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UNICITY IN PIECEWISE POLYNOMIAL 
L1-APPROXIMATION VIA AN ALGORITHM 

R. C. GAYLE AND J. M. WOLFE 

ABSTRACT. Our main result shows that certain generalized convex functions 
on a real interval possess a unique best L1 approximation from the family of 
piecewise polynomial functions of fixed degree with varying knots. This result 
was anticipated by Kioustelidis in [11]; however the proof given there is noncon- 
structive and uses topological degree as the primary tool, in a fashion similar 
to the proof the comparable result for the L2 case in [5]. By contrast, the proof 
given here proceeds by demonstrating the global convergence of an algorithm 
to calculate a best approximation over the domain of all possible knot vectors. 
The proof uses the contraction mapping theorem to simultaneously establish 
convergence and uniqueness. This algorithm was suggested by Kioustelidis 
[10]. In addition, an asymptotic uniqueness result and a nonuniqueness result 
are indicated, which analogize known results in the L2 case. 

1. INTRODUCTION 

In this paper we examine the question of the unicity of best L1 approximations 
of n + 1 times continuously differentiable functions. The nonlinear approximating 
family consists of piecewise polynomial functions of degree at most n with k varying 
points of discontinuity. In 1978, Barrow et al. [2] showed: 

Theorem 1. Let f E C2 [0, 1] with f/" > 0 on [0, 1] and suppose that log f" is 
concave on (0, 1). Then f has unique best L1 and L2 approximations from S2, the 
nonlinear family of all second-order (piecewise linear) spline functions with at most 
k variable knots in [0,1]. 

In fact, if we denote by 'Pk,, the likewise nonlinear family of piecewise linear 
functions with at most k points of discontinuity in [0,1], the same hypotheses on f 
suffice to show that f has a unique best approximation in the L1 sense or L2 sense 
from Pk,l. This observation follows at once from the formula for the derivative 
of the error functional F(x) = lf - p(x)lll with respect to the components of 
x = (XI, X2, ... , Xk) E Rk. Here, x is the k-tuple of possible discontinuity points in 
[0, 1] of the approximant p(x). One sees that at critical points of F(x), the function 
p(x) is in fact continuous and therefore in S2. From this observation one is naturally 
led to ask whether, under conditions on f analogous to these in Theorem 1, an f 
might have a unique best LP approximation from Pk,n, the family of all piecewise 
polynomials of degree at most n with at most k variable points of discontinuity in 
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[0, 1]. Chow [5] answered the question affirmatively for p = 2, using the methods 
of [2]. The question has an affirmative answer in the case p = 1 as well, a fact 
which was established, unbeknownst originally to the authors of the present paper, 
by Kioustelidis in [11]. The method of proof was similar to that used in [5] for 
the L2 case and is nonconstructive. In the present paper we have established this 
result, already known to Kioustelidis, using methods which are constructive and 
which utilize an algorithm proposed by Kioustelidis in [10]. We would like to thank 
the referees for bringing the results contained in [11] to our attention. Our main 
achievement in this paper is in the manner of establishing the following theorem. 

Theorem 2. Suppose f E Cn+2 [0, 1] and either 
i. f(n+l) > 0 on [0, 1] and f (n+2)/f (n+I) is nonincreasing on (0, 1) (i.e., 

log f(n+l) is concave), or 
ii. f(n+l) < 0 on [0, 1] and f (n+2)/f (n+1) is nondecreasing on (0, 1) (i.e., 

log(_f(n+l)) is concave); then f has a unique best L1 approximation from 
'Pk,n 

In addition, we have the following theorems which analogize those of [2] and [5] 
to the L1 case for piecewise polynomials of arbitrary degree with arbitrarily many 
knots. 

Theorem 3. Suppose f E Cn+3 [0,1] and f(n+l) > 0 on [0, 1]. Then, for suffi- 
ciently large k, f has a unique best L1 approximation from 'Pk,n. 

Theorem 4. There exists a C? function f such that f (n+l) > 0 throughout [0, 1] 

so that f has more than one Lq[_1, 1] approximation from the family Pk,n, 1 < q < 
00. 

Before proceeding to the proof of Theorem 2, which is the main result of this 
paper, we shall give some formal definitions as well as some known results. In ?3 
we prove Theorem 2 and in ?4 Theorem 3. The proof of Theorem 4 is just as the 
one already given in [2] and [5] for the L2 case and is omitted. 

2. PRELIMINARIES 

We begin by defining the approximating family Pk,n, which will be the main 
object of study. Accordingly, let 

E k= { X E R 
k 

IO < XI < X2 < ***< Xk <1} 

where the xi are the components of x. Thus, Sk is an open simplex in Rk and is, 
therefore, convex. For a fixed x in the closure of Sk, define 

Pk,n,x {f E Lo [0 1]: fI[x% 1X%] E Il for i = 1,2,... , k + 1}, 

where x0 = 0, Xk+1 = 1 and -n denotes the real (n + 1)-dimensional space of all 
polynomials with real coefficients of degree at most n. Finally, let 

Pk,n = U Pk,n,x 
XE Sk 

We shall refer to this set of functions as the collection of piecewise polynomials 
of degree at most n with k variable knots, although the term "knot" implies a 
continuity which the elements of Pk,n need not possess. We observe that the family 
Pk,n is not a linear space but is approximatively compact. 

The following lemma will be useful. Its simple proof is omitted. 
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Lemma 5. If f (n+l) > 0 throughout [a, b] (or f(n+l) < 0 throughout [a, b]), then 
the unique best L1 approximation from lln in L1 [a, b] is given by the Lagrange 

b -a b +a 
interpolating polynomial to f at the points t = 2 (i + +2 , where ,j = cos 0 

22 

and O =n 22r. The points tj are known as the L1 canonical points for the 

interval [a, b]. 

The error between this Lagrange interpolating polynomial and the function f 
has a well-known form in terms of divided differences: 

n 

f(t) -p(t) = f [tO,tl, ... , tn7 t] r(t -tj), 
j=o 

where f[to, ti,... , tn, t] denotes the (n + 1)-st order divided difference of f based 
on the points {to, t1, ... , tn i t} C [a, b] ([8]). We shall abbreviate this as 

n 

f (t) - p(t) = f [t, t] ]7(t - ta). 
j=o 

Lemma 5 together with the following result allows the succinct reformulation 
of the piecewise polynomial approximation problem as a nonlinear optimization 
problem for those functions satisfying the hypothesis of Lemma 5, which we may 
view as possessing a generalized convexity (or concavity). 

Lemma 6. Suppose f E C1 [a, b] and, for each i, pi is the unique best Lq approxi- 
mation to f from I-In over the interval [xi-,, xi]. Then, if 1 < q < ox and 

k+1 x* 

Fq(f,x) = E _ f(t)-_ p(t)jqdt, 

we have 

ai 8Fq(f, X) = I f (X) _ P -X)I I f (X) _ , X)Iq 

Proof. First note from the form of F(f, x) that its partial derivative with respect 
to xi will only involve 

a X* Xi+ l 
a(J If (t)-_P,(t)lq dt- i f (t)-_p,+1 (t) iq dt) 

We shall use the easily verified fact that if G(u, t): [a, b] x [a, b] --- R is continuous 
and continuously differentiable with respect to u on [a, b], then 

a- (A jG(u, t) dt) U = G(x, x)+ j ( G(u, t) u=) dt. 

Note that, if Pb is the best Lq approximation to a given continuous f over the 
interval [a, b], then the quantity 
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is a continuously differentiable function of b and in fact has derivative 

q sgn (f (t) -Pb (t) ) |If (t) - Pb (t) |Iq1 a9(Pb (t) ) 

We apply this observation and the aforementioned fact to obtain 

a Xi 

a ] Iff(t)- Pi (t)Iqdt= If (xi) -Pj(Xj)Iq 

+ f gn a(f (t)-Pi (t)) If (t)-Pi (t) I xi (pi (t)) dt. 

Observe that a (pi (t)) is a polynomial of degree at most n and therefore is or- 

thogonal to sgn(f (t) -pi(t)) If (t)-PiP, ( Iq-I over the interval [xi_1, xi] (cf., e.g., [14, 
p. 168]). Hence, the integral portion of the partial derivative above is zero. Similar 
remarks apply to the second term involved in the differentiation; thus the lemma 
is proved. C] 

Of course, best approximations to f satisfying the hypothesis in Lemma 5 will 
be found amongst critical points of the functional 

k+1 

F(f,x) = 1 | f -Pi Hi ,rxi..1,xi] 
i=l1 

k+1 xi 

= EX ~If (t) - pi(t) Idt, 

that is, amongst those x E Ek satisfying 

n n 

If [ti, xi] 1I (xi - tj,i) If [ti+1, t] JI (xi - tji+l) = 0, 
j=o j=o 

where ti = {to,i,tli,i . .. ,tn,i, the L1 canonical points for the interval [xi-,,xi]. 
We close this section with a lemma concerning divided differences. 

Lemma 7. Suppose f E Cl[a, b] and {to,t,.. , tn} C [a, b] consists of n + 1 
distinct points. Then 

n 

(2.1) , [to) .. , tj, tj, Xtn] = f [to, . .. X tn] 
j=o 

Proof. We proceed by induction on n. If n = 0, we seek to verify 

f'[to] = f[to, to], 

which, for a continuously differentiable function, is true by the definition of the 
right-hand side. Suppose now that for any collection of n distinct elements of [a, b] 
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the conclusion of the lemma is valid. We wish to show (2.1). We begin with the 
right-hand side. By the recursive definition of higher-order divided differences 

f [t tn [tli ... i tn] - f '[to,-* tn-1] 

tn-to 

E =1 f [tli .. v i tj v tji v i tn] -i= to tj ) tj ) . .. i tn-1] 

tn-to 

where one obtains the second equality by applying the induction hypothesis. We 
now combine the two sums, producing 

f'[to,. **n-I t tj tj ,tn] -f[to,... t, tj3... vtn-1] 

f[to,... ft tn] t E tn]-[to 
j=1 

+f [tl v * tn-1 i tn, tn] -f[t0,t,tl... ,tn-1] 

tn- to 

n-I 

=E f [to, ..,itj,tj, .. * * tn-1] 

j=l 

+f [tl, v * tn-l1 ,tn]f tn] -f [to,, tli, ... , tn] 

tn- to 

v [to, ti, . . tn] - f [to, to, tl, . ,tn-1] 

tn- to 

n 

= Ef [to, .., tj i tj i ... v tn-1] v 

j=O 

precisely as required. 

3. PROOF OF THEOREM 2 

The proof of Theorem 2 involves an algorithm. We begin with a description 
of the algorithm, which was proposed some time ago by Kioustelidis [10] without 
any proof of convergence, followed by a demonstration that it is well defined in 
our setting. Thereafter, we examine its convergence properties under the special 
assumptions of Theorem 2. 

Algorithm. Fix f such that f(n+l) > 0 on the interval [0, 1]. 

Step I. Select x E Yk\&Yk. 
Step II. On each subinterval [xi-1, xi] of [0, 1] determined by x, compute pi,q(t), 

the unique best approximant to f from Hn in the Lq norm, for i = 1, 2,... , k + 1. 
Step III. For each i = 1, 2, ... , k, locate the zero, zi say, of 

gi(t) = f(t) - Pi,q(t)Iq - If(t) - Pi+l,q(t)Iq 

which lies nearest xi. 
Step IV. Set xi = zi, i = 1, 2,... k, , and repeat. 
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Lemma 8. For f which satisfies f(n+l) > 0, the algorithm just described is well 
defined at each iteration. 

Proof. We must verify that the map 

x i - z where z = (zi, z2, ... * Zk) 

is well defined. Since Pi,q is the best Lq[X,_1, xi] approximation to f and f(n+l) > 0 

on that interval, f - Pi,q must have precisely n + 1 simple zeros. Thus, by using 
Rolle's Theorem and the fact that f(n+l) > 0 once again, we conclude that there 
are no zeros of f' -P' q before the first or after the last zero of f - Pi,q Denoting 
these zeros ri,0 and Ti,n, respectively, for each i = 1, 2,.. , k, we thus have that 
If - Pi,qIq is monotone increasing on the interval [Ti,n, ] whereas If - Pi+l,qjq 
is monotone decreasing on [-oc, Ti+1,0]. Since gi(Ti,n) < 0 and gi(Ti+1,o) > 0, 
it follows that gi has a unique zero, Zi, which in fact lies on the interval 
[Ti,n, Ti+1,0] - O~ 

We now prove Theorem 2. Our proof assumes that the hypotheses of case (i) 
hold; a virtually identical proof works in case (ii). 

Proof of Theorem 2. We shall show that the map 

Xi - Z 

is a contraction on Sk and hence has a unique fixed point on that domain. In fact, 
since best approximations cannot come from 0Sk, the unique fixed point must be 
in Ek itself. Clearly, if x is a critical point, then the algorithm maps x to itself 
and hence it is the unique critical point for the minimization problem, and so the 
element of Pk,n determined by x will be the unique best approximation to f from 
'Pk, n - 

Note first that all of the following derivatives exist and are positive: 

d 
dSYi(s) Ls=z 

azi azi and __ 
- , and 

axi-1 axi axi+l 

The first is positive by our earlier discussion, and thus the implicit function theorem 
guarantees the existence of the final three. These last three are positive because 
as any one of the parameters xi-,, xi, or xi+, increases, so too do the canonical 
points on the intervals [xi-,,xi] and [xi, xi+,], and so also the crossings zi of the 
error functions. 

We now differentiate the expression 

(3.1) gi(zi) := If(zi) -Pi(zi)I - If(zi) -Pi+i(zi)I = 0, 

which defines the value zi with respect to the parameters xi-,, xi, or xi+, to 
obtain the derivative of the map defined in the algorithm. Note that all other 
possible partial derivatives are zero. Before doing so, we rewrite (3.1), using divided 
differences, as 

(3.2) gi(Zi) := f[tI,z,]Q,(z,) + (-1)nf[t,+1,z,]Q,+1(zi) = 0, 
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where ti is the vector (tj,o,ti.1,... ti, t) of L1 canonical points for the interval 
[X -IxXi] for the family Hnl 

n 
Qi(t) =7 (t - tz,3)) 

j=0 

and we have used the fact that zi E [ti,n,ti+1,o] to infer the sign of the terms in 
question. Proceeding with the differentiation, we obtain 

n 1 ~~~~~~n n 

,3z 

= 29/( ) [Q(zi 
f [t-I1 tij I zi] (I - (:j) - f [ti I zi] Qi, (zi) (I - j) 

O~~ ~fxi l 2gi, (zi ) 
3Q z t+1 i i 

i~~~~~~~~ 

t-I ~~~~j=O j=O 

-9z (_i)n [Qi(Z) Zf ](n+ 

0Xj+I 2g~ zi)- f[il ti+i I ti+l,j( zi)l (I+ (j)] 
j= 0 

and 

Oz- 

i 

-2g(z2) [Qi(zi) f[tj, tip zi](I + ?j) -f [ti, zi] Qi, (zi)(1 + ( j)] i t ~~~~j=O j=O 

2 g (zj) [Qi+l (zi) f [ti+? ti+l,j I zi] (I -(j 

n 
- f [ti+1 I zi] Z Qi+l,j (zi)(I - 

j=O 

where 
n 

Qi,j = H (t - ti,j), 
1=O,14j 

and 

gi(Zi (= Q )f [ti Zi 
I 
Zi] + f[ti zi] Qi,j(zi) 

j=O 

n 
+ (-1)n [Qi+, (zi)f [ti+? I zi _ zi] + f [ti]+,j z] . 

j=0 

Our interest is in the row norm of the matrix Z = { j}11<i<k,1<1<k and hence 
in the sum of the absolute values of the partial derivatives above. By an earlier 



654 R. C. GAYLE AND J. M. WOLFE 

remark, however, this is merely their sum. Thus, 

&9zz & zz+ &9z 

&9xzI- &9x2", 0Ox2 
n n 

=g9,(z) [ - Qi(z2) E f[t2, t,j, z -1- + f[t, zi] E Qz,j(zi) 

n 

-(_I)nQi+ 1(Zi ) E f It"+ 1 I t+ 1 ,3 zi] 
j =o 

n 

+ (-1)nf [t,+?, z2] S Qi+ 1,j (z)], 
3=0 

where products involving 3 have been cancelled in the addition. We shall show 
that under the conditions imposed on f, the sum above is less than or equal to 1 
in rows two through k and is strictly less in the first and last rows. Now 

&x29z + &X +1 + ?1 < 
n n 

-QZ(Z (zt) fi: Zz] + f ItCi,, zi] Qz,3 (Zi) 

3=0 3=0 

=o~~~~~~~~~~ =o 

n n 

_-- (-1QQ+(Z, )f [t2ft ,1z) t , z1 ] --+ (-1)nf[t+, zz] 5Qi+13(Z) 
3=03 =0 

n 

< g-(zz) = Qt(Z)tf[t, Z] z-) zz) + fItQ Z( E Qi,3(Zz) 
3=0 

n 

+ (f[)nQz+1 (zi)f [t=+f,tZ?, z] + (_)nf[ti,+, Z Qz+],j. 
3=0 

n n 

-Qi(zz) Ef[tZt, ttj,zi] -(_I)nQz,+1 (zz,) E f [tz1+ 1 tz+1 ,3 Zz] 

< Qz(Zz)f [tz)fZz z] + (-1)nQz+l (zi)f[t?+1, ZiZi] 

By Lemma 7 we have 

n 

:f [tz) t",3) ='1 P[ti) zi - f ti, zi,Zi] 

j=O 

and n 

[t,,+i, t,,+i -, zz] f 
, 
[tz+i v Zi - f [tz+l ) zz) v zz 

3}=0 

Applying this observation allows us to infer that the above inequality is equivalent 
to 

O < Qz (zi) f /[tz) Z'j] + (_1)nQz,+, (zz)f /[tz+l, Z,] 
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or 

PiZf[tiz) i] > (-1)(n+l)Qi+l (z,)f I[t1+, Zi] 

Qi (zi ) 

Recalling (3.2), we find this is equivalent to 

f'[ti, zi] > f [ti I zi 
f [ti+1 I zl 

f'[ti,zi] zf'ti+ilzi] 
f[ti,z1i - f[tZ+i? zi] 

An argument using the Cauchy Mean Value theorem shows that this condition is 
implied by the log concavity condition imposed on f(n+1). Hence, the row norm of 
Z is less than or equal to one. We note, further, that the sums in rows one and k 
are strictly less than one. We claim that this, in conjunction with the special form 
of the matrix Z, implies that its spectral norm, the product of its eigenvalues, is 
strictly less than one. Indeed all the eigenvalues of Z are real since Z is symmetric 
and, since the row norm of Z dominates the spectral, all are of absolute value less 
than one. If A = ?1 is an eigenvalue of Z, then Al - Z is singular. But Al - Z 
is an irreducible diagonally dominant matrix which is strictly so in either row one 
or row k, hence nonsingular, a contradiction. Thus, the spectral norm of Z is less 
than one as claimed, and the map 

x z 

is a contraction as we indicated. C 

Note that the algorithm is well defined in the general Lq case, though no con- 
vergence results are shown here in cases other than q = 1. When q =A 1 or 2, the 
calculation of the polynomial of best Lq approximation to f across each subinter- 
val is a difficult nonlinear problem in general. Iterative methods for arriving at 
approximate solutions to this problem are, however, available [15]. One notes as 
well that the algorithm just described decreases the LP norm of the error curve at 
each step provided the sign of f(n+l) is constant. Finally, preliminary calculations 
indicate that standard methods may successfully be applied to accelerate the rate 
of convergence. 

4. PROOF OF THEOREM 3 

The proof of Theorem 3 is, in outline, as the proof of the analogous theorems 
in [2] and [5]. One shows that the matrix of second partials of the functional 
F(f,x) has positive determinant at any critical point x E Sk for sufficiently large 
k, whenever f(n+l) > 0. This, together with the unicity of the best approximation 
to tn+1 from 1Pk,n in all the Lq norms 1 < q < oc, allows one to infer through a 
topological degree of mapping argument that f has only one critical point over Ek 

and thus a unique best approximation. Aside from establishing a particular and 
convenient form for the entries of the matrix of second partials of the functional 
F(f, x), the proof is the same in any Lq norm and is given in [2] and [5]. Hence, we 
shall give here only those elements peculiar to the L1 case which are new here. The 
first step is to establish a convenient/form for the entries of J(f, x), the matrix of 
the second partials of F(f, x), in terms of integrals against a kernel function which 
depends on n but on neither f nor k. The following lemma furthers this aim. 
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Proposition 9. Suppose f E C(n+1) [a, b] and p is the unique best approximation 
to p from -In in the L1 sense. Suppose 

L(f, [a, b]) = f(a) - p(a) 

and 
R(f, [a, b]) = f (b) - p(b). 

Then 

L(f, [a, b]) =(_l)(n+l)(b - a)n j f(n+l) ((b - a)t + a)Kj (t) dt 

and 

R(f [a, b]) (b a)" j f(n+1)((b - a)t + a)Kn-(t) dt, 

where 
n 

K?i(t)= Aj(,j - + 

j=O 

n 

1?77(t) = ZAj (lj -t)n, 
j=O 

Aj = JJ - 
k=O, k$j (i 

and (x -t)n+ denotes the truncated power of (x - t)n given by 

)n |(X-t)n if x>t, 

+ t O otherwise, 

and the values (kk=O are the Ll -canonical points for H,n for the interval [0, 1] indexed 
so that Kn < ,n-l < ... <K6? 

Proof. We will use the Peano Kernel Theorem, a statement of which may be found 
in Davis [6, Theorem 9.7.1]. As was discussed earlier, for a given f over [a, b], p is 
the uniquely determined p E Hn which interpolates f at the points given by 

tk = (b - a)>k + a. 

Accordingly, 

L (( -rT)n+, [a, b] ) = (a - _)n +-(tj r)T + 1tjt 
j=O :A 

and 

R((. -)n, [a, b]) = (b-r)+-Z(tj -)+ rI UUk 

j=O kAj tt 
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Noting that (a - n = 0 and that (b -n = (b - -r)n whenever T E [a,b], the 
above forms become 

L((. -T)n+ i[a, b]) =-Z(tj -_T)r j a I t + 
t' -~~~k? tk j=0 k7&j 3 

and 

R((. _ T)n ,[a, b]) = (b-r)n_-(tj _T) fl b -tk 
j=O k_& t - 

k 

Thus by the Peano Kernel Theorem, 

1 b n_ __ 

L(f,[la, bl) = f~ ] n+ ) -,r Z(tj T)Ti ]fJ -tk)d 
n! 

j=O kj 
- 

tk 

and 

R(f, [a, b]) = n! J b f(n+1)(r)((b - -r)n (t_ T)i t a -tk) dr. 
j= t - 

tk 

Now we convert the above integrals to integrals over the interval [0, 1] by making 
the change of variables r = (b - a)t + a. Noting that tj = (b - a)$j + a, we obtain 

= -(b - a)(n+1) 
I 

fn+l)((b- a)t+a)( )+i.- 
FT___ 

L(f, [a, b]) n! f (ni ( f )E~ ) ~ ) dt 
.10 ~~~ ~~j=O kAj ~j -k 

and 

R(fI[a, b]) -(b-a)(f+) (1)((b - a)t + a) 

((1 -t)n+ -E $-)+kI6 t)d 
j=0 k3j 

k 

Now the symmetry of the ,j yields 

-(k = -( 1- k) and j - k =-(n-j -sn-k)i 

which in turn implies 

II -1k (_L)n -k 

where the symmetry of the canonical points has been again employed. Substituting 
this into the form for L(f, [a, b]) produces 

(-l)(n+l) (b -a)(n+1) I: n(+)( ) a( j(- )d L(f,I[a, b]) =-1)(f (n( - a)(b - a)t?+a) (ZAj Q~j _t)n ) dt 
n! +~~~~~~~~~~~~~j(l1)( = 
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and 

R(f, [a, b]) = (b-a)(+) j f(n+1)((b - a)t + a)((1 - t)n Aj-((_t)n) dt 

j=O 

Now we expand (1 - t)n in terms of the polynomials qj(t) = (j- t)n, using 
the fact that the latter form a Haar system relative to any real interval, so as to 
obtain a comparable kernel function for both L(f, [a, b]) and R(f, [a, b]). The useful 
expansion is, remarkably, 

n 

(1 -t)n = E A, ((j _ t)n. 
j=o 

To verify this, for each fixed t consider the polynomial in u of degree n, (u-t) . The 
Lagrange interpolating form for this polynomial in u using the points 0, ... , n is 

n 

(u -t) n= E((j - tr ]I| Z Sk' 

j=O koj i -k 

an identity in u. If u = 1, we obtain the form claimed. Using this, we find 

R(f, [a, b]) =(b - a)(n+l) f (n+l) ((b-a)t+a)Z 
E 

Aj((j -t)n _ (j -t)n ) dt 

n! I f(n+1)((b - a)t + a) E Aj(j - t)n dt, 

j=O 

which completes the proof of the proposition. O 

Henceforth we shall denote - F(f, x) by Fi (f, x). With this notation we have 

the following corollary to Proposition 9. 

Corollary 10. There holds 

h(n+l) 1 

Fi(f,x) = i - thi)Kn(t)dt 

h(n+l 1 

i+1 I f (n+l)(X + thi+1)Kn(t) dt, n! Jo 

where Kn (t) = Kn (t) as given in the preceding proposition, x = (Xl, X2,... Xk), 

and hi = xi-xi-,. 

Proof. Using the hypothesis that f(n+l) > 0 and Rolle's Theorem, one shows that 

F (f, x) = (f (xi) -pi(xi)) - (f (xi) -Pi+ (xi)) 

if n is odd, and 

Fi (f, x) = (f (xi) -pi (xi)) - (Pi+ 1 (xi) - f (xi)) 
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if n is even. Thus, in the notation of Proposition 9, 

Fi Y' x) _ R(f, [xi&,jxj])-L(f, [xi,xj+1]) if n is odd, 
F R(f,[xi,jxj]) +L(f,[xi,xj+i]) if n is even. 

Hence, applying Proposition 9, we get 

Fi(f, x) = j! f(n+l)( ?thi)K(t)dt 

h(n+l)1 
- (_1)n+l i+ ; f (n+1) (Xi + thi+i)K K+(t) dt 

h (n+i) 1 
- 1 n j f(n+l)(xi + thi)K- (t) dt 

h (n+l) 1 
-i+1 

j 

f(n+1)(xi + thi+1)K+(t) dt 

if n is odd, and 

F (f, x) = t j f(n+l) (xi + thi)Kn- (t) dt 

h(n+l) 1- 
+(_1)na+1 '+1 10 f(n+1)(xi + th+i+)K+(t) dt 

+ f(n+l)1 

- ht 
n+l j; f( f lX)(xi ?+tht)K ,t(t) dt 

h (n+l) 1 
i+ 0f (n+l) (X, +tilK(t) dt 

- h+1) j f(n+1) (Xi 
? thi+ 1) KZ(t) dt 

if n is even. Thus, Fi (f, x) has the same form for even and odd n. Finally, note 
that 

h(n+l) 1 h(n+l)1 

hn) ! f (n+l) (x, + thi)Knj (t) dt = 
h 

! jf (n+1)(x - thi)K+(t) dt 

to obtain the corollary. 

Using these forms, one can show, as in [2] and [5], that the matrix of second 
partials is a tridiagonal matrix whose entries }aij?i,j<k satisfy the inequality 

aijai-1,i-1 (1 + 0('A3)) > 4aj,j-jai-j,i 

at any critical point x, where A = max{hiIi = 1,... , k}. This, in turn, implies 
that det J(f, x) > 0 at such a point. The proof of Theorem 3 then follows by the 
degree of mapping argument as given in [2] and [5]. 
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