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SPECTRAL METHODS IN POLAR COORDINATES
FOR THE STOKES PROBLEM.
APPLICATION TO COMPUTATION IN
UNBOUNDED DOMAINS

LAURENCE HALPERN

ABSTRACT. We present spectral methods for solving the Stokes problem in a
circular domain. Their main feature is the uniform inf-sup condition, which
allows for optimal error estimates. We apply them to the resolution of exterior
problems by coupling with the transparent boundary condition.

1. INTRODUCTION

When solving a problem in an unbounded domain, it is customary to introduce
an artificial boundary, and to prescribe on it a so-called “transparent boundary
condition”, which replaces the missing part of the domain. This leads to a well-
posed problem in a bounded domain, with an integral boundary condition. In [10] a
method has been introduced for coupling finite elements and the integral equation
for the Laplace equation in an exterior domain. This method has been extended to
the Stokes problem in [15] and to the Maxwell equations in [13]. Other numerical
methods have been developed, coupling finite elements in the interior and spectral
decompositions on the boundary (see for instance [11, 12]).

The finite element method is often preferable when dealing with complicated
geometries. Nevertheless, in two dimensions, if the artificial boundary is chosen to
be a circle, the transparent boundary condition has a very simple expression in the
angular coordinate 6. It seems most natural to take advantage of it to approximate
the solution with polynomials in r and trigonometric polynomials in 6. Successful
computations using spectral methods have been presented in [4]. A theoretical
formalism is the aim of the present paper.

As an interesting illustration we chose the steady Stokes problem in two di-
mensions. We first consider the problem with homogeneous Dirichlet boundary
condition in the disc of center 0 and radius 1. The weak formulation reads (the
notations can be found in §2):

find (u,p) in H{(Q) x LZ() such that:

Vv e HY(Q), a(u,v)+b(v,p) = (f,v),
Vg € L3(Q), b(u,q) = 0.
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Owing to a well-known result of Babuska and Brezzi (see [8]), the most delicate
property to fulfill for well-posedness is the so-called inf-sup condition: there exists
a positive number C > 0 such that

b
inf sup (v.9)

BLAALL VSN,
9eM vex [Vl x|lglla

We recall in §2 that this condition is fulfilled for this problem in any regular geom-
etry. In our case, the best value C' can be given explicitly: 1/4/2 (Theorem 2.1). In
most cases we find in the literature (rectangular domains) that the use of spectral
methods produces “parasitic modes”, which perturb the computation of the pres-
sure (see for instance [2, 17]). This is expressed by the fact that the constant C
in the discrete inf-sup condition tends to 0 as the number of modes increases. The
spectral methods we suggest here lead to uniform inf-sup conditions.

We start with the Galerkin method (§3). Here, N and K are two integers
greater than or equal to 2, Sk ([0, 27]) is the space of trigonometric polynomials in
6 of degree less than or equal to K, and P ([0, 1]) the space of polynomials in r of
degree less than or equal to N. The approximation is made in Xy x My, where
My = L3(Q)N(Sny-1®Px_1) and Xy = H}(Q?)N{u s.t. div u and curl u belongs
to Sy—1 ® Py_1}. The approximate problem is:

find (uy,pn) in Xn X My such that:

Vv e XN’ a(uN’v) + b(vva) = (f’ V>,
Vg € My, b(up,q)=0.

A convenient decomposition of vector fields on the circle gives the inf-sup condition,
and the constant is still equal to 1/1/2. We then give two projection theorems in
the weighted Sobolev spaces on (0, 1),

1
H?(0,1) = {y € D'(0, 1),/ rlp@|2(r) dr < 400 for 0 < j < p}.
0

The first one, in L2, is classical. The second one, in H}, is more delicate. The
technique of the proof is inspired by [1], but the lack of a Hardy inequality requires
new partial results. These theorems lead to “optimal” error estimates: if f belongs
to HP for p > 0, then |lu —un||x + ||p — pn|lmr < CN7I7P||f||,.

In §4, we present a pseudospectral method. It relies on a Gauss-Lobatto quadra-
ture formula on [0, 1] for the weight r. The constant in the inf-sup condition remains
the same. For the error estimates we need results on polynomial interpolation in
H?(0,1). Again, we use the strategy in [1], but some new lemmas are necessary.
The error estimates are still “optimal”.

With these tools, we are now able to study the problem in an unbounded do-
main (§5). We first reduce it to a disc by giving the transparent operator, and
writing the variational formulation. For the discrete formulation, we introduce the
Galerkin method. In both cases, continuous and discrete, the constant in the inf-sup
condition is equal to 1, which in turn allows for optimal error estimates.

2. THE STOKES PROBLEM IN A DISC

2.1. Variational formulation in a bounded domain. Let Q be a bounded open
connected subset of R, with smooth boundary I. The Stokes problem in Q with
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homogeneous Dirichlet boundary data reads: find (u,p) such that

—Au+Vp=f inQ,
(2.1) V.u=0 inQ,

u=0 onT.
Here, V, V-, and A denote respectively the gradient, divergence, and Laplace oper-

2 2

ators: Vp = (3%’;, 8%”;), Veu= g—;‘}-l—-g—gg, Au = %5?"‘%5%' For any positive integer
m, we denote by H™(2) the Sobolev space of distributions in  whose derivatives
up to order m belong to L%(Q), furnished with the inner product

(v, w)o = / v(z)w(z) dz, (v, W) = Z (D*v, D*w),.

¢ |kl<m
The corresponding norm is denoted by ||v||(H®(Q) = L*(Q)). By H™(Q) (resp.
L?(0)) we denote the space of vector-valued distributions whose two components
belong to H™(Q) (resp. L2(?)), whereas || « || and (+,+) are the norm and
scalar product either in H™(Q) or in H™(Q). Furthermore, L3() is the space of
distributions in L?(Q) such that (v,1)p = 0, H3(Q) the closure of D() in H(Q),
or equivalently, Hi(Q2) = {v € H(Q2), v=0o0n I'}, and H~1(Q) is the dual space
of H}(Q). The duality between H~1(Q) and H}(Q) will be denoted by (-,-). In
view of the Poincaré-Friedrichs inequality, the seminorm defined by |v]; = ||[Vv]|o
is a norm on H}(Q), equivalent to the || - ||; norm. Finally, H'/?(T) is the space
of traces on I of the elements of H'(Q), and H~1/?(T) its dual space. The duality
between H'/2(T") and H~/?(T") will be denoted by (-, )r.

According to the following result (cf. [8]), problem (2.1) is well-posed.
Theorem A. Iff belongs to H™1(Q), there exists a unique solution (u,p) to (2.1)
in HY(Q) x LE(Q) and

[all: +lIpllo < ClIf[ -1
Moreover, if £ belongs to H™(Q), then (u,p) belongs to H™+2(Q) x H™+1(Q) and
lullm+2 + [Ipllm+1 < Cllf[|m.

The existence and uniqueness rely on the following weak formulation: let X be
the Hilbert space H}(f2) provided with the |« |; inner product and M be L2(Q)
provided with the L? scalar product:

(u,v)x = (Vu, Vv)o = (Vui, Vi )o + (Vuz, Vuz)o;  |lullx = || Vullo;
(u,v)mr = (u,v)o;  lullar = |lullo-
We define the bilinear forms a and b, and the linear form L, by
a(u,v) = (Vu,Vv)o = (u,v)x,
(22) b(V, q) = _(qv V. V)Oa
L(v) = (f,v).
The weak formulation reads: find (u,p) in X x M such that

23 W € X, a(u,v) + b(v,p) = L(v),
’ Vg € M,b(u,q) =0.

We introduce the subspace V = {v € X,V - v = 0}. Theorem A is a consequence
of the following general result (cf. [8]):
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Theorem B. Suppose the following assumptions are fulfilled:

(i) @ is bilinear continuous on X and there exists a positive constant o such that
for any v in V, a(v,v) > a||v|%,

(if) b ¢s bilinear continuous on X x M,

(iii) the inf-sup condition of Babuska-Brezzi is satisfied: there exists a real num-
ber C > 0 such that

b
inf sup —(v’i)— 2>
€M vex [[VixIlglla

(iv) L is linear continuous on X .
Then problem (2.3) has a unique solution.

)

We shall from now on consider the case where Q = D(0,1) is the unitary disc
with center 0 and radius 1.

2.2. The inf-sup condition in D(0,1). In order to construct a “good” approxi-
mation, we shall first calculate the constant C.

Theorem 2.1. For Q = D(0,1), one has
. b(v,q) 1
inf sup ———— = —.
wehtvex Vxllal ~ V2
Proof. Following [8] or [17], we write
s€M vex |[Vlxllgllar — aeM  lglln

)

where w(g) is the unique solution to the problem

(2.4) weX,VwweX, a(w,v)=0bv,q),
which can be rewritten as
' Aw +Vq=0.

We shall write w as a function of ¢. This can easily be done in polar coordinates.
A basis in L?(T") is given by the sequence H,,(0) = \/—12_7exp(z'm0) forme Z. A
basis in L%(T') is given by the two sequences V., (0) and W,,(6) for m € Z, with

{wm(e) = H,,(0)(e1 + ies) = Hpnyr(6)(e, + iep),

(26) W, (0) = Hyn(6)(e1 — ie2) = Hm_1(0)(e, — ies).

Here, {e1,e2} is the usual basis in R?, {e,,es} the moving basis. Note that
V.. (0) = W_,,(6). The sequence H,, is orthonormal in L?(T) (the norm is 1),
the sequence {V,,, W,,} is orthonormal in L?(T) (the norm is ).

V2
Let us write ¢ and w in separate variables:

(2'7) Q(Tv 0) = Z Qm(T)Hm(e),
meZ
(2.8) w(r,0) = vn(N)Vin(0) + > wm(r) Wi ().
meZ meZ

Since w and g are real functions, we have, for any m, ¢, =q_,,, and vy, = W—p,.
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We introduce L2(0,1) = {¢ € D'(0,1) fo r|¥|?(r) dr < +o0}, furnished with the
natural norm |[¢||%, = fo r[¢|%(r) dr, and the correspondlng inner product (-, ).

)

According to [14], for any m # 0, we have v,,(0) = 0. Define, for any m, the
operator D,, by

The norms of ¢ in L2(Q2) and of w in X are given by

lgllg =Y llamliz: and [lw|% =" (
meZ

meZ

dvm

T
dr

dp m d, _

. Dppo=———p=r"—(r""yp).
(29) o= - Zp=rm (™)
The norm of w in X is given by
(2.10) Iwl% = > IDmvmllza-

meZ

Remark 2.1. Since q belongs to LZ(Q2), there holds fol rqo dr = 0.
We can expand Vq and Aw in the basis (Vn, Wp,):

m+1 m—1
(211) Vg= > (q;n+1 + _7_"‘-Qm+1) Vit Y (qin_l - dm- )Wm,

meZ meZ
Aw=Z<Arvm— m) m+Z<Awm—— m)wm.
meZ meZ

Noting that
m?!_(d_ m+l1\(d _m\_(d m=-1\(d m
r2 ~ \dr r dr r ) \dr r dr r)’

we see that Aw + Vq = 0 is equivalent to

A, —

d 1

For any m in Z, (2.12) can be rewritten as ¢m+1+ Dmtm = Crmr~ (Mt If m is pos-
itive, 7= (m*1) does not belong to L2, which contradicts the fact that w belongs to
H'(Q) and q to L%(Q). Hence, ¢, vanishes. For m < 0, the constant is determined
by the boundary conditions, and we finally get

(213&) m >0, Dnpuy,= —qm+1;
1
(2.13b) m <0, Dmvm = —gms1 — 2mr— "D /0 o " gm+1(p) dp

This can be solved in the correct spaces by
1
(2.14a) m>0, Up= rm/ P " gm+1(p) dp;
T

T 1
(214b) m<0, vy =-r" /0 P am+1(p)dp + 17T / P~ " am+1(p) dp.
0
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‘We now express the norms:
2

1
Form < =2 llansllly = 1Dwvmlty = =2m| [ 5" duss(0)do

1 2
=-2m / P~ q-m-1(p) dp
0

2

1
= —2m / ™™D —3v—m—(p) dp
0

By the Cauchy-Schwarz inequality we get

for m < =2, |lgm+1ll7z2 < 1Dmvmlllz + ID-m-20-m—2|22;
for m > -1, “qm+1“%3 = ”Dmvm“%b
which gives
lgllg < 2(wlii%-

If ¢ is given by ¢m = amr!™l; go = 0, then D,,v,, vanishes for m < 0, which gives
equality.

3. A GALERKIN METHOD FOR THE STOKES PROBLEM IN A DISC

Let N and K be two integers greater than or equal to 2. Let Sk ([0,27]) be
the set of trigonometric polynomials in 6 of degree less than or equal to K, and
Pn([0,1]) the set of polynomials in r of degree less than or equal to N. Before
introducing the discrete spaces, let us write precisely the bilinear forms a and b.
If u and v are expanded in the (V,,, W,,) basis with coefficients (v, wn,) and
(U, Wi ), and if the coefficients of g in the {H,,} are denoted by ¢, we have

1 . -
a(u,v) = 5 Z [(Dm=1Vm=1; Dm—10m=1)r + (D=m-1Wm+1, D—m—-1Wm+1)r];
meZ :

1 - -
b(v,q) = § Z (qmaDm—l’Um—l + D—m—lwm+l)r-
meZ
This suggests to choose ¢ in Sy—_; ® Py_1, and v in such a space that D,,—10m—1
vanishes for |m —1| > N — 1, and belongs to P n_1. This introduces a term in Inr,
which cannot be avoided.
The discrete space My is defined by

(3.1) MN=Mn(SN—1 ®PN_1),
where M = L3(f2). Any q in Sy—1 ® Py_; is expanded in separate variables as
(32) g= > GmHm; qm€Py_1,

Im|<N—-1

and the discrete space X is defined by

(3.3) Xnv=XNHy,

where X = H}(Q) and Hy is the space of real functions v such that
N-2 N

(3.4) v= Y oVt Y wa Wi,

m=-N m=—(N-2)
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where v,, belongs to Py for —-N <m <0,andto Py ®Q,, for 1 <m < N — 2,
where Q,, = {g(r) : g(r) = cr™Inr, ¢ € C}. We provide Xy and My with the
inner products of X and M. The discrete problem is the following: find (un,pn)
in Xy X My such that

65) e Xy, a(uy,v)+b(v,py) = L(V),
' Vg € My, b(un,q)=0

In order to analyze this problem, we need some classical results on Jacobi polyno-
mials. The definitions and results can be found in [1] or [6].

3.1. Jacobi polynomials on [0,1]. Let w be a positive function on [0,1] such
that, for any k > 0, wr® is integrable. Define

1
2 _ / 2
L;(0,1) = {v € D'(0, 1),/0 w(r)|v|*(r) dr < +oo}

and provide this with the natural scalar product (v, w),, = fo w(r)v(r)w(r) dr and
the corresponding norm || - || rz- For any given weight w, there exists a sequence of
orthogonal polynomials in L2,(0,1). If o, 3 are two integers, and w = wap5 =
(1 — r)*rB, they are the sequence of Jacobi polynomials J2#, normalized by
J2A(1) = ("F*). Their norm is given by

(n+a)l(n+06)!

3.6 P53, = :
(36) 175 ”Lia,ﬁ (n+a+B)(2n+a+ B+ 1)n!
The unbounded operator L, g on Lz,a, 5(0,1) is defined by

1 d d
. Log=— — —].
(3 7) B wa,ﬁ dr [wa+l,ﬂ+l dT‘]

It is selfadjoint positive on Lf»a, 5(0,1), the eigenfunctions are J&P with eigenvalues
X%# = n(n+ a+ B+ 1). The polynomials J# satisty the differential equation

(3:8) r(L=r)(J2P)" + (B+1— (a+B+2)r)(J3P) + X3P T3P =0
Moreover, the Jacobi polynomials are given by the recursion formula
(3.9)

on+1)(n+a+B+1)2n+a+ B2
=@2n+a+B+1)[® -8+ @2n+a+8+2)2n+a+p)2r — 1) P
—2(n+a)(n+B)2n+a+B+2) I8

Il =1 I =(a+B+2r—(B+1).
We shall use the formula relating J2# and J2t A1
d
(3.10) — Il = (nta+ B+ DI,

and several easy results on J! and J}!1. The sequence JO! is orthogonal for the
weight . One has

(3.11) JOH0) = (-1)*(n+1),
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and (by integration of (3.8) on [0,1])

1
(3.12) |0 rydr = 210102,
0 “0,1
The polynomials J'! and J2© (the nth Legendre polynomial) are related by

,0 0,0
Jg + Jn+1

0,1 _
(3.13) JO o

3.2. Existence and uniqueness: the discrete inf-sup condition. Since Xy
and My are subspaces of X and M, properties (i), (ii) and (iv) in Theorem B are
satisfied. For existence and uniqueness, we merely need to prove (iii). We shall
prove the constant in (iii) to be the same as in the continuous case.

Theorem 3.1. On Xy x My one has the uniform inf-sup condition

. b(v,q) 1
3.14 inf sup ————— = —.
(3.14) o o Tl ~ V2

Proof. Again, we have

(3.15) inf sup M: inf ”W“X,
e€Mnvexy [IVIxllallae  aeMy [lglm

where w is the unique solution of
(3.16) Vv € Xy, (AW + Vg, V)o =0.

Using formula (2.14a), we can easily see that if ¢ belongs to My, then w =
—(A)~'Vq belongs to Xn. The constant is thus greater than or equal to —‘}-5
The choice gg =0, ¢, =™, 1 < m < N — 1, gives equality. O

This result, together with Theorem A, leads to the conclusion:

Theorem 3.2. For any f in H~1(D(0,1)), problem (3.5) has a unique solution
(un,pN) in XN X My, and

lun % + llow 5 < CIEIZ,.

3.3. Projection in weighted spaces on [0, 1]. In order to obtain error estimates,
we need one-dimensional projection results in weighted Sobolev spaces on [0,1].
Results of the same type have been obtained in [1] for the weights wq «; our proofs
rely in a large part on their methods. The additional difficulties come from the fact
that we cannot use any Hardy inequality.

For any positive integer m, we denote H?(0,1) = {¢ € D'(0,1), ) € L2(0,1)
for any j,0 < j < p} and furnish it with the norm [|9[|3,» = Yo<j<p ||¢(j)||%g.

Theorem 3.3. (i) For any q in L2, there erists a unique polynomial Ilng in Py
such that

(3.17) VQ e Py, llg—Tngllz2 < llg — Q2.

(ii) For any positive integer p, one has

(3.18) Vg€ HY, |lg—TIIngllrz < CN77|igllmz.
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Proof. Expand q in the polynomials Q,, = J!:

= (g, @n)
3.19 =D @nQn;  gn= A
(319) =2 nQni =g
Then Ilygq is given by
N
(3.20) ling = ZQnan
n=0
and
o0
(3.21) lg—Tnals = > lgnl?lQnl32.
n=N+1

Here, Q5 is an eigenfunction of the selfadjoint operator L = Lg 1, corresponding to
the eigenvalue A, = A\%! = n(n + 2). Then, for any integer s,

1

(3:22) (0.2 = 1= (L°0,Qu)r,

o~ 1 [(L°¢,@Qn). ]

(3.23) lo-Twals = Y ek,
n=N+1"T nilL2

which gives, for ¢ sufficiently smooth, the bounds

C .. c s s
(3-24) llg—Tngl?2< ~N& L alze,  lla—Tngllf < ~Narz (e L *1g),|.

In order to estimate ||L°q||2, and (L°q, L**'q),, we introduce, for any integer k
and any function ¢ defined on [0, 1], the quantities

k 1
llalllz = rIt (1 —r)7 (gD dr.
0
7=0

If ¢ belongs to HF, then [||q||| is well defined and |||g|[|Z < |lq||%. It is easy to see
by induction that for any positive integer s, one has the following bounds:

(3.25a) Vge HY, |IL%llz2 < lIL%lllo < Clllglll2s;
(3.25b) Vg € H**', (L°q, L q)r < [IL%lllx < Clllalllze+1-
This ends the proof of the theorem. |

The results in H} are less classical. Let Py ([0,1]) be the subspace of Py ([0, 1])
of polynomials vanishing at r = 1.

Theorem 3.4. (i) For any g in H! NC°([0,1]), there exists a unique polynomial
II%,q in Py such that

(3.26) Myg(1) = q(1); YQ€Py, ((¢—-Mya), Q) =0.
(ii) For any q in H? withp > 2,
(3.27) I(g = TTxa) 2 < CN~® Vg 2,

(3.28) (¢ — TIxq)(0)] < CN~®=D]iq| .
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Proof. (') Since ¢’ belongs to L2, its projection IIy_1q’ on Py_; is well defined.
Then 11} ¢ is uniquely determlned by

1
(3.29) Mg =q(1) - / Iy _1¢ (p) dp.

(ii) Assume now that g belongs to H? for p > 2. According to [14], ¢ belongs to
C°([0,1]), so Tkq is well defined, and

(g = Tya) llzz = llg’ — Tn-14'llz2,

which, together with (3.18) proves (3.27).
In order to prove (3.28), we write

1
(¢~ Tyq)(0) = /O (¢ —Ty1)(p) dp

and proceed as in Theorem 3.3: expand ¢’ in the polynomials Qn, : ¢ = 30" ( ¢nQn,
and

1 +o0 1 +o00
/ (¢ —Tn1d)(p)dp =) qn/ Qn(p)dp =2 (-1)"qnllQnll72
0 n=N 0 n=N

(using (3.12)). Then, for any s > 0,

/\s

n

! / ’ & (_1)n s,/
| @ -t odo=2 Y Q)
0 n=N
and by the Cauchy-Schwarz inequality,
2
(L3¢, Qn)? | [ 1@nllz:
(g — Tk q)(0)]? < 4 —
| O Z B RACTARY
The first term has been estlmated in Theorem 3.3. As for the second, we have

=Xl R 1
2 = < 1
n=N )\%s T;V nietl
and for s > 0 (cf. [7])
+o0o +00
1 1
-~ —(s+1) gp = — N4
> /N a~ Ut dp = N

n=N
This, together with (3.25a), gives the successive bounds:
Vs> 0, |(g-Ia)0) < ON">Lq gz < ON-2[l¢ [z < ON=>lgllzess.
In the same way, for any s > 0, one has
(g —Iyg)(0)* < CN=2|(L°¢, L**'q),|
< CON™ 72| | fzers S ONT272|g|[3 20s,

which gives (3.28) for any integer p > 2. O

We also need to estimate the norm of ¢ — I} q in L2.
Theorem 3.5. For any integer p > 2, for any q in HF, one has
(3.30) lg — xallz2 < ON7P|lgl 2.
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Proof. It goes by a duality argument:
1
(¢ —1ye,9)
(3.31) llg — Migllrz = sup ———T—=T.
geL2 “9|le

We shall use a bidimensional result: if Q is smooth enough, we know (see for
example [3]) that for any f in L?(f), there exists a unique u in H3(Q) such that
—Au = f. Furthermore u belongs to H%(Q) and ||u||2 < C||f|lo. Here, Qis D(0, 1),
and we choose f = g(r) in L2. Then u = 1(r) belongs to H? and is such that

1d [/ dy
(3.33) [¥llmz < Cligllz2-

Integration by parts, using the boundary data, gives
(¢ —TINg,9)r = (¢ — INa)', 9"):r.
Moreover, since 1(1) = 0, we have that IT}% belongs to Py and
(g —Txyq)', (Iy¥))r = 0.
Hence,
(¢ — TN, 9)r = (¢ — Mya), (¥ = Tx9))r < ll(g — M) lz2ll(¥ — T )l 22
Using (3.27) and (3.33), we have
(¥ —TINY) 22 < CN7HWY|l gz < Cligllze,

Il(q - H}VQ)I”L,% < CN—(p_l)HQHH,{’,
and for any g in L2,
(3.34) (¢ —1xg,9)r < CN Pl mzllgll cz-
We now plug (3.34) in (3.31) and get (3.30). O

3.4. Approximation results. Because of the ellipticity of the bilinear form a and
the uniform inf-sup condition, Theorem 1.1 in [8] gives a first approximation result:
if (u,p) and (upy,pn) are the solutions to (2.3) and (3.5), respectively, there exists
a positive constant C such that

339 la=uxllx+lp=pwlo < C{ inf, Ia-vxllx+ inf Ip-avlo
where Vi is the discrete space corresponding to V:

(3.36) Vn ={vn € XN,Vgn € Mn,b(vNn,qn) = 0}.

It remains to estimate the expressions in the right-hand side of (3.35).

Theorem 3.6. Let p be an integer greater than or equal to zero. For any q in
M N HP(Q), its projection § = IIn kq on Sk @ Py belongs to M and satisfies the
following estimate:

. . 1 1
(3.37) la=allo < Cmin {575, 25 el

On the other hand, u belongs to V. It can be approximated in V N X :
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Theorem 3.7. Let p be a positive integer. For any v in V N HP(QY), there exists
w i VN Xy such that

(3.38) v —wlx < CN*?|v]p.
These two theorems give the final optimal estimate:

Theorem 3.8. Let p be an integer greater than or equal to zero. If £ belongs to
H?(Q), the solutions (u,p) and (un,pn) to (2.3) and (3.5) satisfy the following
estimate:

(3.39) lu—unllx + p —prllo < CNTI7P|£] .
Proof of Theorem 3.6. We expand qin {Hy} as ¢ = Y ,cz qr(r)Hy. Its projection

HK on Sk ® L? is given by HKq = E|k|<qu( r)Hy, and the operator Iy x is
defined by

§=Tyxq= Y Hyg(r)Hz
k<K

In particular, if ¢ belongs to M, then ¢ belongs to M, and

(3.40) lla = dllo < llg = Txeqllo + 1Tk q — dllo-
The first term is estimated through the one-dimensional result in [5]:
0Pq

lg—Txqllo < CKP

aoP ||,
which gives
(3.41) lg = Tixqllo < CK7llg]l,.

As for the second term, we have

Mxg—alg= > llar — Twaell?s,
[k|<K

and using Theorem 3.3, we get
IMrq =G5 < CNT* > llaxll3e,
|k|<K
(3.42) ITxq = dllo < CNP|lqll,.
Plugging (3.41) and (3.42) in (3.40) gives the desired estimate in the theorem. O

Proof of Theorem 3.7. Recall that for v in HP(Q) N H}(Q), its curl V A v belongs
to HP~1(Q), and

IV Avllp-1 < 2[[v]p.

If moreover v belongs to V, then ||v||x = ||V A v|o. Here, V A v can be projected
on Sy_1 ® Py_1 in the following way. We expand VA v and V- v in {Hn(0)}:

Vev=> DnvmHni1+ Y DomwmHn 1,

meZ meZ

VAV~1<ZDmvm Ml — ZD mWm Hpm 1)

mEZ meZL
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If v belongs to V, the function ¢ defined by ¢ = —iV A v belongs to L?(Q2),
and by Theorem 3.6, one has the following error estimate on its projection on

SN-1®Pn_1,x = N2 v XmHms1,

le = xllo < eN'P[lp|lp-1.
We can define w in V' N X such that V Aw = 2. It is given by

N-2 N
W = Z ﬁmvm + Z 'leWma
m=—N m=—(N-2)

the coefficients being defined for —(N — 2) < m < N by Wy, = O, and

T
*—=N<m<—1, Om= rm/ P~ " xm(p) dp,
0
1
*Tp = — / Xxo(p) dps
,

x1<m<N-2, Up=-r" /1 2~ " xm(p) dp.
r
The assumptions we made force w to belong to X NV. Moreover,
lv=wllx = IVAV=VAw|o=2]¢ - xllo < CN"|p]l-1,
lv—wlx < CN'P||v]lp. O
There is also an L?-estimate on the velocity:

Theorem 3.9. Let p be a positive integer. If £ belongs to HP(Q), there exists a
positive constant C such that

(3.43) lu—unlo < CN2P|f]|,.

The proof is classical and will be omitted (cf. [8]).

4. PSEUDOSPECTRAL METHOD

We start with a description of the quadrature formula we shall use in the r-
variable.

4.1. Discrete formulation. The fully discrete formulation relies on the Gauss-
Lobatto quadrature formula for the weight r on [0,1] (cf. [6]).

Theorem 4.1. Let N be an integer > 2, ro = 0, ry = 1. There exists a unique
set of N — 1 points r; in (0,1) and N — 1 positive weights p; such that

1 N
(4.1) Vg € Pan -1, / rg(r)dr ="y p;g(rs)-
0 =0

The points ; are the zeros of (Jg,’l)’ = J}V’Q_l, the weights p; are given by

1 2
NV 12 % T NN+ (N + )2

(42) 1<j<N, p;=
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We now introduce on C°([0,1]) the discrete inner product

N
(4.3) (f,9)n =Y pi f(r))a(r;).

=0

The corresponding Hermitian form is denoted by | - |-

Theorem 4.2. For any integer N > 2, | - |y is a norm on Py([0,1]), which is
equivalent to || - ||2. More precisely, one has
(44) Ve € Py ([0,1]), lelzz < lelw < V3llollz.

Proof. Expand ¢ in Py ([0,1]) in the JO!, o = 3207 A JO?, express ||¢||2, and |¢|%,
use the fact that the continuous and discrete integration formulae agree on Poy_1,
and formula (4.2) (for details see [1] for the method and [9] in this case). i

The discrete inner product is now defined in L2(2) by

27
(4.5) (@ 0NN = /0 (- 6), x (-, 6)) db.

Since we use trigonometric polynomials, we do not discretize the tangential integral.

The discrete bilinear forms ay and by are given by

(4.6) ay(u,v) = (Vu,Vv)y N,
bn(v,q) = —(¢, V- Vv)n,n,

which can be rewritten by expanding v and v in the (Vy,, W,;,) basis with coefficients
(Um, W) and (U, W), and q in the {H,,} with coeflicients g,

N-1
1 -
aN(ua V) = 5 Z [(Dm—lvm—l, melvm~—1)N
m=—(N-1)
+ (D—m—lwm+17 D-m—lwm+1)N]7
1 N-1
bn(v,q) =3 > (@n Dmoibm1 + Do 1@mga) -
m=—(N-1)

The special form of our discrete spaces allows the following pleasant result:

Lemma 4.1. The discrete forms an and by are exact on Xy X My, t.e.,
VY(u,v) € Xy x Xy, an(u,v) =a(u,v),
V(v,q) € Xy X My, bn(v,q) =b(v,q).

The proof is straightforward and will be omitted.
The discrete problem now reads: find (Gy,pn) in Xy X My such that

(4.7) {VV € Xn, an(Gn,v)+bn(v,pn) = Ln(Vv),

Vg € My, bn(Gn,q) =0,
where Ly is defined in the following way: f and v are expanded as
N-2 N

f= Z fmvm + Z gmwmy vV = Z U Vm + Z Wi W

meZ meZ m=—N m=—(N-2)
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then
N-2 N
2(f7 V) = Z (fm;vm)r + Z (gmvwm)r-
m=—N m=—(N-2)
For 1 <m < N — 2, define an operator R,, by
(4.8) Roh= =1 [ g (o) dp
0 -
If h belongs to L2(0,1), then R,,h belongs to L2(0,1), and
1 2
(4.9) [Rmhl%s < m”hHLg-
Using integration by parts we can write
N-2
2(F,v) = Z (fmy Vm)r + Z (Runfrmy D)
m=—N
-1
+ Z (gm> wm)r + Z (R—mgma D—mwm)r~
m=0 m=—(N-2)

We can now define the discrete linear operator by
N-2

(4'10) 2LN Z (fmavm N+ Z Ro fm, mvm)N

-1

+ Z(gmawm)N + Z (R—mgm7D—mwm)N~
m=0

m=—(N-2)
Theorem 4.3. If f belongs to C°(Q2), problem (4.7) has a unique solution.
Proof. By Lemma 4.1, we only need to check that the mapping v — Ly(v) is

continuous on Xy . By Theorem 4.2 and the Cauchy-Schwarz inequality,
0

N-2
LN <C | Y Ifmld+ D IRl | VI

m=—N m=1

The first sum is bounded by a constant times ||f||%,. As for the second, we have for
any 1,

|Rmfm(7'i)| “fm“L2

- 2m+2

and
[Ln (V)] < CliflloollV]lx- O

4.2. Interpolation formula on [0,1]. Let h be an element of H?(0,1), for p > 2.
By [14], h is continuous on [0, 1]. Then define Iy h as the polynomial interpolating
h at the Gauss-Lobatto points i.e.,

(4.11) Inh € Pn; Vj,1<j <N, Inh(r;)=h(ry).
The aim of this section is to prove the following result:

Theorem 4.4. Let p be an integer > 2. If h belongs to HF, one has
(4.12) [h = Inhlzz < ON7P||h gp.
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The proof goes along the lines in [1]:

(i) Estimate zeros and weights in (4.1).
(ii) If h(1) = 0, estimate || Ixh| r2 by Theorem 4.3.
(iii) Estimate |[h — Inh|/Lz by the projection theorems of §3.2.
(i) Estimation of the weights. From ([16, p. 353]), one has
(4.13) LSGSN=1, py~5ory @ —r)"2
Location of the zeros.

Lemma 4.2. For any integer N > 2, the zeros rj = cos? %7- of J}\,’2_1 are such that
0; € K, where the intervals K; are defined by

N j—%  j+1
(414) _.7-—[2] 17 KJ <N+%7T,N+]_7r )

N, . _|N i-% J+3
< i< [— 1: K., = 4 4 ,
izl K= (3T

N . j j+3
_ < i< -1 K.=—t—pg 24 .
[2]+1_]_N 1, K; <N+27T’ +%7r>

Proof. In ([16, p. 138]) we find the location of the zeros of the Legendre polynomials
J%°. We now use (3.10) and (3.13) to get (4.14). O

(ii) Estimation of || INh|Lz.
Lemma 4.3. Let p be an integer > 2. If h belongs to HF and h(1) = 0, then
(4.15) I ZnRlZz < C(IRlIZ: + N72[W][72 + N~*h(0)[).

Proof. From Theorem 4.3, we have

N
I InhlZ2 < |InBI = pslh*(r).

=0
If h(1) =0, then from (4.2),
N-1
IInhlZ2 < 2N 74 RO0) + D pslhl(rs),
j=1
and, from (4.13),
N-1
(4.16) I Inhll7. <C (N—4|h(0)|2 +NTEY - rj)”zlhlz(m) :
j=1

Using the function G defined by
(4.17)

g(r)y=r32(1 =) 2f(r), F(0) =h(r), GB) =g(r), withr = cos? g,

we can rewrite (4.13) as

N-1
(18)  |IvklEz<C (N-4|h<0)|2 FNTTY sup !G(0)I2) .

i1 6€K,
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Assume for the time being the two following results.

Lemma 4.4. Let p be an integer > 2. If ¢ belongs to HP and ¢(1) = 0, then

YOOR - g
(4.19) d </0 16/ (r)[2 dr.

o 1—r -

Lemma 4.5. Let p be an integer > 2. If h belongs to HP, the function G(6) defined
in (4.17) belongs to H*(0,n) and is such that

(4.20) 1Gll20,m) = IIRllz2,  [IG'llz20,m) < ClIW |2

Lemma 1.4 in [1] reads
1
(4.21) sup GO < C(mIIGII%z(K,.) + K16 22k, )»

where |K]| is the length of the interval K. Note that, for any j, K; and K; 3 are
disjoined. Thus, the union of intervals K covers at most 3 times (0, 7). Moreover,
there exists a strictly positive number C' such that |K;| ~ <. These two remarks,
together with (4.20) and (4.21), give (4.15). d

Proof of Lemma 4.4. Since ¢ belongs to H'(0,1), we write ¢(r) = —f: @'(s) ds,
and by the Cauchy-Schwarz inequality,

IMMPSO—M/I#@P@,

which proves that 1?1(%}2— belongs to L'(0,1) and
1 2 1 .1 1
ol dr < / / |¢'(s)|* ds dr = / )¢’ (r))? dr.
0 Jr 0

0 1—r

Proof of Lemma 4.5. A mere change of variables in the integral shows at once that
|Gllz2(0,x) = ||hl[z2. As for the derivative, we have

1 1 ['20r—16r2 -3
Gl 20, ) =/ r?(L—r) W (r)|* dr + 6 “1_—|h(7“)|2 dr.
0 0 r

On [0,1], the numerator in the second integral is bounded by a strictly positive
constant, and Lemma 4.4 allows us to conclude.

(iii) Estimation of |h — Inh|z2. For any h in HP, we introduce ITyh as in
Theorem 3.4. Since it belongs to Py, we can write

B = Inh[72 < 2(||h = hll7s + [ In(Tyh = B)|Z2)-
Using Lemma 4.3 for IT15;h — h, we get
|h = Inhl|72 < C(|Txh — k|72 + N72|([Tyh = hY'[|72 + N~4|(Th — h)(0)[%).

Theorems 3.4 and 3.5 give (4.12) in Theorem 4.4.
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4.3. Approximation results. We start with the same result as in §3.4. The
solutions (u, p) and (Gy,Pn) to (2.3) and (4.7) satisfy a first estimate:

(4.22) lu—1dnllx +Ip—Bnllo

< . B . B B

<o{ mt u-vxlx+ it lp—avlo+IL-Lyl}.
where Vy = {vy € Xn,VYgn € Mn,bn(vN,qn) = 0}, and

(4.23) |IL—-Ly|= sup IL(vn) — LN(VN)I.
vNEVN ”VN“X

Using the results in §§3.3 and 4.3, we shall prove the following result.

Theorem 4.5. Let p be an integer > 0. If f belongs to HP(Q), the solutions (u,p)
and (Gy,PN) to (2.3) and (4.7) satisfy the following estimates:

(4.29) lu—tnllx + llp—Bnllo < ONTP|f]|p.
Proof. From Theorem 3.6, since p belongs to HPT1(Q2), we have
(425)  lp~Ty-1n-10lo < CN=EH|lpllps < ON=EHD|iE]lp,
and since u belongs to V N HP*2(), there exists vy in V N Xy such that
(4.26) lu—vllx < N |ullpro < ONTEHD|£],.
It remains to estimate |L — Ly||. For any v in Xy, we have
0
IL(v) = Ln(v)| < ZN |(Fm> vm) N = (fmy Um)r|

N-2
+ Z I(RmfmaDmvm)N - (Rmfm,DmUm)rl-
m=1

Let us estimate the first sum. For —N < m < 0, since the quadrature formula is
exact on Poy_1,

(frs m)N = (s Vm)r = (UN frm — TIN—1 fins Um) N — (Fm — TN =1 frm, Um)r
and by Theorem 4.2,
[(INfm = TIN 1 fmy vm) M| < 3| IN fm — TN -1 fmll 2 ]|vm]| L2,
so that
|(frr Vm)N = (frns Um)r| < Ol frn — HN—lfm”L,% + I fm — Ime”L,%]”'Um”LZ-
By Theorems 3.3 and 4.4, we conclude that

0
(4.27) Y (fmvm)y = (fsvm)rl < CN7P|IE] ][V ]o-

m=—N

In order to estimate the second sum, we need a lemma.

Lemma 4.6. For anyp >0, for any m,—1 < m < N — 2, for any ¢ in HP, Rn¢
belongs to H? and

(4.28) [Bmll e < 2[| ]l a2
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Let us assume the lemma. For 1 < m < N — 2, In(Rm fm) belongs to Py and
D vy, belongs to Py_1, so
(Rmfma Dm'vm)N - (Rmfm7Dm'Um)r = (IN(Rmfm) - Rmfm, Dmvm)r
and by Theorem 4.4,
N-2
(429) Z |(Rmfm»Dm'Um)N - (Rmfm,DmUm)r| S ON—p”f”P”v”X
m=1

Adding (4.27) and (4.29) gives
(4.30) |L(v) = Ln(v)| < ONP[[f]lp[|v]lx.
Plugging (4.25), (4.26) and (4.30) in (4.22), we obtain (4.24). a

Proof of Lemma 4.6. 1t is easy to see by induction that, for any £ > 0,

1

m{]ﬂﬂ(k_l) + (m+ 1) Ry rp19™}.

(ngo)(k) ==
We now use (4.9) to get an upper bound on ||(ngo)(k)||Lg:

_ 1
[(Rme) P 1172 < 2{lle* |72 + ZHSO(k)H%z}

Summing for 1 < k < p gives (4.28).

5. COUPLING SPECTRAL METHOD AND TRANSPARENT BOUNDARY CONDITION

We consider the Stokes problem in the whole plane:

5.1
(5:1) V-u=0 inR2

{—Au+ Vp=f inR2?
We shall assume f to be compactly supported in the disc D(0, R) centered at point
0 and of radius R. If Q2 is an unbounded domain, W'() is defined by

v

AT G s L) € L @V e @)}

(5.2) WQ)={veD (),

furnished with the natural inner product and norm

2

\4
+ V.
0

2 -
||V||W1(Q) B H (1+r2)Y2(1 +1n(1 + r2))

Note that R C W1(Q). A result in [15] asserts that if f belongs to (L3(R?))2,
this problem has a unique solution (u,p) in (W!(R?)/R)? x L%(R?). In order
to compute (u, p), we shall introduce a fictitious boundary, the circle centered at
point 0 and of radius R, and solve the Stokes problem in D(0, R) with the so-called
transparent boundary condition. This boundary condition represents the solution
outside the disc.
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5.1. Transparent boundary condition and reduction to a bounded do-
main. We shall denote Q = D(0,R), ' = R? — Q, T their common boundary,
I' = C(0,R). The normal vector to I' is oriented toward the exterior of Q; we
shall call it n (it is e, with the notations of §2). Problem (5.1) is equivalent to the
coupling

—Au; +Vp;=f inQ,
V.u =0 inQ,

—Auy +Vpy =0 in Y,
Veuy, =0 in Q/,

with the transmission conditions

u =u; onl,
on(uy) = op(ug) onT,

where o, is the normal strain, i.e.,

(5.3) on(u) = % — pn.

Consider the problem

—Aw+Vg=0 in(,
(5.4) V-w=0 in,
w=g onl.

According to [15] again, if g belongs to H!/2(T"), this problem has a unique solution
(w,q) in (W1('))? x L?(Q') and

IVl w2z < Cllgllz/z -

Denote by K the linear operator from H!/?(T") to H~/2(T") defined by Kw =
—on(w). Owing to the transmission conditions on T, problem (5.1) is equivalent
to the following boundary value problem in :

—Au+Vp=f inQ,
(5.5) V.-u=0 inQ,
on(u) +Ku=0 onT.

5.2. Basic properties and expression of the transparent operator K. Gen-
eral results valid in any sufficiently smooth geometry assert (see [15] or [9]):

Theorem 5.1. The linear operator K from HY/2(T") to HY/2(T") is continuous,
symmetric, positive: for any g in HY/2(T), (Kg,g)r > 0.

We shall now give the expression of K in polar coordinates. We shall use the
notations in §2, the singularity being here at infinity.
‘We decompose g in

' gD (0) = ez9mVm(0), &@(0) =81 0) =T, .cz hmWm(0).
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The function (Euclidean) orthogonal to g is given by g+ = i(—g®) + g(?)). The
Hilbert operator is defined by

(5.7) Hg =) isign(m)gmVm(0) + > i sign(m)hm W (0)
meZ meZ

(with the convention, sign(m) = 0 if m = 0).

Theorem 5.2. The operator K is given by

190

Iy g

(5.8)
or in extended form,

1

(59) Kg= E Z _mgmvm(e) + Z 3mgmvm(0)

m<—1 m2>1

+ > —3mhWin(0) + > mhy Wi (6)

m<—1 m>1

Proof. Since g is given by (5.6), we solve (5.4) in polar coordinates. The first
step is to notice that ¢ is harmonic in Q' and belongs to L2(1,+oc0). Thus, ¢ =

Y mez ImHm, with

~lmi >2
- e o iz

0, |m|<1.

With the notations given in (2.9), the first equation gives

(5.11) VYm € Z, Dpvpm — gmi1 = cmr (™,

For any m < 0, r~(™+1) does not belong to L2(1,+00); therefore, ¢, = 0:
Ym <0, DpUm — @m+1 =0.

For any m > 1, integrate (5.11) from r to +oo and use (5.10). Then

1
U = —%(cm +amt1)r™ ™, andVm>1, Dpv, = —2mv7m.

The divergence-free condition reads, Ym € Z, Dy 1Vm—1 + D—m—1Wm+1 = 0; thus,
Vm >1, Dpv, = —2mva = —Qm+1-
The operator K is now defined by

Um
Kg= (gmt1— Dmvm — mT)(R)Vm
meZ

Wm
+ Z (Qm—l - D—mwm + mT)(R)Wma
meZ

which gives (5.9). The compact formulation (5.8) comes in a straightforward way
from (5.9). O
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5.3. Weak formulation of (5.4). For simplicity, we shall assume from now on
that R = 1. We define on H(f2) a bilinear form a by

(5.12) a(u,v) =a(u,v) + (Ku, v)r.

Lemma 5.1. The bilinear form & defines on (H'(2)/R)? a scalar product. The
corresponding norm is equivalent to the natural norm in H*(Q).

The proof is straightforward, since K is positive, and the L2-norm of the gradient
is equivalent to the H'-norm in H(Q2)/R.

The Hilbert space X is (H'(Q)/R)?2, furnished with the bilinear form &, M =
L2(9). The variational formulation of problem (5.5) reads:

find (u,p) in X x M such that

{vV €X, a(u,v)+bv,p) = (f,v),

5.13
(5:13) Vge M, b(u,q) =0.

Theorem 5.3. Problem (5.13) has a unique solution. In particular, one has the
Babuska-Brezzi condition

b(v,q)
514 lnf sup —m—m—mm = 1
(5.14) o2 528 Wl lalar

Proof. By Theorem B, it is enough to prove (5.14). We proceed as in (2.5):

b(v
inf sup —209)
€M vex [[Vlixllgllar  aeM gl

where w is the unique solution in X to

w e H(Q),
(5.15) Aw+Vg=0 inQ,
%—"T" +ge,+Kw=0 onT.

We shall express w in X in terms of ¢ in M. Here, ¢ and w are given by (2.7), (2.8),
and the norms are easily computed:

a(w,w) = Y | Dmvm|72 + Z mlum (1)

meZ meZ
(Kw,w)r =3 Z mv,(1)]* — Z m|vm(1)[%,
m>1 m<—1
(5.16) i(w,w) = Y [IDmvmliz +4 Y mlvm(1)]?
meZ m>1

The same arguments as in (2.13a) prove

d m+1

(517) VYm € Z, (E’;: + - ) (q'm-{—l + Dm'vm) =0,

(5.18) Ym >0, ¢gmt+1+ Dmvm =0.
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The boundary condition, expanded in the basis {V,,, Wy, }, gives

(5.19) form < =1, (gm+1+ Dmum)(1) =0,
' for m >0, (gm+1+ Dmvm + 4mu,)(1) = 0.

From (5.17), (5.18) and (5.19), we get, for m > 1, v,,(1) = 0, and for any m in Z,
%qmﬂ + Dpmvm = 0. This can be solved explicitly (modulo a constant in vg):

1 v
(5.20a) m>1, v,= Erm/ 2" " qm+1(p) dp,
1 1
(5.20b) Vo = — 5/ gm+1(p) dp;
1 .
(5.20¢) m<0, vy, = —Erm/o 2" " gm+1(p) dp,
and

gl =D llamlizz = D IDmvmlzz = a(w, w).

meZ meZ
This completes the proof of the theorem. O

5.4. The Galerkin method. The discrete spaces are the same as in §3, i.e.,

{MN =MN(Sy-1®Py_1),

(5.21)
Xy=XNHp,

and the discrete problem reads: find (uy,py) in Xy x My such that

{‘v’v € Xn,a(un,v) +b(v,pn) = L(v),

5.22
( ) Vg € Mn,b(un,q) = 0.

Theorem 5.4. On Xy x My one has the uniform inf-sup condition

€M vexy [[vllxllgllae
Proof. We write again
b(v,q) e Wl

(524 o 2, TVIclallr a3 allnr”

where w is the unique solution to
ow
or

Using formula (5.20a), we can easily see that if g belongs to My, then w =
—(A)~1Vq belongs to X. The constant is thus greater than or equal to 1. The
choice go =0, ¢, =7™, 1 <m < N — 1, gives equality. O

(525)  WveXy, —(Aw+Vav)o+(Kw+ oo + ger,v)r =0.

Theorem B gives the conclusion:

Theorem 5.5. For any f in H~(Q), the problem (5.21) has a unique solution
(un,pN) in Xy x My and

lunllx + llpwllo < ClIEl| -1

Slight modifications to the proofs in §3 give the optimal error estimates:
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Theorem 5.6. For any integer p > 0, if £ belongs to HP(Q), the solutions (u,p)
and (un,pn) to (5.13) and (5.22) satisfy the optimal error estimates

(5.26) lu—unlx +llp—pnllo < CNTP|Elp,
(5.27) I~ unllo < CNT27P|f]],.

Remark 5.1. By scaling we can solve the problem in D(0,R) with a Galerkin
method. This leads to the following error estimates:

N._,_
la—unlix +llp = pxllo < C(F) ™ I£llp,

N _,_
e —unllo < C(5)*"lI£ll,

6. CONCLUSION

This is a first step toward the solution of exterior problems by spectral methods
in a bounded domain. The second step should be to deal with operators with
nonconstant coefficients, and the third step the three-dimensional case, with the
use of spherical harmonic functions. This will be of great use, for instance in
meteorology.
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