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AN ALGORITHM FOR 
MATRIX EXTENSION AND WAVELET CONSTRUCTION 

W. LAWTON, S. L. LEE AND ZUOWEI SHEN 

ABSTRACT. This paper gives a practical method of extending an n x r matrix 
P(z), r < n, with Laurent polynomial entries in one complex variable z, to a 
square matrix also with Laurent polynomial entries. If P(z) has orthonormal 
columns when z is restricted to the torus T, it can be extended to a paraunitary 
matrix. If P(z) has rank r for each z E T, it can be extended to a matrix with 
nonvanishing determinant on T. The method is easily implemented in the 
computer. It is applied to the construction of compactly supported wavelets 
and prewavelets from multiresolutions generated by several univariate scaling 
functions with an arbitrary dilation parameter. 

1. INTRODUCTION 

This note deals with matrix extension and a practical method for the construc- 
tion of compactly supported wavelets and prewavelets from multiresolutions gener- 
ated by several univariate compactly supported scaling functions with an arbitrary 
dilation parameter m E N, m > 1. Such wavelets and prewavelets can have very 
small supports, a feature which may be important in numerical applications. The 
construction of wavelets and prewavelets from a multiresolution generated by a sin- 
gle univariate scaling function with the dilation parameter 2 was given in [12] and 
[1], respectively. It is well known that wavelet and prewavelet construction from a 
multiresolution generated by a finite number of compactly supported scaling func- 
tions can be reduced to the problem of extending a matrix with Laurent polynomial 
entries. This is widely studied in the case of wavelet and prewavelet construction in 
one and several dimensions from multiresolutions generated by one scaling function 
(see [8, 9, 14, 15]) and by several scaling functions (see [5, 6, 7, 13]). In practice it is 
necessary that the matrix extension be carried out constructively in order to obtain 
the wavelets explicitly. However, in the existing methods such an extension requires 
the knowledge of some intrinsic properties of the scaling functions. In this note, we 
shall give a constructive method which does not rely on the intrinsic properties of 
the scaling functions. 

For a given finite set of compactly supported functions qsj, j = 1, ..., r, let Vo 
denote the closed shift invariant subspace generated by Oj, j = 1, ..., r, i.e., 
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r 

Vo :={: aj(k)qj$(. -k): aj E to(Z)}, 
j=1 kEZ 

where to is the space of finitely supported sequences. For v E Z, let 

Vv := {f(mvT): f E Vo}. 

We say that qj, j = 1, ..., r, are refinable if there are finitely supported sequences 

Pi,j such that 
r 

(1.1)~~O X(x) E Epi,j(k)oj (Tnx -k),=,. r 
j=1 kcZ 

The functions qj, j = 1, ..., r, are called refinable (or scaling) functions and Pi,j, 
i,j = 1, ..., r, are called refinement masks. 

If Ol, j = 1,... ,r, are refinable and the set {$j( -k): j = 1,...,r,k E Z} 
forms an orthonormal (or Riesz) basis for Vo, then it is well known that (Vv)Ez 
forms a multiresolution (cf. [9]). Compactly supported wavelets (prewavelets) are 
compactly supported functions bj, j = 1,...,r, for which their shifts form an or- 

thonormal (Riesz) basis of Wo := Vo1lv1, the orthogonal complement of Vo in VI. 
Let R4[z] be the univariate Laurent polynomial ring over the complex field, and 

let G,7(R4) be the group of all n x n matrices over R4[z] for which the determinants 
are nonvanishing on C \ {O}. An n x n matrix P(z) is called paraunitary if it is 
unitary on the unit circle T. A diagonal matrix with diagonal entries of the form 
zk, k E Z, is called a diagonal z-matrix. Clearly a diagonal z-matrix is paraunitary. 

Let 4: (q$1, 02,... , qr)5T and write (1.1) in matrix form 

4>(x) = ZPk4b(mx-k), 
kEZ 

where 
Pk = (pij(k))r 

Consider the r x r matrices 

P (Z) := 
7, P~ +kmZ , ?= O,... ,m- 1, 

kcZ 

with Laurent polynomial entries, and form the r x mr block matrix 

P(z) := (P?(z)| ... pm-l(z)) 

which is called a polyphase matrix. It is well known that if {qj( -k) j = 

1, ..., r, k E Z} forms an orthonormal basis of Vo, then P(z)P(z)* = Ir for all z E T. 
Compactly supported wavelets corresponding to the multiresolution generated by 
the scaling functions qj, j = 1, ..., r, can be constructed by extending the matrix 

P to an mr x mr paraunitary matrix over R4[z] in which the first r rows are the 
matrix P. In ?2, we give a constructive method to extend an arbitrary r x n 
matrix P, satisfying P(z)P(z)* = Ir for all z E T, to an n x n paraunitary matrix 
over R4[z]. This leads to a practical method for the construction of compactly 
supported wavelets from a finite number of scaling functions with an arbitary scaling 
parameter. In the construction of compactly supported wavelets, the refinement 
masks are usually known (in most cases the scaling functions are defined by their 
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refinement masks via their Fourier transforms). Therefore, the above approach is 
quite natural. 

If qj, j = 1, ...,r, form a Riesz basis of Vo, then P(z) has rank r for each z E T. 
If the refinement masks, and hence the polyphase matrix P, are available, the 
usual way of constructing the corresponding compactly supported prewavelets is to 
extend the polyphase matrix P to an mr x mr matrix Q over 1Z[z] so that Q(z) 
has rank mr for all z E T. The standard Gram-Schmidt orthogonalization process 
is then applied to obtain the compactly supported prewavelets. Section 3 gives an 
algorithmic method to extend a general matrix. The method uses only elementary 
transformations and transformations by z-matrices and is easily implementable in 
the computer. Based on the matrix extension, we propose another approach in 
the construction of prewavelets. This approach gives prewavelets directly without 
using the Gram-Schmidt process after the matrix extension. The Gram-Schmidt 
process requires extra computing and enlarges the supports of the prewavelets. 
Our method usually gives prewavelets with shorter supports. This approach is 
also applicable if the refinement masks are not available, as in the case of the 
multiresolution generated by cardinal Hermite splines (see ?4). The method is 
based on the sequence 

(1.2) P,j (k) := m J x(x) Oj(mx - k)dx, 

where qj, j = 1, ..., r, are compactly supported scaling functions such that 
{0j( - k): j = 1, ..., r, k E Z} forms a Riesz basis for V0. The sequences Pi,j, 
i,j = 1,... r, are finitely supported, since qj, j = 1, . . . , r, are compactly supported 
functions. They are readily computed from the scaling functions. 

If {0j( -k): j =1,...,r,k E Z} is the dual basis of {q j( -k): j= 
1,... ,r, k Z}, then 

r 

(1.3) Oi(x) E y Pi,j (k)0j (Tnx-k), i=1, ................. ,r. 
j=1 kcZ 

Equivalently, 

b(x) = Pk >(mx-k), 
kcZ 

where 4= (01.... ,$r) and 

Pk = (Pij (k))r 

The corresponding r x rm block matrix 

(1.4) P(Z) (Po(Z.. IPm-1(z)) 

where 

P (Z) = 5? Q+kmZ k o 0 . .. I m-1, 
kcZ 

will be called the dual polyphase matrix of 4I. It has rank r for all z E T, if qj, 
j = 1, ..., r, and their shifts form a Riesz basis for Vo. 
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In ?3, we shall give an algorithm to find an (m - 1)r x mr matrix Q'(z) over 

R[z] such that the mr x mr matrix ( z) has rank mr for all z E T and 

(1.5) P(z)Q'(z)* = 0 for z E T. 

Suppose that 
Q' (z) = (QO (z)I .. IQm-1 (z)) 

where each Qe, f = O, .. , m-1, is an r x r matrix with Laurent polynomial entries 

(Qe) ij (z) = 
qi,j (t + km)zk, i, j = 1 .... X r 

keZ 

Then the functions 

(1.6) Vi(x) :=E qi,j(k)0j(mx-k), i = ... mr-r, 
j=1 kEZ 

form a Riesz basis for Wo. Indeed, 0/j( - k) 1 Xi for j = 1, . . . , (m - 1)r, k C 
Z, i = 1,... ,r, because of (1.3), (1.5) and (1.6). Hence, 0jb( - k) E Wo, j = 
1,... ,(m - l)r, k C Z. Further, they form a Riesz basis of Wo since Q'(z) has 
rank (m - I)r for all z E T. This result in Hilbert space can be found in [10]. 

If q$, j = 1,... , r, and their shifts form an orthonormal basis, then P = P 

and PP* = Ir. In ?2, we give a way to construct Q' such that ( , ) is a 

paraunitary matrix. With this Q', equation (1.6) gives the corresponding wavelets. 
The methods described above can also be extended to the construction of wavelets 
and prewavelets in Hilbert space. 

Geronimo, Hardin and Massopust [4] have constructed two scaling functions 
whose shifts form an orthonormal basis of Vo. The corresponding wavelets were 
constructed by Donovan, Geronimo, Hardin and Massopust [3] and also by Strang 
and Strela [18]. Their works together with that of Goodman [5] are the main sources 
of motivation for this paper. 

2. PARAUNITARY MATRIX EXTENSION 

Let A(z) be an n x 1 matrix over R[z], and suppose that the smallest degree of 
its jth component is kj E Z, for j = 1, 2, ..., n. Let 

D(z) := diag(z-kl, z-,). 

Then DA(z) is expressible in the form 

DA(z) = ao + az + + aNz N 

where aj E Cn, j = O,..., N, and ao, aN 7O ? 

Lemma 2.1. Let A(z) = EjEZ ajzi be an n x 1 matrix over RZ[z] with IIA(z)II = I 
for all z E T, where JJA(z)JJ denotes the Euclidean norm. Suppose that ji and 
12 C Z are respectively the lowest and highest degrees of A(z). Then 

S(aj, aj) = 1 and (aj1,a 2) = O. 
jEZ 
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Proof. As is observed before the lemma, there exists a diagonal z-matrix D such 
that each component of DA is a polynomial. Hence, we need only to prove the case 
for which 

A(z) = ao + aiz + * + aNZN, 

with IjA(z)jj = 1 for z E T and ao =A 0, aN = 0. We note that on T, the constant 
term of IIA(z) 12 is Z fo(aj, aj) and the coefficient of the highest degree is (ao, aN). 
The results then follow from the fact that IIA(z)112 = 1 for z E T. D 

Suppose that D1 is a diagonal z-matrix such that 

(2.1) DA(z) = a(1) + a()z + ..+ a(1) zN 

where aj1) E Cn0,j . . . ,N, and a a(1) 0 0. Let U1 be a unitary matrix 
over C such that 

Uia( ) = (, 0,... , O)T, a = 0. 

By Lemma 2.1, (Uia(l), U a(')) = 0. Hence, the first entry (Uia(l)), of the vector 
U1a(N) is zero. Multiplying (2.1) by U1 followed by an appropriate diagonal z-matrix 
D2, we can express 

(2) (2) ~ ~ () 2)(2 (2.2) D2UiDiA(z) =a(2 ? a(2 z?+. . .+ aM2z 
where a(2) (2) 0, and M < N. Furthermore, 

JID2UiDiA(z)II = 1, z E T, 

and (a(2), a(2)) = 0, by Lemma 2.1. Repeating the above procedure gives a sequence 
of unitary matrices Uj, j = 1, ..., k, over C and a sequence of diagonal z-matrices 
D,j = 1, ...,I k, such that 

UkDkUk1_Dk1 ... D2UiDiA(z) = (1, , ... , O)TJ, z E T. 

Let 

(2.3) P(z) := UkDk ... UiDi(z), z E C \ {0}. 

Then P is paraunitary, 

(2.4) P(z)A(z) = (1, 0, ... ,0) T, z E T, 

and for z E T, 

(2.5) A(z) = P(z)*(1, ,.... , O)T, 

where P(z)* is the conjugate transpose of P(z). 
The relation (2.5) shows that the first column of the matrix P(z)* coincides with 

A(z). Thus, P(z)* is a paraunitary extension of A(z). The above algorithm can 
also be applied to extend an n x r matrix A(z) with orthonormal columns and with 
entries in R[z], to a paraunitary matrix. 

Theorem 2.1. Suppose that Aj (z), j = 1,... , r, are n x 1 column vectors over 
JZ[z], r < n, which are orthonormal on T, and that A(z) := (Al(z)I ... IAr(z)) is 
an n x r matrix over IZ[z]. Then there exists an n x n paraunitary matrix Q such 
that 

(2.6) QA(z)= ( %r ) 
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F-urthermore, 

(2.7) Q = QrQr-1 ... Qli 

where 

(2.8) Qk ( Ik-1 0 
O k=1 ..1 r 

is an n x n paraunitary matrix and Pk is an (n - k + 1) x (n - k + 1) paraunitary 
matrix of the form (2.3). 

Proof. The observation before the theorem shows that there is a paraunitary matrix 
Qi of the form (2.3) such that 

QIAI (z) = (1O 0 ... Io)Tj Z E T. 

Since Qi is a paraunitary matrix, it follows that for i, j = 1,... , 

(Ql Ai (z) , Q, Aj (z)) = i,j , z c T. 

Hence, the first component (Q,Aj(z)), of Q,Aj(z) is zero for z E T, j = 2,...,r, 
and 

QiA(z) = ( 2| A)(z) - Ar(z) ) zET, 

where Aj2)(z), j = 2,...,r, are (n-1) x 1 matrices, with (Al2)(z),Aj2)(z)) = 6i,j 
for all z C T. 

Suppose that there are paraunitary matrices Ql, ..., Qk- 1, k < r, such that 

Qk-1. Q2QjA(z) ( O|(') .. A( ), z c- T, 

where Ajk) (z), j = k, ...,r, are (n-k+1) x1 matrices, with (A k)(z),A3k)(z)) = 

z E T. Let Pk be an (n - k + 1) x (n - k + 1) paraunitary matrix of the form (2.3) 
such that 

Pk Ak) (Z) = (1, .... I O)Tj z E T. 
By a similar argument as above, we have for i, j = k, . . . , 

(PkAi P)(z)FkAj )(z)) = 6i, z E T, 

and 
(PkA(k)(z)) =0, t=k+?1,..., r, zE T. 

Let 
I-- k-1 

Q~k-~ 0 Pk ) 

Then clearly Qk is paraunitary, and 

QkQk-1 ' QjA(z) = ( 0 |PkA(z) (Z) PkA) (Z) 

Finally, letting 
Q =QrQr-I Qli 

we have 

QA(z)=(0) zET. 

This completes the proof. D 
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Remark 1. If Q(z) satisfies (2.6), then Q(z)* is a paraunitary extension of A(z). 
Further, the proof gives an algorithm for the construction of Q(z). This can be 
applied in the construction of wavelets if the scaling functions and refinement masks 
are known. 

Example 1. Consider the scaling functions 01 and q2 constructed by Geronimo, 
Hardin and Massopust [4]. They satisfy the matrix dilation equation 

(s01(x) ) _Yp( 01(2x - k) 
02 (X) J , PkE 02(2x-k) 

where 

10 2 3 )10 

P2 = 1- 9/2 _3 ) P3 10 ( 2- 10 2 32 

The corresponding polyphase matrix P is given by 

( / 6 8V/ 6 0 
P(z)=20 K 1+9z -3 -3z 9-z 10 

Let 
/ 6 - 1+9z 

A(z) = 20 6 9-z 

0 10 

Symbolic computation using the above algorithm produces a 4 x 4 paraunitary 
matrix 

4 3 ~~~0 / 5 /2 45 5g 02 
' 

9z1 -1 -3 (z-1+l) _Z-1+9 1 
20 10 o/2 20 V/2 

Q"= -9z1+1 3(Z-1+1) z-19 1 
20 10 o/2 20 v/2 

9z-1+1 3 (-z1+1) -z1-9 0 
10 X2 10 10 X 

satisfying the relation 

QA(z) 12 {j) 

The matrix Q is a product of Householder matrices and a diagonal z-matrix. Indeed, 

Q = Q3DQ2Q1, 

where 

t 5 /2 5 5/ 0' 
4 15-9 X/ 12 0 

Qi = _ 15-25 /2 15- 25X/2 
3 12 41-15 /2- 01 

5 X/ 15-25 X/ 50-15 / } 
0 0 0 1 
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(1 0 0 0 

o 6 (-3+X) 1-3x/? 0 
Q2 = - 20+6 /2- -10+3x/ 

_ _0 
1-3 3(3 -/' 

0 X 

-10+3 V/2 -10+3 X 
0 0 0 1/ 

/1 0 0 0 

Q (~ ~~2 2 2 
Q3 ? 2 -- e 

and 
D = diag(1, 1/z, 1, 1) 

The conjugate transpose Q(z)* of Q(z) is a paraunitary extension of A(z). Hence, 
the corresponding wavelets can be constructed using the last two columns of Q* 
and (1.6). The resulting wavelets are a symmetric and antisymmetric pair. 

3. MATRIX EXTENSION 

In Theorem 2.1 it was assumed that the columns of the matrix A(z) are or- 
thonormal on T, and we obtain a paraunitary matrix Q such that 

QA(z) = ( 'j). 

The conjugate transpose Q(z)* of Q(z) is a paraunitary extension of A(z). In 
this section we shall impose no conditions on A(z) and consider the extension of 
A(z) over 1Z[z]. The extension can be achieved in the same way as in the case 
of paraunitary extension. However, the transformations are accomplished by a 
sequence of elementary matrices and diagonal z-matrices instead of by unitary 
matrices. 

Theorem 3.1. Let A(z) be an n x 1 matrix over 1Z[z]. Then there is a matrix 
P E Gn (1Z) such that 

(3.1) PA(z) = (p(z), 0,... ., )T 

where p E 1Z[z]. Furthermore, P is a product of elementary matrices and diagonal 
z-matrices. 

Proof. Suppose D1 (z) is a diagonal z-matrix such that 

DiA(z) = a( + + aN ZN, 

where aSl) E Cn and a , a() : 0. In practice, Di (z) is chosen so that the vector 

a(') has as many nonzero entries as possible, in order to speed up the process. Let 

E1 be a product of elementary matrices which reduce the n x 2 matrix (a(1l) la(') 
to its "echelon form". with Ela(l) = (a, 0, ... , O)T, where Ol $ 0. Further, if a(l) 

and a5l) are linearly independent, we can choose E1 so that the first entry of the 

vector ElaN) is zero. 
In the case 

ElaS1) =aoljElao) = (aj, 0,..., o)T, j = 1, ..., N, 
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then (3.1) holds with P(z) := EiDl(z) and 

p(z):=l +alz+...+aNZ N, z C \ {O}. 

Otherwise, Ela1) is not a multiple of E1a(l) for some j. Multiplying EIDlA(z) 
by an appropriate diagonal z-matrix D2 (z) gives 

D2ElD1A(z) a(2) + * + a(2)ZN z C C \ {O}, 

where N, < N, and a( a) 7 0. Recall that D2 is chosen so that the vector a2) 
has as many nonzero entries as possible. The case N1 = N occurs if and only if 

El a) = aNE,a( ) for some aN =# 0 , i.e., a(l) and a() are linearly dependent. 
But in this case the vectors a(2) and aN2) are linearly independent. 

Applying the above procedure, we can constructively find an invertible con- 
stant matrix E2 which reduces (a(2) la(2)) to its "echelon form", with E2a(2)= 

(a', 0,.. , O)T, a' :& 0. Further, if N1 = N, then a(2) and a 2) are linearly indepen- 

dent. Hence, E2 can be chosen such that (E2a 2))l = 0. Again, either (3.1) holds 
with P:= E2D2E1Dl, or we can choose an appropriate diagonal z-matrix D3 (z) 
such that 

(3.2) D3E2D2E,D,A(z) = a(3) + * + aNZN2, 

where N2 < N, and a(3) a(3) :A 0. 
Since each entry of DIA(z) is a polynomial, and since the procedure reduces the 

degree of t he entries, the process will stop after a finite number of steps. Hence, 
there is a sequence of invertible matrices E, j = 1, ..., k, and a sequence of diagonal 
z-matrices Dj, j = 1, ..., k, such that 

EkDkEkl,Dk- .. E Di A(z) = (p(z), O, . ., 07 

for some p E R[z]. Therefore, (3.1) holds with 

(3.3) P(z) := EkDkEk1,Dkl ... EiDi(z) E Gn(1Z), z E C \ {0}, 

as desired. 
- 

Direct application of Theorem 3.1 gives the following results. 

Theorem 3.2. Suppose that A. (z), j = 1,... , r, are n x 1 column vectors over 
7Z[z], r < n, and A(z) := (Al(z)I ... IAr(z)) is an n x r matrix over 1Z[z]. Then 
there exists Q E Gn (R) such that 

(3.4) QA(z) = (-Br(Z) ) 

where Br (z) is an upper triangular r x r matrix over 1Z[z]. Furthermore, 

(3-5) Q = QrQr-1 ... Ql, 

where 

and(3.6i)an(n-k+1) (n -k+)atixinG i30 Pk 

and Pk is an (n -k + 1) x (n -k + 1) matrix in Gn-k+l (1Z) of the form (3.3). 
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Note that the last n - r rows of Q, which we denote by Q?1 ... Qn form an 
(n - r) x n matrix 

Qr+l 

Qn 
of rank n - r for all z C C \ {O}. Further, by (3.4), 

(3.7) A(z)*Qf(z)* = 0, z E C \ {}. 

If A(z) = (Al (z) IAr (z)) is an n x r matrix over R[z] of rank r for each z E T 
(or z E C \ {O}), then the n x n matrix (A(z)IQl(z)*) is an extension of A satisfying 
(3.7) and of rank n for all z E T (or z E C \ {0}). That (A(z)IQ'(z)*) is of rank 
n follows from (3.7) and the fact that A(z) and Q/(z)* are of ranks r and n -r, 
respectively, for all z E T (or z E C \ {0}). This observation leads to 

Corollary 3.1. Suppose that A(z) = (Aj(z)I ... IAr (z)) is an n x r matrix over 
1Z[z] of rank r for each z E T (or z E C \ {0}) and that Q is a product of elementary 
matrices and diagonal z-matrices satisfying (3.4). If Q+1, ...Q are the last n - r 
rows of Q and 

Q'Qr(+ (z) 

Ql(z)Q= (z v 

then the matrix (A(z)IQ'(z)*) is an extension of A of rank n for all z E T (or 
z c C \ {O}) satisfying (3.7). 

We note that this corollary can be applied directly in the construction of uni- 
variate prewavelets from a multiresolution generated by several scaling functions 
with an arbitrary dilation parameter m E Z. Since our proof of Theorem 3.1 is 
constructive and can be implemented in the computer step by step, this leads to a 
constructive method for the construction of prewavelets. We further remark that 
the Quillen-Suslin Theorem shows the existence of such an extension when the n x r 
matrix A(z) over R1[z] has rank r for all z C C \ {0}. However, in the prewavelet 
construction, we usually assume that the scaling functions and their shifts form a 
Riesz basis of Vo, hence the corresponding n x r matrix A is of rank r only on T. 
Further, our proof here for the univariate case is elementary and constructive. 

We remark that further row operations may be performed on the last n - r rows 
of the matrix Q in Theorem 3.2 to obtain wavelets with desirable properties, like 
smallest support and symmetry. These operations preserve the relations (3.7). This 
is illustrated in the example in the following section. 

4. CARDINAL HERMITE SPLINE WAVELETS 

For nonnegative integers n > r, let S2nml,r(S) be the space of spline functions 
of degree 2n - 1 defined on R with knots of multiplicity r on the set S. The 
space S2nm1,r(Z) has a basis comprising functions 4e, f = 1, . . . , r, with minimal 
supports. The functions are called cardinal Hermite B-splines and are uniquely 
determined by the condition that they vanish outside [0, 2n - 2r + 2] and that they 
satisfy the Hermite interpolating conditions 

/ A 1\ 
tf-1)(V = CX k v = _ .. 2m -_ 2r , k 7 = 1 ..Ir 
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where c>, ii = 1, ... ,2n - 2r + 1, are the coefficients of the generalized Euler- 
Frobenius polynomial 

2n-2r 

(4.2) 2n-1,r(A) = S Cv+l1A 
v=O 

which may be defined as the minor of order (2n - r) x (2n - r) obtained by removing 
the first r rows and last r columns of the matrix 

(()k Ai, 2n- 1 
F2n- l (A) =A () , 

(see [17, 11]). 
Let Vo be the shift invariant subspace generated by 4e, ? = 1, ... , r. In [6] it 

was shown that the shifts q$e(x - k), ? = 1,... , r, k E Z, form a Riesz basis of Vo. 
Let 

Vv := {f(2x) :f E Vo}, v E Z. 

Then V. C V+1, iv E Z, and {VV}EZ is a multiresolution of L2(R) of multiplicity 
r. 

Since the scaling functions are explicitly known, their dual polyphase matrix 
P(z) can be computed using (1.2), and hence the method of ?3 is applicable for 
the construction of the corresponding prewavelets. The following example shows 
the construction of cubic cardinal Hermite spline wavelets from two interpolatory 
cubic Hermite scaling functions. This corresponds to the case m = r = 2. 

Example 2. The scaling functions q$1, 0$2 are supported on [0,2], and are given 
by 

i 3x2-2x3 0 <x < 1, 

-4+12x-9x2 +2x3 1<x<2 

-x 2 +X 3 ?0 < x <1, 
-4+8x-52?x3, 1<x<2. 

They are Cl on R and satisfy the interpolation conditions 

i (V? + 1) = 8ov, q' 2(V) = 0, EZ, 

q 
(V? + 1) = 8Ov, q2(V) = 0, V E Z. 

The dual polyphase matrix for q$1, 0$2 iS 

6720P(z) 1680 + 1680z 152 - 152z 
-364 + 364z -20 - 20z 

138z-1 + 3084 + 138z 34z-1 - 34z 
-41z-1 + 41z -1Oz-1 + 64 - lOz ) 

Let A(z) := P(z)*, z E T. The method of ?3 gives a 4 x 4 matrix Q satisfying the 
relation QA = B, where 

304 (194 z-1 - 794) /15 

B= 0 1358/19 

n n 
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Further row operations on the last two rows of Q produce another matrix, which 
we shall still denote by Q = (Qij) and which still satifies QA = B. The entries of 
Q are 

Q1 (z) = 1 Q12(Z) = 1, Q13(Z) = 0, Q14 (Z) = 0, 

23273695 z 102640647 z2 
Q21(Z) 290116016 290116016 

628606657 z 1361706661 z2 
= 290116016 290116016 

Q23(z) = 679 z 269563 z 
Q23 (Z) = 2482' Q24(Z) = 58444 

5261 2185 z 5261 z2 Q31(Z) = -3076 ? 1538 3076 

34895 34895 z2 
Q32(Z) = - 1538 1538 

16133 16133 z 
Q33(Z) = 1+ Z, Q34(Z) = - 769 + 769 

179219 179219 z2 
Q41(Z) = -204554 + 204554 

679449 139611 z 679449 z2 
Q42 (Z) 58444 29222 - 58444 

186150 186150 z 
Q43(z) = 1 - Z, Q44(Z) = - 14611 14611 

Let Q' be the 2 x 4 matrix comprising the last two rows of Q. Then (A(z) IQ'(z)*) 
is an extension of A(z) of rank 4 satisfying (3.7). If we write 

(QojQ1) = ( Qoll Q12 Qlll Q12 ) 
Q1 Q2 Q21 Q122,i 

and define qij(k), ij = 1,2, k = 1, ... ,4,by 

2 

Qfl j (Z)=: qjj (f+ 2k)z', f = 0,1, 
k=O 

the corresponding wavelets {f41, 42} which generate a Riesz basis for Wo are given 
by 

4 

f0 (x) = ql, (k) 0 (2x - k) + ql,2(k)02(2x - k) 
k=O 

and 
4 

'V22(X) = Eq2,1(k)01 (2x - k) + q2,2(k)02(2x -k), 
k=O 

where the coefficients qij (k) and q2,j(k), up to 10 significant figures, are given in 
Tables 1 and 2. 
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TABLE 1. Coefficients qj;j (k) 

k\j 1 2 
0 -1.710338101 -22.68855657 
1 1 -20.97919376 
2 1.420676202 0 
3 1 20.97919376 
4 -1.710338101 22.68855657 

TABLE 2. Coefficients q2,j(k) 

k\j 1 2 
0 -0.8761451744 -11.62564164 
1 1 -12.74040107 
2 0 -4.777599069 
3 -1 -12.74040107 
4 0.8761451744 -11.62564164 

Figures 1 and 2 show the graphs of Vb1 and 42, respectively. Note that XP1 is 
symmetric and '2 is antisymmetric about 3, and both have support on [0, 3]. 
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FIGURE 1. Graph of X1 
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FIGURE 2. Graph of V)2 
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