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SPECTRAL METHODS IN POLAR COORDINATES 
FOR THE STOKES PROBLEM. 

APPLICATION TO COMPUTATION IN 
UNBOUNDED DOMAINS 

LAURENCE HALPERN 

ABSTRACT. We present spectral methods for solving the Stokes problem in a 
circular domain. Their main feature is the uniform inf-sup condition, which 
allows for optimal error estimates. We apply them to the resolution of exterior 
problems by coupling with the transparent boundary condition. 

1. INTRODUCTION 

When solving a problem in an unbounded domain, it is customary to introduce 
an artificial boundary, and to prescribe on it a so-called "transparent boundary 
condition", which replaces the missing part of the domain. This leads to a well- 
posed problem in a bounded domain, with an integral boundary condition. In [10] a 
method has been introduced for coupling finite elements and the integral equation 
for the Laplace equation in an exterior domain. This method has been extended to 
the Stokes problem in [15] and to the Maxwell equations in [13]. Other numerical 
methods have been developed, coupling finite elements in the interior and spectral 
decompositions on the boundary (see for instance [11, 12]). 

The finite element method is often preferable when dealing with complicated 
geometries. Nevertheless, in two dimensions, if the artificial boundary is chosen to 
be a circle, the transparent boundary condition has a very simple expression in the 
angular coordinate 0. It seems most natural to take advantage of it to approximate 
the solution with polynomials in r and trigonometric polynomials in 0. Successful 
computations using spectral methods have been presented in [4]. A theoretical 
formalism is the aim of the present paper. 

As an interesting illustration we chose the steady Stokes problem in two di- 
mensions. We first consider the problem with homogeneous Dirichlet boundary 
condition in the disc of center 0 and radius 1. The weak formulation reads (the 
notations can be found in ?2): 

find (u,p) in Ho (Q) x Lo(Q) such that: 

{ v E Ho(Q), a(u,v) +b(v,p) = (f,v), 
Vq E Lo (Q), b(u, q) = 0. 
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Owing to a well-known result of Babuska and Brezzi (see [8]), the most delicate 
property to fulfill for well-posedness is the so-called inf-sup condition: there exists 
a positive number C > 0 such that 

inf sup b(v, q) > C 
qEM VEX flvflxflqllm- 

We recall in ?2 that this condition is fulfilled for this problem in any regular geom- 
etry. In our case, the best value C can be given explicitly: i/V2 (Theorem 2.1). In 
most cases we find in the literature (rectangular domains) that the use of spectral 
methods produces "parasitic modes", which perturb the computation of the pres- 
sure (see for instance [2, 17]). This is expressed by the fact that the constant C 
in the discrete inf-sup condition tends to 0 as the number of modes increases. The 
spectral methods we suggest here lead to uniform inf-sup conditions. 

We start with the Galerkin method (?3). Here, N and K are two integers 
greater than or equal to 2, SK ([O, 27r]) is the space of trigonometric polynomials in 
0 of degree less than or equal to K, and PN([O, 1]) the space of polynomials in r of 
degree less than or equal to N. The approximation is made in XN x MN, where 
MN = LO (Q) n(SN- 1 X PN- 1) and XN = H 1(Q) n f{u s.t. div u and curl u belongs 
to SN-1 0 PN-1} The approximate problem is: 

find (UN,PN) in XN x MN such that: 

{VV E XN, a(UN, V) + b(v,PN) = (f, v), 

Vq E MN, b(Uh, q) = O. 

A convenient decomposition of vector fields on the circle gives the inf-sup condition, 
and the constant is still equal to 1/XV. We then give two projection theorems in 
the weighted Sobolev spaces on (0,1), 

1 

HrP(O, 1) = E V'(0, 1), J rl(i) 12(r) dr < +? for 0 < j < p}. 

The first one, in L 2 is classical. The second one, in 
Hr, 

is more delicate. The 
technique of the proof is inspired by [1], but the lack of a Hardy inequality requires 
new partial results. These theorems lead to "optimal" error estimates: if f belongs 
to HP for p > 0, then |U - UNIIX + IIP - PNM < CN-1-PllfIlp. 

In ?4, we present a pseudospectral method. It relies on a Gauss-Lobatto quadra- 
ture formula on [0, 1] for the weight r. The constant in the inf-sup condition remains 
the same. For the error estimates we need results on polynomial interpolation in 
H?P(0, 1). Again, we use the strategy in [1], but some new lemmas are necessary. 
The error estimates are still "optimal". 

With these tools, we are now able to study the problem in an unbounded do- 
main (?5). We first reduce it to a disc by giving the transparent operator, and 
writing the variational formulation. For the discrete formulation, we introduce the 
Galerkin method. In both cases, continuous and discrete, the constant in the inf-sup 
condition is equal to 1, which in turn allows for optimal error estimates. 

2. THE STOKES PROBLEM IN A DISC 

2.1. Variational formulation in a bounded domain. Let Q be a bounded open 
connected subset of R2, with smooth boundary F. The Stokes problem in Q with 
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homogeneous Dirichlet boundary data reads: find (u, p) such that 

{-Z\u+Vp=f inQ, 
(2.1) Vu=O inQ, 

(u = O on F. 

Here, V, V., and /\ denote respectively the gradient, divergence, and Laplace oper- 
ators: Vp (9P, 9P ),VU = - U-9 +? 9U2 v u = E + E . For any positive integer 

m, we denote by Hm(Q) the Sobolev space of distributions in Q whose derivatives 
up to order m belong to L2(Q), furnished with the inner product 

(v,w)o = xv(x)W(x)dx, (VW) m = E (Dkv,DkW)O. 
Ikl<m 

The corresponding norm is denoted by lv m(Ho(Q) = L2(Q)). By Hm(Q) (resp. 
L2 (Q)) we denote the space of vector-valued distributions whose two components 
belong to Hm(Q) (resp. L2(Q)), whereas 11 * Ilm and (., .)m are the norm and 
scalar product either in Hm(Q) or in Hm(Q). Furthermore, Lo(Q) is the space of 
distributions in L2(Q) such that (v, l)o = 0, Ho'(Q) the closure of D(Q) in H1(Q), 
or equivalently, Hol(Q) = {v E H1(Q), v = 0 on F}, and H-1(Q) is the dual space 
of Ho'(Q). The duality between H-1(Q) and Ho'(Q) will be denoted by (., .). In 
view of the Poincare-Friedrichs inequality, the seminorm defined by vll = INVv o 
is a norm on Hol(Q), equivalent to the 11 H 11, norm. Finally, H1/2(F) is the space 
of traces on F of the elements of H1 (Q), and H-1/2(F) its dual space. The duality 
between HI/2(F) and H-1/2(F) will be denoted by (., *)r. 

According to the following result (cf. [8]), problem (2.1) is well-posed. 

Theorem A. If f belongs to H-1(Q), there exists a unique solution (u,p) to (2.1) 
in H1(Q) x Lo (Q) and 

IIUII I + IIPIIO < Cllf I1. 

Moreover, if f belongs to Hm(Q), then (u,p) belongs to Hm+2(Q) x Hm+l(Q) and 

H|UHrm+2 + |lPllm+1 < CflfHlm 
The existence and uniqueness rely on the following weak formulation: let X be 

the Hilbert space Ho (Q) provided with the I inner product and M be Lo(Q) 
provided with the L2 scalar product: 

(U, V)X = (VU,Vv)o = (VU1,Vv1)o + (Vu2,Vv2)0; Ilulx =IIVuIIo; 

(U,V)M = (u,v)o; IIUIIM = IlUllo. 

We define the bilinear forms a and b, and the linear form L, by 

a(u, v) = (Vu, Vv)o = (u, V)X, 
(2.2) b(v, q) =-(q, V * v)o, 

(L(v) = (f,v). 
The weak formulation reads: find (u, p) in X x M such that 

(2 3) |lVv E X, a(u, v) + b(v, p) = L(v), 
(Vq E M, b(u, q) = 0. 

We introduce the subspace V = {v E X, V * v = 0}. Theorem A is a consequence 
of the following general result (cf. [8]): 
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Theorem B. Suppose the following assumptions are fulfilled: 
(i) a is bilinear continuous on X and there exists a positive constant ae such that 

for any v in V, a(v, v) > aiflvfllx 
(ii) b is bilinear continuous on X x M, 
(iii) the inf-sup condition of Babuska-Brezzi is satisfied: there exists a real num- 

ber C > 0 such that 

qEM VE|VX lv xlql M 

(iv) L is linear continuous on X. 
Then problem (2.3) has a unique solution. 

We shall from now on consider the case where Q = D(O, 1) is the unitary disc 
with center 0 and radius 1. 

2.2. The inf-sup condition in D(O, 1). In order to construct a "good" approxi- 
mation, we shall first calculate the constant C. 

Theorem 2.1. For Q = D(O, 1), one has 

inf sup bb(v, q) 1 
qEM VEX llVIlxflqflM l X-7 

Proof. Following [8] or [17], we write 

inf sup b(Vlq inf flw()M 
qEM VEX flvflxflqllM qEM flqflA' 

where w(q) is the unique solution to the problem 

(2.4) w E X, Vv E X, a(w, v) = b(v, q), 

which can be rewritten as 

(2r5) w E Ho (Q), 
(5Aw+Vq = O. 

We shall write w as a function of q. This can easily be done in polar coordinates. 
A basis in L2(F) is given by the sequence Hm(0) = - =exp(imO) for m E Z. A 

basis in L2(r) is given by the two sequences Vm(O) and Wm(0) for m E Z, with 

(2.6) f2Vm(O) Hm(O) (el + ie2) = Hm+ i(0)(er + ieo), 
( 2Wm(0) Hm(O) (el - ie2) = Hm_ 1 (0) (er - ieo). 

Here, {e,, e2} is the usual basis in R2, {er, eo} the moving basis. Note that 
Vm(0) = W-m(0). The sequence Hm is orthonormal in L2(17) (the norm is 1), 
the sequence {Vm, Wm} is orthonormal in L2(F) (the norm is ). 

Let us write q and w in separate variables: 

(2.7) q(r, 0) = E qm (r)Hm ( I), 
mEZ 

(2.8) w(r, 0) = 5 vm(r)Vm(0) + E wm(r)Wm(0). 
mEZ mEZ 

Since w and q are real functions, we have, for any m, qm = q-m and vm = W_m. 
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We introduce L2(0, 1) - E D'(0, 1), fg rLiP 2(r) dr < +oo}, furnished with the 
natural norm 2k/II2 = f0 r|j2(r) dr, and the corresponding inner product (, )r 
The norms of q in L2(Q) and of w in X are given by 

/v 2 
2 

lqI2 = S 12 and IIWI12 = E d + IIqmIfL2 ~ ~~~~~~ __ L,) mEZ mEZ r 

According to [14], for any m #A 0, we have vm(O) = 0. Define, for any m, the 
operator Dm by 

(2.9) Dm(p - dr- ~ r=rm d(r p) 
drr dr 

The norm of w in X is given by 

(2.10) IIWI = 5 IlDmvm 12. 
mEZ 

Remark 2.1. Since q belongs to Lo(Q), there holds jo' rqo dr = 0. 
We can expand Vq and Aw in the basis (Vm, Wm): 

(2.11) Vq= (qm+ + ? + qm+j) Vm ?5 (qm-l - m qm-) Wm, 

mEZr mfEZ 
i\W 5 (z\rvm - r2 Vm) + E (i\rUJm - Win.m 

Noting that 

m 2 d m+1 d m d m-1 d m 

r \r Lr dr r dr r dr r 

we see that l\w + Vq = 0 is equivalent to 

(2.12) Vm Z (d + m 1) (qm+l +Dmvm) = O. 

For any m in Z, (2.12) can be rewritten as qm+? +Dmvm = cmr-(m+?1) If m is pos- 
itive, r-(m+l) does not belong to L., which contradicts the fact that w belongs to 
H1(Q) and q to L2 (Q). Hence, cm vanishes. For m < 0, the constant is determined 
by the boundary conditions, and we finally get 

(2.13a) m > 0, Dmvm = -qm+,; 

(2.13b) m < 0, DmVm = -qm+l- 2mr-(M+l) pmq (p) dp. 

This can be solved in the correct spaces by 

(2.14a) m >0, vm = rm J p-qm+ (p) dp; 

( b0- j) + j(p 
(2.14b) m < 0, vm = -rm P- p-qm+l (p) dp +r-m 15p-mqm+ (p) dp. 
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We now express the norms: 

For m < -2, llqm+ljjL2 - IIDmvmI112 = -2m j p-mq m (p)dp2 

2 

=-2m Ppmq-m-l (P) dp 

2 

=-2m ] PmD-m-2V-m-2(p) dp 

By the Cauchy-Schwarz inequality we get 

for m < -2, llqm+l11L2 < IlDmvmII2 2+ ?jD_m-2V-m-2 2; 
for m > -1, l|qm+l 112 = IlDmvmII12, 

which gives 

llql11 < 2flwjWx. 

If q is given by qm = amrlml; qo = 0, then Dmvm vanishes for m < 0, which gives 
equality. 

3. A GALERKIN METHOD FOR THE STOKES PROBLEM IN A DISC 

Let N and K be two integers greater than or equal to 2. Let SK([0, 27r]) be 
the set of trigonometric polynomials in 0 of degree less than or equal to K, and 
PN([O, 1]) the set of polynomials in r of degree less than or equal to N. Before 
introducing the discrete spaces, let us write precisely the bilinear forms a and b. 
If u and v are expanded in the (Vm, WWm) basis with coefficients (VM, WM) and 
(vDm, m), and if the coefficients of q in the {Hm} are denoted by qm, we have 

1 
a(u, v) = 2E [(Dm-iVl-i, Dm-iim-i)r + (D-m_jwm+j, D-m-i7vm+i)r], 

mEZ 

b(v, q)- 2 (qi Dm-1iVmj + D_m_jvm+i)r. 
mEZ 

This suggests to choose q in SN-1 0 PN-1, and v in such a space that Dm-lvm-l 
vanishes for Im-11 > N-1, and belongs to PN-1 This introduces a term in lnr, 
which cannot be avoided. 

The discrete space MN is defined by 

(3.1) MN = Mn (SN-1 X PN-1), 

where M = Lo(Q). Any q in SN-1 0 PN-1 is expanded in separate variables as 

(3.2) q = S qmHm; qm E PN-1, 

lml <N-1 

and the discrete space XN is defined by 

(3.3) XN= X nHN, 

where X = Ho(Q) and HN is the space of real functions v such that 
N-2 N 

(3.4) v E 5 mVm + E WMVM? 
m=-N m=-(N-2) 
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where vm belongs to PN for -N <m < 0, and to PN ) Qm for 1 m <N - 2, 
where Qm = {g(r): g(r) = crmlnr, c E C}. We provide XN and MN with the 
inner products of X and M. The discrete problem is the following: find (UN,PN) 
in XN x MN such that 

(3 5) 1kfv e XN, a(UN,V) +b(v,pN) =L(V), 

(VqE MN, b(UN,q)=0. 

In order to analyze this problem, we need some classical results on Jacobi polyno- 
mials. The definitions and results can be found in [1] or [6]. 

3.1. Jacobi polynomials on [0, 1]. Let w be a positive function on [0, 11 such 
that, for any k > 0, wrk is integrable. Define 

L2 (O 1) = {v E D'(0, 1) j w(r)jv12(r) dr < +oo} 

and provide this with the natural scalar product (v, w)w = fw w(r)v(r)w(r) dr and 
the corresponding norm 11 I L2 . For any given weight w, there exists a sequence of 
orthogonal polynomials in L2(O, 1). If oa, 3 are two integers, and cc = w, = 

(1 - r)arO, they are the sequence of Jacobi polynomials J,',,O, normalized by 
Jna'(1) n (+). Their norm is given by 

(3.6) 11 I jo,,311 (n( +?a)!(n?+)! 

The unbounded operator LC,,,a on Lw 2 (0, 1) is defined by 

(3.7) LC, = I- d d 

It is selfadjoint positive on L 2 f (0, 1), the eigenfunctions are Jnfl3 with eigenvalues 
-a O = n(n + ao + 3 + 1). The polynomials Jn ,'3 satisfy the differential equation 

(3.8) r(l - r)(Jn ")" + ( + 1 - ((x + 3 + 2)r)(Jn"3)' + Aa"3Jna," = 0. 

Moreover, the Jacobi polynomials are given by the recursion formula 

(3.9) 
2(n+ 1)(n?+oa+?+ 1)(2n+ a?+)JTe 

=(2n+a?++ 1)[a2 _ -2 + (2n?+Ca+?+2)(2n?+a?+)(2r-1)]Jn?t 

- 2(n + a)(n +,3)(2n + a +,3 + 2)J Tj, 

JOR)"' = 1; Jla 
p = (a + 3 2) r - (,+ 1). 

We shall use the formula relating JnXQ and Jn+U3+l: 

(3.10) d Jn?t O = (n + a + p + 1) ' , 

and several easy results on Jn' and Jnl'. The sequence Jn?,1 is orthogonal for the 
weight r. One has 

(3.11) ~~~~~jO,1(0) = (_I)n (n + 1)1 
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and (by integration of (3.8) on [0,1]) 
1 

(3.12) J1JO1 (r) dr = 2(-o1)n || j ,,1 2 
0~~~~~~~~~~~~~o ,1 

The polynomials Jno 1 and J?0? (the nth Legendre polynomial) are related by 

J_ 0o + ?o 
(3.13) Jol n rn+ 

3.2. Existence and uniqueness: the discrete inf-sup condition. Since XN 
and MN are subspaces of X and M, properties (i), (ii) and (iv) in Theorem B are 
satisfied. For existence and uniqueness, we merely need to prove (iii). We shall 
prove the constant in (iii) to be the same as in the continuous case. 

Theorem 3.1. On XN X MN one has the uniform inf-sup condition 

(3.14) inf sup - b(v, q) 1 = 
1 

qCEMN VEXN llvllx/lqljM V2'~ 

Proof. Again, we have 

(3.15) inf sup b(v, q) = inf llwllx 
qEMN VEXN llvllxllqllM qEMN llqllM 

where w is the unique solution of 

(3.16) Vv E XN, (w\ + Vq, v)o = 0. 

Using formula (2.14a), we can easily see that if q belongs to MN, then w = 

-(\)->Vq belongs to XN. The constant is thus greater than or equal to 
The choice qo = 0, q, = rm, 1 < m < N - 1, gives equality. 

This result, together with Theorem A, leads to the conclusion: 

Theorem 3.2. For any f in H-1(D(O, 1)), problem (3.5) has a unique solution 
(UN,PN) in XN X MN, and 

||UN 112 + IIPN 112 < Clffl?1. 

3.3. Projection in weighted spaces on [0, 1]. In order to obtain error estimates, 
we need one-dimensional projection results in weighted Sobolev spaces on [0,1]. 
Results of the same type have been obtained in [1] for the weights wa,Q; our proofs 
rely in a large part on their methods. The additional difficulties come from the fact 
that we cannot use any Hardy inequality. 

For any positive integer m, we denote HP?(0, 1) E D'(0, 1), +(i) E L2(0, 1) 
for any j, 0 < j < p} and furnish it with the norm j4fl1 Zo<j <p |4i(j) fl2. 

Theorem 3.3. (i) For any q in Lr, there exists a unique polynomial llNq in PN 
such that 

(3.17) VQ E PN, llq 
- INqIIL2 < Ilq - QIIL2. 

(ii) For any positive integer p, one has 

(3.18) Vq E H1P, lq- INqllLr ? C- rjqjlHp. 
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Proof. Expand q in the polynomials Q, = Jn' 
00 (q, Qn)r 

(3.19) q qnQn; qn 2 

Then lINq is given by 
N 

(3.20) llNq = qn Qn 
n=O 

and 
00 

(3.21) llq-lINqIlN 2= S q2qnI2lQn L2 
n=N+l 

Here, Qn is an eigenfunction of the selfadjoint operator L = LO,1, corresponding to 
the eigenvalue An = AO, = nr(n + 2). Then, for any integer s, 

(3.22) (q,Qn>r = (LsqvQn)ri 
n 

(3.23) flq - llNqfl22 = 

C) 
1 [(Lsq, Qn)r1]2 

n=N+l n f 2QmH 

Which gives, for q sufficiently smooth, the bounds 

(3.24) flq-rlNql 2 < N4s ILsql2, flq-llNqq1 L2 - (L8q, LN+4q)s|. 

In order to estimate IlLsq l122 and (Lsq,LS+lq)r, we introduce, for any integer k 
and any function q defined on [0,1], the quantities 

k 1 

1 lqJ l2 = E ri+l(1 -r)i Iq(j) 12 dr. 
j=o? 

If q belongs to Hrk, then IIIq 112H is well defined and HqII12H < llq112k. It is easy to see 
by induction that for any positive integer s, one has the following bounds: 

(3.25a) Vq E H IlL8qflL2 < IJILsql lo < C1 Iq 112s; 

(3.25b) Vq E H2+lj (Lsq LS+lq)r < 1IL8ql l < Clj|ql|j2s+l1 

This ends the proof of the theorem. E 

The results in Hrl are less classical. Let PN([O, 1]) be the subspace of PN([O, 1]) 
of polynomials vanishing at r = 1. 

Theorem 3.4. (i) For any q in Hrl n C?([O, 1]), there exists a unique polynomial 
ll q in PN such that 

(3.26) Hlq(1) = q(1); VQ E PN, ((q - ll Nq)', Q')r = 0. 

(ii) For any q in HrP with p > 2, 

(3.27) fl(q - ll'q)' IL2 <CN (P )jjqflHP, 

(3.28) V(q -Ill q)(0) < CN-(P-l)flqllHp. 
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Proof. (i) Since q' belongs to L., its projection HN-lq' on PN-1 is well defined. 
Then HNq is uniquely determined by 

1 

(3.29) Hlq = q(1)- HN-jlq'(p) dp. 
N~~~~ 

(ii) Assume now that q belongs to HJP for p > 2. According to [14], q belongs to 
C?([O, 1]), so H' q is well defined, and 

fl(q - HTIq)'IIL2 = flq' - IN-1qI|L2, 

which, together with (3.18) proves (3.27). 
In order to prove (3.28), we write 

(q - H>q)(0) = j(q' - IN q')(p) dp 

and proceed as in Theorem 3.3: expand q' in the polynomials Qn q' = n o qnQn 
and 

p = qn Qn(p) dp=2 (-1)nqfljQflIIL2 
n=N n=N 

(using (3.12)). Then, for any s > 0, 

(q -IHN_lq')(p) dp= 2 As (-1) (LsI Qn)r, 
JO n=N n 

and by the Cauchy-Schwarz inequality, 

11102 ~~~[(Lsq', Qn) (LIQmI 
f( 

- fl q) (0) 12 < 4 (E[Lq nr nL 
\n=N II7fII \n=N n 

The first term has been estimated in Theorem 3.3. As for the second, we have 
+00 IlQn12 j +0 

2Z )A2s - n4s+1' 
n=N n n=N 

and for s > 0 (cf. [7]) 
+00 f+oO 

4s 1 +??.J 
_- 

(4s+l) dx = 
n 1 , iN 4s 

This, together with (3.25a), gives the successive bounds: 

Vs > 0, I(q - >q)(0) I < CN JJLsq/jjL2 < CN 2llq'jjH2s < CN 2llqllH2.+l. 

In the same way, for any s > 0, one has 

-(q 
- IIq) (0) j2 < CN-4s-2 I (Lsq' Ls+q)r 

< CN llqf 2s+1 < CN q Hlqf 2S+2, 

which gives (3.28) for any integer p > 2. El 

We also need to estimate the norm of q - 111q in Lr. 

Theorem 3.5. For any integer p > 2, for any q in HiP, one has 

(3.30) llq - 11' qjjL < CN1JJqJ1HrP 
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Proof. It goes by a duality argument: 

(3.31) llq - INq|IL2 = sup (q - ) 

We shall use a bidimensional result: if Q is smooth enough, we know (see for 
example [3]) that for any f in L2(Q), there exists a unique u in Ho' (Q) such that 
-ZAu = f. Furthermore u belongs to H2(Q) and IIu 12 < Cllf lIo. Here, Q is D(0, 1), 
and we choose f = g(r) in Lr. Then u = +(r) belongs to Hr and is such that 

(3.32) r1 d d =g, 
-rdr \\ dr) ,/ 

(3.33) ||?P|H2 < C1191JL2. 

Integration by parts, using the boundary data, gives 

(q- llq, g)r = ((q-IIlq) , O )r 

Moreover, since 4'(1) = 0, we have that 11>4' belongs to PN and 

((q - 11l q)'X (1ll 0)/)r = 0. 

Hence, 

(q - 1I]q,g)r ((q - 1 q)', (4' - fI )')r < II(q - r1>q)'I L2 I I2 (4' N1>)'11L2. 

Using (3.27) and (3.33), we have 

II(4' - IN'1 )'IIL2 < CN111,01IH2 < CIIgI1L2, 

Il(q - H1Nq)'IIL2 < CNK (P1) liiHp 

and for any g in L2, 

(3 3) (q - l'q, 9)r < CN P||q||Hrp 1191|L2. 

We now plug (3.34) in (3.31) and get (3.30). El 

3.4. Approximation results. Because of the ellipticity of the bilinear form a and 
the uniform inf-sup condition, Theorem 1.1 in [8] gives a first approximation result: 
if (u, p) and (UN, PN) are the solutions to (2.3) and (3.5), respectively, there exists 
a positive constant C such that 

(3.35) llu-UNIIX?+IIP-PNIIO<C { - VN11X? inf lp i- q N 1EML 
(~VNEVN qNEMN) 

where VN is the discrete space corresponding to V: 

(3.36) VN = {VN E XN,VqN E MN,b(VN,qN) = 0} 

It remains to estimate the expressions in the right-hand side of (3.35). 

Theorem 3.6. Let p be an integer greater than or equal to zero. For any q in 
M n HP(Q), its projection q = f1N,Kq on SK 0 PN belongs to M and satisfies the 
following estimate: 

(3.37) llq - llo < Cmin { ja q K } IqIp. 

On the other hand, u belongs to V. It can be approximated in V n XN: 
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Theorem 3.7. Let p be a positive integer. For any v in V n HP(Q), there exzsts 
w in V n XN such that 

(3.38) lyv - wllx < CN1-P lvlJP. 

These two theorems give the final optimal estimate: 

Theorem 3.8. Let p be an integer greater than or equal to zero. If f belongs to 
HP(Q), the solutions (u,p) and (uN,pN) to (2.3) and (3.5) satisfy the following 
estimate: 

(3.39) IIU- UN IIX + IIP-PN||O < CN-1PIfIIp. 

Proof of Theorem 3.6. We expand q in {Hk} as q = EkEZ qk(r)Hk. Its projection 
FIK on SK 0 Lr is given by HIKq = Elkl<Kqk(r)Hk, and the operator HN,K is 
defined by 

q=HN,Kq= E HNqk(r)Hk. 
IkI<K 

In particular, if q belongs to M, then q belongs to M, and 

(3.40) - llo ?< fiq - fIKq|lo + HIKq - i1o. 
The first term is estimated through the one-dimensional result in [5]: 

llq - llKqllO < CK-P 90P 1 

which gives 

(3.41) llq - IlKqllo < CK-Pflqllp. 

As for the second term, we have 

HIIKq -1 = E llqk - Nqk T 2 

and using Theorem 3.3, we get 

fll7IKq - 'll0 < CN S IIqkIIHP, 

JkJ<K 

(3.42) lflHKq - '1lo < CN-Pflqllp. 

Plugging (3.41) and (3.42) in (3.40) gives the desired estimate in the theorem. D 

Proof of Theorem 3.7. Recall that for v in HP(Q) n Ho (Q), its curl V A v belongs 
to HP-1(Q), and 

11V A vllp-l < 2IvIlp. 
If moreover v belongs to V, then ItvIlx = IIV A vIto. Here, V A v can be projected 
on SN-1 09 PN-1 in the following way. We expand V A v and V * v in {Hm(O)}: 

V * v =15 DmvmHm+l + 5 D-mwmHm-1, 
mE7Z mC=Z 

V A v = i (E DmvmHm+l - 
E D-mwmHm-i)- 

MEZ MEZ 
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If v belongs to V, the function W defined by o = -'V A v belongs to L2(Q), 
and by Theorem 3.6, one has the following error estimate on its projection on 
SN-1 X PN-1, X = EmZ=N XmHm+1 

11- x lo < cN1-1JJoWip_1. 

We can define w in V n XN such that V A w = 2iX. It is given by 

N-2 N 

W SE imvm + E 'tDMWm 

m=-N m=-(N-2) 

the coefficients being defined for -(N - 2) < m < N by w?3m = vmI and 

*-N<m<-1, vmm=rmJ P-mxm(P) dp, 

1 

*vo =-j Xo(P) dp, r 
*1<m<N-2, Vm =-r PmX(P)dp 

The assumptions we made force w to belong to XN n V. Moreover, 

||v-wllx = ||V A v-V A wllo = 211f-Xllo < CN1-PlWJi,p_1, 

liv-wllx < CN"-PJJvJp.O 

There is also an L2-estimate on the velocity: 

Theorem 3.9. Let p be a positive integer. If f belongs to HP(Q), there exists a 
positive constant C such that 

(3.43) IIu - UNI o < CN-2-pllfIlp. 

The proof is classical and will be omitted (cf. [8]). 

4. PSEUDOSPECTRAL METHOD 

We start with a description of the quadrature formula we shall use in the r- 
variable. 

4.1. Discrete formulation. The fully discrete formulation relies on the Gauss- 
Lobatto quadrature formula for the weight r on [0,1] (cf. [6]). 

Theorem 4.1. Let N be an integer > 2, rO = 0, rN = 1. There exists a unique 
set of N - 1 points rj in (0,1) and N .1 positive weights pj such that 

~1 N 

(4.1) Vg E P2N-1, J rg(r)dr =E pj g(rj). 
j=0 

The points rj are the zeros of (JN1)/ = JAI1, the weights pj are given by 

(4.2) 9N 1 2 

P N(N+2)[Jo1 ]~ P N(N?+2)(N?+1)2. 
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We now introduce on C?([O, 1]) the discrete inner product 
N 

(4.3) (f,g)N = Zp j f (rj)g(rj) . 
j=O 

The corresponding Hermitian form is denoted by I * IN 

Theorem 4.2. For any integer N > 2, j . IN is a norm on PN([O, 1]), which is 
equivalent to 11 IIL2. More precisely, one has 

(4.4) VO (E PN([O, 1]), Ih0IIL2 < 1I01N < V3110IL2. 

Proof. Expand fo in PN([O, 1]) in the Jk1 
" = ZoT AkJk'o, express L2 and IN 

use the fact that the continuous and discrete integration formulae agree on P2N-1, 

and formula (4.2) (for details see [1] for the method and [9] in this case). 

The discrete inner product is now defined in L2(Q) by 
J2,r 

(4.5) (QO X)N,N = (O(. 0) ,X( O))N dO. 

Since we use trigonometric polynomials, we do not discretize the tangential integral. 
The discrete bilinear forms aN and bN are given by 

(4.6) l aN(U, V) = (VU, VV)N,N, 

( bN(v, q) =-(q, V * V)N,N, 

which can be rewritten by expanding u and v in the (Vm, Win) basis with coefficients 
(vm, Wm) and (ibm, i-vm), and q in the {H,} with coefficients q,,, 

I N-1 
aN(U,v) = E [(Dm-1Vm-1,Dm-1Om 1)N 

m=-(N-1) 

+ (D-m-wm+i, D-m-1iZm+1)Nb] 

N-1 

bN(v,q) = - 
E (qm,Dm-lfm-l +D-m-jCvm+1)N. 

m=-(N-1) 

The special form of our discrete spaces allows the following pleasant result: 

Lemma 4.1. The discrete forms aN and bN are exact on XN X MN, i.e., 

V(U,v) E XN X XN, aN(u,v) = a(u,v), 

V(v,q) E XN x MN, bN(v,q) = b(v,q). 

The proof is straightforward and will be omitted. 
The discrete problem now reads: find (TlN, pN) in XN X MN such that 

(4 7) fVv E XN, aN(UN,V) + bN(V,PN) = LN(V), 

()VqEMN, bN(UiN,q)=O, 

where LN is defined in the following way: f and v are expanded as 
N-2 N 

f =EfmVm+ EgmWm v= E VMVM + E wmWm; 
mEZ mEZ m=-N m=-(N-2) 
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then 
N-2 N 

2(f,v)= S (fm, Vm)r + E (gm, Wm)r 
m=-N m=-(N-2) 

For 1 < m < N - 2, define an operator Rm by 

(4.8) Rmh = -r-m-l pm+lh(p) dp. 

If h belongs to L.(0, 1), then Rmh belongs to Lr (0, 1), and 

(4.9) 1IRmh < 4( 1) llhlL2 

Using integration by parts, we can write 
0 N-2 

2(f,v)= E (fm,vm)r + (RmfmIDmvm)r 

m=-N m=1 

N -1 

+ E (gm, Wm)r + S (R-mgm, D-mwm)r. 

m=o m=-(N-2) 

We can now define the discrete linear operator by 
0 N-2 

(4.10) 2LN(V) = (fm, Vm)N + 5 (Rmfm, Dmvm)N 
m=-N m=1 

N -1 

+ (gm,Wm)N + S (R_mgm, D-mwm)N. 
m=o m=-(N-2) 

Theorem 4.3. If f belongs to C?(Q), problem (4.7) has a unique solution. 

Proof. By Lemma 4.1, we only need to check that the mapping v -* LN(V) is 
continuous on XN. By Theorem 4.2 and the Cauchy-Schwarz inequality, 

0 N-2 

ILN(V)< I fmn12 + E jRmfrh 
1 
v2jx. 

-m=-N m=l 

The first sum is bounded by a constant times Ilf 12 . As for the second, we have for 
any , 

jRmfm(ri) 
12 < 22 2m?2 r 

and 
ILN(V)l < CllfjjoojjvjIx. 

4.2. Interpolation formula on [0, 1]. Let h be an element of HP(0, 1), for p > 2. 
By [14], h is continuous on [0,1]. Then define INh as the polynomial interpolating 
h at the Gauss-Lobatto points i.e., 

(4.11) INh E PN; Vj, 1 < j < N, INh(rj) = h(rj). 

The aim of this section is to prove the following result: 

Theorem 4.4. Let p be an integer > 2. If h belongs to HP, one has 

(4.12) jlh - INhIIL2 < CN PllhllHrp. 
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The proof goes along the lines in [1]: 
(i) Estimate zeros and weights in (4.1). 

(ii) If h(1) = 0, estimate 11INhIIL2 by Theorem 4.3. 
(iii) Estimate Ilh - INhl L2 by the projection theorems of ?3.2. 

(i) Estimation of the weights. From ([16, p. 353]), one has 

(4.13) 1 < j < N- 1, Pi Nrj32(-rjN 

Location of the zeros. 

Lemma 4.2. For any integer N > 2, the zeros r= cos2 
0 of jN12- are such that 

E Kj, where the intervals Kj are defined by 

(4.14) 1<[2__]-1; Kj= 4N _ N )' 
L2 Ki(N +3wN?lr,) 

[N] < j?<[]+1; Kj(= (kjw4 r+r), 

N K-( +_3 

[]+1 <j <N-1; Kj = ( N2r r 

Proof. In ([16, p. 138]) we find the location of the zeros of the Legendre polynomials 
JNO. We now use (3.10) and (3.13) to get (4.14). 

(ii) Estimation of IIINhHIL2. 

Lemma 4.3. Let p be an integer > 2. If h belongs to HP and h(1) = 0, then 

(4.15) 11INhH112 < C(IlhH112 + N-2llh'H112 + N-4lh(0)12). 

Proof. From Theorem 4.3, we have 
N 

IIINh2L2 < jINhlN = ZpjhI2 (rj). 
j=O 

If h(1) = 0, then from (4.2Z), 
N-1 

flINhl L2 < 2N-4lh(0)12 +? : pjShl2(rj) 
j=l 

and, from (4.13), 

N-1 

(4.16) IIINh 112 < C N-4lh(0)12 +N-1 r]32(1 - rj)1/2Ih 2(rj) 
j=I 

Using the function G defined by 

(4.17) 

g(r) = r3/2(1 - r)1/2f(r), F(0) = h(r), G(f) = g(r), with r = COS2 

we can rewrite (4.13) as 
N-1 

(4.18) 1IINh 1L2 2 <C N -4 h(0)12 + N-1 sup G(O) 12 
j- eK3 Ut)l 
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Assume for the time being the two following results. 

Lemma 4.4. Let p be an integer > 2. If q belongs to HP and q(1) = 0, then 

(4.19) q$r) 12 dr < 
1 

r Ib'(r)12 dr. 

Lemma 4.5. Let p be an integer > 2. If h belongs to HP, the function G(O) defined 
in (4.17) belongs to H1(0,7r) and is such that 

(4.20) IGI IL2(0,7) = JIhJL2, JIG' II L2(O,7r) < Cllh' JL2. 

Lemma 1.4 in [1] reads 

(4.21) sup JG(0)J < C(JK I ||G||L2(Kj) + JAjJJJG'JJL2(K,)), 
0 =K.3 

j IG 2Kj ljIGL 

where IKJ is the length of the interval K. Note that, for any j, Kj and Kj+3 are 
disjoined. Thus, the union of intervals Kj covers at most 3 times (0, 7r). Moreover, 
there exists a strictly positive number C such that IKj I c. These two remarks, 
together with (4.20) and (4.21), give (4.15). 

Proof of Lemma 4.4. Since q$ belongs to H1(0, 1), we write q(r) - f C)'(s) ds, 
and by the Cauchy-Schwarz inequality, 

jq$(r)12 < (1- r) J1/(s)I2 ds, 

which proves that 1(r)2 belongs to L1(0, 1) and 

fX $(r)l 
2 dr ff 

jq$(s)j2dsdr =f1rjIf (r)12dr. 
J 1-r o r o 

Proof of Lemma 4.5. A mere change of variables in the integral shows at once that 
IGI IL2(o,7) = JIhIIL2. As for the derivative, we have 

C 2 ~~~~~1 f 20r -16r 2 - 3 
JIG'I I L 2 (0,7r) r2(1 -r)Ih'(r) 2dr+ _20r - h(r)2 d I'~-'I L2(O,ir) - dr A-16 J 1 -r j()2r 

On [0, 1], the numerator in the second integral is bounded by a strictly positive 
constant, and Lemma 4.4 allows us to conclude. 

(iii) Estimation of IIh - INhlIL2. For any h in HP, we introduce H> h as in 
Theorem 3.4. Since it belongs to PN, we can write 

jlh-INh 1L2 < 2(IIh - H' hj112 A-+ IN(HNh - h) 112)2 

Using Lemma 4.3 for H h - h, we get 

jlh-INhIIL2 ? C(<jH1h - hlj2 2+ N-211(Hh - h)'l112 2+ N-41(Hh - h)(0) 12). 

Theorems 3.4 and 3.5 give (4.12) in Theorem 4.4. 
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4.3. Approximation results. We start with the same result as in ?3.4. The 
solutions (u,p) and (fiN,1N) to (2.3) and (4.7) satisfy a first estimate: 

(4.22) ||u - UN lIX + IIP - PNJJO 

C{ EVN J V N qNE MN } 

where VN = {VN E XN,VqN E MN,bN(VN,qN) = O}, and 

(4.23) J|L-LNII = SUP IL(VN)- LN(VN)I 
VN E VN JIVNIIX 

Using the results in ??3.3 and 4.3, we shall prove the following result. 

Theorem 4.5. Letp be an integer > 0. Iff belongs to HP(Q), the solutions (u,p) 
and (UN, PN) to (2.3) and (4.7) satisfy the following estimates: 

(4.24) ||U-UN||X + IIP-PN|JO < CNPllfllp. 

Proof. From Theorem 3.6, since p belongs to HP+l(Q), we have 

(4.25) IIP - IN-1,N-lPllo < CN ( [Pl|+i ? C JJfJJp, 

and since u belongs to V n HP+2 (Q), there exists VN in V n XN such that 

(4.26) u-2vNx ? ulp+2 < CN-(P+1)JlfJlp. 

It remains to estimate IJL - LNII. For any v in XN, we have 

0 

JL(v) -LN(V) < ? I(fm, Vm)N - (fm, Vmr)rI 
m=-N 

N-2 

+ E I(Rmfm, Dmvm)N - (Rmfm, Dmvm)rl. 
m=1 

Let us estimate the first sum. For -N < m < 0, since the quadrature formula is 
exact on P2N-1, 

(fmi, Vm)N-(fm, Vm)r = (INfm- HN-1fmi Vm)N-(fm-HN-lfm1 Vm)r 

and by Theorem 4.2, 

I(INfm-HN-lfm,Vm)N ?<3jjINfm r-rN-1fmL2IIVmIL2, 

so that 

I(frVm)N - (fm, Vmr)r <? C[lIfm-1IN-lfmIIL2 + llfm -INfML2]]11VMIIL2. 

By Theorems 3.3 and 4.4, we conclude that 
0 

(4.27) E I(fm Vm)N - (fm,Vmr)rj < CN Pllfllpllvllo- 
m=-N 

In order to estimate the second sum, we need a lemma. 

Lemma 4.6. For any p > 0, for any m,-I < m < N-2, for anyp in H7P, Rmp 
belongs to HrP and 

(4.28) || Rm H11HP < 211 I1HP. 
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Let us assume the lemma. For 1 < m < N - 2, IN(Rmfm) belongs to PN and 
DmVm belongs to PN-1, SO 

(Rmfm, Dmvm)N - (Rmfm, Dmvm)r = (IN(Rmfm) - Rmfm, Dmvm)r 

and by Theorem 4.4, 

N-2 

(4.29) S I(Rmfm, Dmvm)N - (Rmfm, Dmvm)r < CN Pllf lpljvj x. 
m=1 

Adding (4.27) and (4.29) gives 

(4.30) IL(v) - LN(V)I < CN Pllf llpllvllx. 

Plugging (4.25), (4.26) and (4.30) in (4.22), we obtain (4.24). 

Proof of Lemma 4.6. It is easy to see by induction that, for any k > 0, 

( Rm (jk) - m k k ? 1 { kW( ) + (m + 1)fRm+tk+lp() } 

We now use (4.9) to get an upper bound on II(Rmp)(k) IL2: 

||R w(k) 11 2 < I{1|(k-1)I|L2 + 4|(k) 11 2} I(Rm p)~ 2 < 2{j 2(1 + ? I I(k 2 } 

Summing for 1 < k < p gives (4.28). 

5. COUPLING SPECTRAL METHOD AND TRANSPARENT BOUNDARY CONDITION 

We consider the Stokes problem in the whole plane: 

(5.1) f-Au+Vp=f inR2, 
(V.u=O in R1. 

We shall assume f to be compactly supported in the disc D(O, R) centered at point 
0 and of radius R. If Q is an unbounded domain, W1(Q) is defined by 

(5.2) W1(Q) fv ( ){' (1 + r2)1/2(1 + ln(1 r2)) E L2(Q), Vv E 

furnished with the natural inner product and norm 

2 

IVII2 =V ? IjVvj 1 wi(Q) (1 + r2)1/2 (1 + ln(l + r2)) 0 

Note that R C W1(Q). A result in [15] asserts that if f belongs to (L2(R2))2, 
this problem has a unique solution (u,p) in (W1(R2)/R)2 x L2(R2). In order 
to compute (u,p), we shall introduce a fictitious boundary, the circle centered at 
point 0 and of radius R, and solve the Stokes problem in D(O, R) with the so-called 
transparent boundary condition. This boundary condition represents the solution 
outside the disc. 
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5.1. Transparent boundary condition and reduction to a bounded do- 
main. We shall denote Q = D(0, R), Q' = R2 _ Q, F their common boundary, 
F = C(o, R). The normal vector to F is oriented toward the exterior of Q; we 
shall call it- n (it is er with the notations of ?2). Problem (5.1) is equivalent to the 
coupling 

f-Au, +Vp1=f inQ, 

lV.ui=O inQ, 

f-AU2 +VP2 = O in Q', 

lVu2=0 inQ', 

with the transmission conditions 

{ul=u2 onF, 

Un(ul) = Un(u2) on F, 

where gn is the normal strain, i.e., 

(5.3) Un c(u) =- -pn. 

Consider the problem 

(-w + Vq=0 inQ', 
(5.4) V w=0 inQ', 

tw = g on F. 

According to [15] again, if g belongs to H1/2 (F), this problem has a unique solution 

(w, q) in (W (Q'))2 x L 2(Q') and 

||Vj (W1(Q'))2 < Cg01H'/2(r)- 

Denote by K the linear operator from H1/2(F) to H-1/2(F) defined by Kw = 

-an(w). Owing to the transmission conditions on F, problem (5.1) is equivalent 
to the following boundary value problem in Q: 

r-Au+Vp=f inQ, 
(5.5) V*u=0 inQ, 

tn(u) + Ku = 0 on F. 

5.2. Basic properties and expression of the transparent operator K. Gen- 
eral results valid in any sufficiently smooth geometry assert (see [15] or [9]): 

Theorem 5.1. The linear operator K from Hl/2(F) to H-1/2(F) is continuous, 
symmetric, positive: for any g in H1/2 (), (Kg, g)r > 0. 

We shall now give the expression of K in polar coordinates. We shall use the 
notations in ?2, the singularity being here at infinity. 

We decompose g in 

(5.6) { 
= 

?(l) + g(2) ) 
(1)()= EmeZgmVm(O)I g(2)(0) = ()(0)=EmezhmWm(O). 
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The function (Euclidean) orthogonal to g is given by gI = i( g(1) + g(2)). The 
Hilbert operator is defined by 

(5.7) X-(g = S i sign(m)gmVm(O) + 5 i sign(m)hmWm(O) 
mEZ mEZ 

(with the convention, sign(m) = 0 if m = 0). 

Theorem 5.2. The operator K is given by 

(5.8) Kg R 
1 

Jo (g, + g)l 

or in extended form, 

(5.9) Kg = R -mgmVm(O) + 5 3mrnmVm(O) 
m<-1 m>l 

+ 5 -3mhmWm (0) + 5 mhmWm (O)1 
m<-1 m>1 

Proof. Since g is given by (5.6), we solve (5.4) in polar coordinates. The first 
step is to notice that q is harmonic in Q' and belongs to L2(1, +oo). Thus, q = 

Emz qmHm with 

(5.10) q {cozr-rril m > 2 

With the notations given in (2.9), the first equation gives 

(5.11) Vm E Z, Dmvm-qm+l - cmr-(m+l). 

For any m < 0, r-(m+l) does not belong to L2(1, +oo); therefore, cm = 0: 

Vm < 0, Dmvm-qm+l = 0. 

For any m > 1, integrate (5.11) from r to +oo and use (5.10). Then 

Vm = - (Cm + aym+l)r n, and Vm > 1 Dmvm = -2m m 
2m Ir 

The divergence-free condition reads, Vm E Z, Dm-lvm-l +?D-mlwm+l = 0; thus, 

Vm > 1, Dmvm =-2m Vm =-qm+i. 

The operator K is now defined by 

Kg = 5 (qm+l - Dmvm - m )(R)Vm 
mEZ 

+ E (qm-l - D-mwm + m Wm )(R)Wm , 
mEZ 

which gives (5.9). The compact formulation (5.8) comes in a straightforward way 
from (5.9). 
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5.3. Weak formulation of (5.4). For simplicity, we shall assume from now on 
that R = 1. We define on H1(Q) a bilinear form a by 

(5.12) a(u, v) = a(u, v) + (Ku, v)r. 

Lemma 5.1. The bilinear form a defines on (H1(Q)/R)2 a scalar product. The 
corresponding norm is equivalent to the natural norm in H1(Q). 

The proof is straightforward, since K is positive, and the L2-norm of the gradient 
is equivalent to the Hl-norm in H1(Q)/R. 

The Hilbert space X is (H1(Q)/R)2, furnished with the bilinear form a,M = 

L2 (Q). The variational formulation of problem (5.5) reads: 

find (u, p) in X x M such that 

(5f13) vv E X, &(u,v) +b(v,p) = (f,v), 

(Vq E M, b(u, q) = O. 

Theorem 5.3. Problem (5.13) has a unique solution. In particular, one has the 
Babus?ka-Brezzi condition 

(5.14) inf sup b(v, q) 
qEM~~ fCXlvflxflqflM -1 

Proof. By Theorem B, it is enough to prove (5.14). We proceed as in (2.5): 

inf sup b(vq) in f|w|x 
qCME lvllxllqlM qEiM lqlHm' 

where w is the unique solution in X to 

w E H'(Q) 
(5.15) fAw+Vq=O inQ, 

? i+qer ? Kw=O onr. 

We shall express w in X in terms of q in M. Here, q and w are given by (2.7), (2.8), 
and the norms are easily computed: 

a(w,w) = E IHDmvmH122 + E Vm (1)12, 
mEZ m Z 

(Kw,w)r = 3 E lvm(l)12_12 - E mvm(1)12, 
m>1 m<-1 

(5.16) a(w,w) = I IIDmvmI112 +4 S mlvm(1)12. 
mCZ m>1 

The same arguments as in (2.13a) prove 

(5.17) VmEZ d( + M ) (qm+l + Dmvm) = O, 

(5.18) Vm > O, qm+j + Dmvm = O. 
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The boundary condition, expanded in the basis {Vm, Wm}, gives 

(5.19) fforrm <-1, (qm+l+Dmvm)(1)=0, 
*for m > 0, (qm+l + DmVm + 4mvm)(1) 0. 

From (5.17), (5.18) and (5.19), we get, for m > 1, vm(1) = 0, and for any m in Z, 
2qm+l + Dmvm = 0. This can be solved explicitly (modulo a constant in vo): 

(5.20a) m>21 Vm= rm pmqm+i(p) dp, 

(5.20b) vo= - (jqm+1(p)dp, 

(5.20c) M <0, Vm = __rm p-mqm+i(p) dp, 

and 

lqlo = l qmJJL2 = I IIDmvm|L2 = a(w,w) 
m Z mCZ 

This completes the proof of the theorem. 

5.4. The Galerkin method. The discrete spaces are the same as in ?3, i.e., 

(5.21) {mN =mn(SN1 ? PN-1), 
XN =X n HN, 

and the discrete problem reads: find (UN,PN) in XN x MN such that 

(5 .22) f Vv E XN, a(UN, vV) + b(v,PN) = L (V), 

(Vq E MN, b(uN,q) = 0. 

Theorem 5.4. On XN X MN one has the uniform inf-sup condition 

(5.23) inf sup b (v, q) 
(5.23) ~~~~qCMN VEXN llvllx lqllm 

Proof. We write again 

inf sup b(v, q) ifliwlix 
(5.24) qin sup V||XJq i qE MN |fcl||M 

where w is the unique solution to 

(5.25) VVEXN, -(Aw+Vq,v)o+(Kw+ + qer, v)r =0. 
O9r 

Using formula (5.20a), we can easily see that if q belongs to MN, then w = 

-(A>)-Vq belongs to XN. The constant is thus greater than or equal to 1. The 
choice qo = 0, qm = rm, 1 < m < N - 1, gives equality. C 

Theorem B gives the conclusion: 

Theorem 5.5. For any f in H-1(Q), the problem (5.21) has a unique solution 
(UN,PN) in XN x MN and 

IIUNIIX + IIPNIIO < ClIf i-1. 

Slight modifications to the proofs in ?3 give the optimal error estimates: 
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Theorem 5.6. For any integer p > 0, if f belongs to HP(Q), the solutions (u, p) 
and (uN, pN) to (5.13) and (5.22) satisfy the optimal error estimates 

(5.26) |U - UNIIX + IIP - PNllO < CN |llf lip, 
(5.27) jIu - UN I1O < CN-2-pllfllp. 

Remark 5.1. By scaling we can solve the problem in D(O, R) with a Galerkin 
method. This leads to the following error estimates: 

IIU - UNIIX + IIP - PN||O < C(NR) 1 PllfllPl 

IIU- UNIJO < C( N )-2-p |f IIP. 

6. CONCLUSION 

This is a first step toward the solution of exterior problems by spectral methods 
in a bounded domain. The second step should be to deal with operators with 
nonconstant coefficients, and the third step the three-dimensional case, with the 
use of spherical harmonic functions. This will be of great use, for instance in 
meteorology. 
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