operating on 
this identity with at1A- gives 

(21) atA y = -8ati- 1A3+1y + at-1(I - r)Ai+ly + 9t`1rA F. 

For the second term on the right-hand side, we have by (5) and (8) that 

- 

7r)A+yIIL2(In,H) 
K 

Ck-('-1)11(I - 
7r)A3+1YI|L2(In,H) 

< Ck-( 4k71 tiWA Y IIL2(In,H) 

and thus taking norms in (21) gives 

(22) H&tAjYHIL2(In,H) < Cl9ik Aj+' YIIL2(InH) + II(9 WA 1rFIIL2(In,H)- 

By summing over n and repeated use of (22) we obtain 

q-1 

IlatWAqY |iL2 (H) < CllatA 2y I L2 (H) + CE II1 at-A+jF11L2(H). 
j=1 

The proof is now completed by applying Theorem 1 to AA2qy, which is just the CTG 
solution to the problem with initial data A2qYo and nonhomogeneity A2q F. Cl 

The following is the final result of this section. 

Theorem 4. Let Y be the solution of (13), and y the CTG approximation defined 
by (14). Then, assuming Yo and F have the indicated regularity, for 1 < n < N 

jIY(tn) - Y(tn)IIH 

? Ck {T 2+ q+ Yo H + 3/22q+1FIIL(H) + T1/2 S I jA q+jFIIL (H)} 
j=O 

Proof. Let E = y - Y. Then on In, E satisfies Et + AE = (I - 7r)(Ay - F), so 

tn 

E = eknAEn-I + e(t-tn)A(I - 7r)(Ay - F) dt. 

The idea of the proof is to use Taylor's theorem to write 

e(t-t)A = Q(t) + (q 1)! (t - s) q Ae(Stn)A ds, 

where Q is a polynomial of degree q - 1 in time. In the case that A is unbounded, 
some care is required in interpreting this identity. The procedure can be made 
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precise by, for example, use of the Yosida approximation to A (see Pazy [16, p. 9]). 
For the sake of clarity, we omit these details. We have 

E = ekAEn>-1 

I ptn t' 

+ (q / ! (t _ s)q-lAq e(S-tn)(I - r)((Ay - F)(t) ds dt, 
(q-1*Jn_1 Jn-1 

since the term involving Q is zero, by the definition of ir and the fact that Q is 
degree q - 1 in time. Since IletA41 < 1, we obtain 

rtn rtn 

liEnliH < HlEn-111H + Ck , kj 1(I-A(1-7r)(AyA--)(t t))Hddsdt 
tn-1 tn-1 

rtn 

< |lEn-1 IIH + Ckn II lll(- 4- F)(t)IIH dt 
tn-1 

< IIEn-1I1H + Ckq+1/2 IAq(I -_ r)(Ay - F)IIL2(In,H). 

Now by (5) we obtain 

IIEnIIH < I|En-1IiH + Ck 2q+1 / I I |tqA q 1IL2(InXH)+ 11 l9t A FIlL2 (InXH)}- 

It follows in a straightforward way that 

IIEnIIH < Ctl/ k I I atAq+ hIL(Atn]H)+ II tqAqFIL2Q0,tn],H)} 

The theorem now follows by the previous lemma. 

4. APPLICATIONS 

In this section we apply the results of the previous section to some specific 
examples. First let H = Ho x L2, A = A, as defined in ?2, and F = (0, f). Then 
the CTG approximation of the previous section is the time-discrete approximation 
for the wave equation, and will henceforth be denoted by y. An assumption such 
as Yo E D(A2q+j) implies not only assumptions about the regularity of Uo and Vo, 
but also certain boundary conditions, also referred to as compatibility conditions, 
for these functions. These are most easily described by introducing the H9 spaces, 
defined by 

H8 = {v E H9: AjVvlo =O,j E Z, 0 < j < s/2}. 

These are Hilbert spaces, and on fs, IvHIv I IIH A/2V IL2 and IIVIIHS are equivalent 
norms. Notice that H? = L2 and H1 = Ho. It is easily checked that 

D(A3) - i+1 x fji 

for j > 0. We also have D(A-1) = L2 x H-1. We can now state the results that 
will be needed in the next section. 

Theorem 5. Let Y be the solution of (2), and y the time-discrete CTG approxi- 
mation. Then for j = 0,1, .... 

(a) IIAiYtIIL. (HiXL2) + IIAi 11IIL.(HoXL2) 

< C{|IUOIIqj+2 + |IVo0II+1 +T1/2 If1IL2(kj+1) + lf IIL.(Hi)} 
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and for j= -1,0,1, andO <n <N, 

(b) IAAi (y-Y)(tn)jIHIXL2 

< Ck 2q{TjjU0jj2q+ + T2 I VOIIf2q+1+j + Mj(f, q,T) 
where 

q 

(23) M (f q, T) -T3/2 | | f I I L2 (ft2q+ 1+? ) + T1/2 E II&atf 1IL2 (J2q-2+3) 
i=O 

Proof. The first result is the consequence of Theorem l(b) applied to A3y. Part 
(b) is obtained by applying Theorem 4 to By, to y, and to Ay. E 

Note that part (b) of the above theorem gives L2 and Ho' estimates for U - 

when j = -1 and j = 0, respectively, and gives such estimates for V - i when j = 0 
and j = 1. 

The second specific case we consider is H = Sh x Sh , with the Ho' x L2 inner 
product, and A = Ah. Then the approximation defined in ?3 is the fully discrete 
CTG approximation for the wave equation, and will henceforth be denoted by y. 
We will need the following results. 

Theorem 6. Let y = (u, v) satisfy the fully discrete equation (12). Then 

(a) ttUIILOQ(L2) + ItThvIIL,,(H1) 

< C{IIUOIIL2 + |lThVoIIH-l + T / IIThf IL2(HI) + IIThfIIL.(L2)}, 

(b) IIUIIL (Hl) + IIVIIL.(L2) 

< C{ujjUijH1 + I1VOJIL2 + T / Ilf1IL2(L2) + IlThf11L.(Ho)}, 

(C) jjAhUljL.(L2) + 11V11LO,(HO ) 

< C{1jjhuo,L2 + IIVOIIHO + T12 lIfIIL2(Hl) + lif IIL.(L2)}. 

Proof. Apply Theorem 1(b) in turn to B2y, to Bhy, and to y. D 

5. ERROR ESTIMATES FOR FULLY DISCRETE CTG 

Theorem 7. Let Y = (U, V) be the solution of (2), and y (u, v) the CTG 
approximation defined by (12), with (uo, vo) = (PxUo, PxVo). Let p = max(p, 2). 
FvK < t < T -ixut htw4& 

(a) JJU(t) -U(t)JJL:2 

< C(T + I)kq+l{ atq2 UIILOO(L2) + IatqI UIIL,,(H1)} 

+ C(T + 1)hP+1{lIUttIIL, (HP) + IIUIIL.(HP+1)}, 

(b) Ilu(t) - U(t)IIO 

< C(T + 1)kq+1 {jatq+ UIIL (Hl) q+jI9t 1UIIL.(H2)} 

+ C(T + 1)hP{IIUttIIL,,(HP) + IIUIIL.(HP+1)} 

(c) ||U(t) -V(t) IIL2 
< C(T + I)kq+l Ilatq+2U IIL,O(Hl) + jjIt 1UL.(H2)} 

+ C(T + 1)hp+ {IIUttIIL,o(HP+?) + J1Ut IL,o(HP+1)} 
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(d) llv(t) - V(t)IIHH 

< C(T + 1)kq+ {|Ijtq+2 U|L.(H2) + 110tq+I UIIL.(H3)} 

+ C(T + l)hP{||Utt||L.(HP+1) + lUtllLo(HP+)1}- 

Proof. We write 

y-Y= (y-PxPtY)+(PxPtY-Y) =0+ p. 

Then u-U = 01 + p, and v-V = 02 + P2. Note that 0 [Sphk]2, (O) = O, and 0 
satisfies, for 1 < n < N, 

(Ot +AhO,4)L2(In,H1 XL2) =(G,d)L2(I0HiXL2) 
V E [Pqi(In) 0SP] 

with G = ((Pt - I)Ut, (I - Px)Utt -(I - Pt)ZU). To derive the L2-estimate for u, 
begin by applying Theorem 1(b) with A = Ah to B 2 to obtain 

110l(t)flL2 < IJBhO(t)JJHoHXL2 

(24) < C{T1/ IIBhGIIL2(HoiXL2) + IIB0GIILO(HixL2)} 

< C(T + 1)ItBhGIIL,,(Hl XL2) 

KC(T + 1)1{11GIILC(L2) + IJThG2IIL,,(H1)1} 

For G1, we have by (6), 

(25) JIG, IL2 = (I - Pt)UtflL2 < Ckq+l atq+2 U||L2. 

For G2, we have 

I|ThG2||HOH < ||G2IlH-1 

(26) < (I - Px)Utt IH-1 + (I - Pt)AUIIH-1 

< ChP+1 1Utt11 HP + Ckq+l IIatq+ UIIH' 

In the last inequality we have used a negative norm estimate for P, when p > 1. 
Combining (24), (25) and (26) gives an estimate for 1101JIL2. By writing p1 = 
(I - PX)U + Px(I - Pt)U, and using the approximation properties of Px and Pt, we 
obtain the estimate 

II112< ChP+11 |Ull HP+' + Ckq+l|0q IH 

The first of the four results now follows. 
Next we apply Theorem l(b) to BhO to obtain 

I10(t)IL,(H'xL2) < C{T /2 IGIIL2(HI xL2) + IIBhGIILOO(HlxL2)} 

(27) < C(T + 1) II GII L,,(Ho X L2) 

< C(T+ 1){IIC1IIL ,(HO) + IIG2IIL.(L2)} 

We can estimate these terms by 

(28) IIGlIIH1 = II(I - Pt)Utj|H 1 < Ckq+ II atq UIIHi, 
and 

290G2 1L2 < fl(I - Px)Utt IL2 + ||(I - Pt)AU IL2 

(29) < ChP+ IIUtt11Hp+s + Ckql Jjt AUJjL2I 

for s = 0, 1. Inequalities (27), (28), and (29) with s = 0 give an estimate for II01 ILug, 
which, when combined with the appropriate estimate for IIP1 IIHO, yields part (b) of 
the theorem. 
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To derive the third result, we use (27), (28), and (29) with s = 1 to obtain an 
estimate for H1 02HL2. And p2 can be bounded as was pl, but with Ut in the place of 
U. 

The final result follows in a similar way from applying Theorem l(b) to 0. E 

Theorem 8. Let Y = (U, V) be the solution of (2), and y = (u, v) the CTG 
approximation defined by (12), with (uo, vo) = (PxUo, PxVo). Let p = max(p, 2), 
and let M be as defined in (23). For 1 < n < N there holds 

(a) flu(tn) - U(tn)||L2 

< C(T + 1)(hP+1 + k2q){jllUOflfmax(p+2,2q+l) + flVO11max(5+l,2q)} 

+ C(T + 1)2hP+1 Hf HL (fP+1) + Ck2qM_1(f, q, T), 

(b) Ilu(tn) - U(tn)IIHI 

< C(T + 1)(hP + k2q){fllUOflfmax(p+2,2q+2) + flVOflJmax(p+l,2q+l)} 

+ C(T + 1)2hhPflfL (HP+l) + Ck2qMO(f, q, T), 

(c) |v(tn) - V(tn)flL2 

< C(T + 1)(hP+1 + k2q)j IUojjkmax(p+3,2q+2) + |HVO%fkmax(p+2,2q+l)} 

+ C(T + 1)2hP+1 |f IIL.(IP+2) + Ck2qMo(f, q, T), 

(d) JIV(tn) - V(tn)IIH' 

< C(T + 1)(hP + k2q ) { Uo kmax(p+3, 2q+3) + ||VO | max(p+2,2q+2)} 

+ C(T + 1)2hPIlf fI L=(HP+2) + Ck2qM1(f,q,T). 

Proof. Let y = (u, v) be the time-discrete CTG approximation with yo = (Uo, VO), 
and write 

(30) ~~Y - Y= (Y - PXY) + (Pxy - Y + (Y - Y) 
(30) 0 + + 

where Px = (Pxui, Pxb). Note that 0 e [Sh]2, E(0) = 0, and a short calculation 
shows that 0 satisfies, for 1 < n < N, 

(Ot + AhG, k)L2(I,Ho xL2) = (GI O)L2(IL,H' XL2) Vq E [Pq _(In) (? Sp] I 

where G = (0, g), with g = (I - Px)3t. We will prove in detail only the L2 estimate 
for U - u = 01 + p1 + 71, and begin by looking at the first component 01 of 0. By 
Theorem 6(a) applied to 0, 

1I 101L.(L2) < C{T /2ThgIl92(Hl) + ||Thg9HL.(L2)} 

? C(T + 1)H|g||Loo (H-1) 

< C(T + 1)hP+ jjit 11 LOO (HP) 

< C(T + 1)hP+l 111Loo (H' x L2)' 

In the second-to-last inequality, we have again used a negative norm estimate for 
Px when p > 1. For the first component of p1 of p, we have . 
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IIP111LO(L2) = II(I-PX)iiIJLO(L2) 

Chl" |I tI IL,.(HP+ 1) 

<ChP | | APY |LOO(HO1X L2) 

Together, we have 

11011IL.(L2) + IIP1L,(L2) < ChP {(T+ l) IA% PlLoo(HlxL2) + IAP YILOz(HoxL2)} 

< ChP+ (T + 1){IIUOIIftp+2 + jIVOIIJp+1 + (T + 1)11f IIL.(HP+1)}, 

where the last inequality is obtained by applying Theorem 5(a). Combining this 
estimate with an estimate for ql = i! - U from Theorem 5(b) gives the desired 
result. The proofs of parts (b)-(d) follow the same pattern. 

Remark 1. For other optimal-order choices of the discrete initial data, the above 
estimates for u - U remain valid, while the derivation of the estimates for v - V 
require uo = PX Uo. Numerical examples indicate that this restriction is necessary 
in practice. 

Remark 2. Global (in time) bounds of order kq+l as in Theorem 7 could also be 
obtained from the splitting (30), by estimating 0 and p as in the proof of Theorem 
8, and using Theorem 3 with A = A to estimate r7. 

Remark 3. In place of the splitting (30) used in the derivation of the order klq 
estimates, we could use the simpler splitting 

yhk - y = (yhk - yh) + (yh _ y) = 0 + p. 

Here, for clarity, we have used superscripts to indicate space and time discretiza- 
tions. Estimates for p are well known, and 0 can be estimated by applying Theorem 
4 with A = Ah. However, this results in the appearance of discrete norms of the 
data. For example, in the case f = 0 one would have 

1 1O9 (tn) I I Hl x L2 h 11H1XL2 

? CTk2g{||q+ h ||L2 + hIA oflH1}. 

Bounding the quantities on the right-hand side in terms of continuous Sobolev 

norms of the data Uo, Vo can be done in some cases, but apparently not in all. 

6. NUMERICAL RESULTS 

In this section we present some numerical results for Q = (0,1) C R, with 

SI based on a uniform mesh, and uniform time steps. The estimated rates of 

convergence reported in the tables are all with respect to the parameter h. 

First, we investigate how the choice of the discrete initial data affects the approx- 
imation. In Example 1 the exact solution is smooth, and we take p = 3, q = 2, and 

k = O(h), so that L2 errors should be fourth-order with respect to h, and Ho' errors 
should be third-order. The results are consistent with Remark 2: the approxima- 
tion of U is insensitive to the choice of uo and vo, whereas for the approximation 
of V to be of optimal order it is necessary that uo be the elliptic projection of Uo 
(but vo is still free to be any reasonable choice). However, we have also observed in 

practice that when p = q = 1, any optimal-order choice of the discrete initial data 

results in all quantities being of optimal order, so that in this case the assumption 
uo = PXUO required for our analysis may be unnecessary. 
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Example 1. Choice of discrete initial data 

Utt-Uxx = 0 

U(x, t) = sin(7rx) cos(irt + 1) 

p=3, q=2, T=1.0, k=h 

(la) uo0 PxUo, vo = irxVo 

1/h 1/k II(U-u)(T) ||L2 rate II(U-u)(T)IIH1 rate 
16 16 0.3845e-5 0.3106e-4 
32 32 0.2413e-6 4.00 0.3656e-5 3.09 
64 64 0.1509e-7 4.00 0.4496e-6 3.02 
128 128 0.9412e-9 4.00 0.5597e-7 3.00 

l/h 1/k 11(V-v)(T)11L2 rate II(V-v)(T)IIHO rate 
16 16 0.7883e-5 0.1561e-3 
32 32 0.4916e-6 4.00 0.1813e-4 3.11 
64 64 0.3051e-7 4.00 0.2320e-5 2.97 
128 128 0.1905e-8 4.00 0.2891e-6 3.00 

(lb) uo = irxUo, vo = PxVo 

1/h l/k I (U - u)(T) lIL2 rate II (U - u)(T)IIHi, rate 
16 16 0.3859e-5 0.3367e-4 
32 32 0.2415e-6 4.00 0.3765e-5 3.16 
64 64 0.1508e-7 4.00 0.4764e-6 2.98 
128 128 0.9418e-9 4.00 0.5910e-7 3.01 

1/h 1/k 11(V-v)(T)11L2 rate II(V-v)(T)IIHi rate 
16 16 0.1627e-4 0.1688e-2 
32 32 0.2261e-5 2.85 0.5373e-3 1.65 
64 64 0.2515e-6 3.16 0.1224e-3 2.13 
128 128 0.3116e-7 3.01 0.3102e-4 1.98 

Next, we consider the compatibility conditions. Suppose f is identically zero 
and p > 1. Then for ll(U - U)(tj)IIL2 to be of optimal order, Theorem 8 requires 
that 

U E ftmax(p+2,2q+1) V0 ftmax(p+1,2q) 

If, for example, 2q = p+ 1, a reasonable choice if k = 0(h), then these assumptions 
are no more than those required for the standard time-continuous space-discrete 
finite element approximation to be of optimal order. For another example, suppose 
p = q > 1. Then the assumptions are stronger than those required for the space- 
discretization alone. In Example 2, p = q = 2 and k = O(h3/4), so that for L2 
errors 0(h3) would be optimal. We have set Vo = 0 and chosen Uo to be a smooth 
function, so that the only remaining issue is whether Uo satisfies the appropriate 
compatibility conditions. For IJU - UIL2 to be O(h3), our analysis requires that 

U0 E H5 Uo = Uoxx = UOxxxx = 0 on aQ. 

The numerical results indicate that this assumption is necessary. 
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Example 2. Compatibility conditions for Uo 

Utt-Uxx = 0 

Uo(x) = [x(l -x)], Vo = 0 

p=2, q=2, T=0.9, k=O(h3/4) u PUo 

(2a) a =4,U = Uoxx =0 on oQ 

1/h 1/k ll(U-i)(T)HIL2 rate 
32 13 0.1937E-05 
64 22 0.3431E-06 2.50 
128 38 0.5486E-07 2.64 
256 64 0.9164E-08 2.58 
512 107 0.1526E-08 2.59 

(2b) a = 5, Uo = Uoxx =Uoxx = 0 on OQ 

1/h 1/k ll(U-u)(T)HIL2 rate 
32 13 0.7700E-06 
64 22 0.1018E-06 2.92 
128 38 0.1181E-07 3.11 
256 64 0.1487E-08 2.99 
512 107 0.1913E-09 2.96 
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