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THE SERIAL TEST FOR A NONLINEAR
PSEUDORANDOM NUMBER GENERATOR

TAKASHI KATO, LI-MING WU, AND NIRO YANAGIHARA

ABSTRACT. Let M = 2%, and Gy = {1,3,..., M — 1}. A sequence {yn},yn €
G, is obtained by the formula yn4+1 = a¥,, + b+ cyn mod M. The sequence
{zn}, zn = yn/M, is a sequence of pseudorandom numbers of the maximal
period length M/2 if and only if a + ¢ = 1 (mod 4), b = 2 (mod 4). In this
note, the uniformity is investigated by the 2-dimensional serial test for the
sequence. We follow closely the method of papers by Eichenauer-Herrmann
and Niederreiter.

1. INTRODUCTION

For generating uniform pseudorandom numbers (denoted as PRN) in the interval
I = [0,1), the linear congruential methods are commonly used. Recently several
nonlinear methods, especially the inversive congruential one, were proposed and
investigated. For a modulus M, let

Zy ={0,1,..,M —1} = Z/M.

In the linear method, a sequence {y,} in Zys is generated by

(1.1) Ynt+1 = CYn + b (mod M), n=0,1,..,
where ¢,b € Zj;. The PRN are obtained by the normalization
(1.2) Tn, = Yn/M.

In the inversive method with power of two modulus, let M = 2% and
Gy ={1,3,..., M — 1} = {positive odd integers less than M}.
For any u € Gjy, there is a unique @ € Gj; such that 7u = 1 mod M. Now a
sequence {y,} in G is generated by the inversive recursion formula
(1.3) Ynt+1 = 0¥, +b (mod M), n=0,1,..,

in which a,b € Z,; are chosen so that y,, € G implies y,+1 € Gy
In a previous note we have proposed another nonlinear method which is given
by the following formula, with the modulus M = 2%,

(1.4) Ynt1 = aP, + b+ cy, (mod M), n=0,1,..,
in which a,b,c € Z); should be such that y, € G implies y,+1 € Grr. The PRN

{z,} is defined by (1.2). In [7], we proved the following Theorem A, which shows
that the modified inversive method (1.4) bears close resemblance to (1.3):
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Theorem A. Let M = 2%, w 2 3. Then the PRN {x,} derived from (1.4) is purely
periodic with period M/2 if and only if

a+c=1 (mod4) and b=2 (mod4).

Now we will study the behavior of these PRN under the 2-dimensional serial
test. That is, we will estimate the discrepancy of the PRN. For a dimension k = 2
and for N arbitrary points to, t1,...,tx—1 € [0, 1)* we define the discrepancy

(1.5) Dy (to,t1, ..., tn—1) = sup;|Fn(J) — V(J)],

where the supremum is extended over all subintervals J of [0,1)%, Fi(J) is N~!
times the number of terms among to, t1, ..., t;y—1 falling into J, and V(J) denotes
the k-dimensional volume of J. If {z,} is a sequence of PRN in [0,1) with period
p, then we consider the points

Xn = (Tn, Tngls o Tnir—1) € [0,1)F for n=0,1,..,p—1,

and write their discrepancy Dp(xo,X1,...,Xp—1) 8s D,(,k).

Theorem 1. Let M = 2% (w 2 6) and a,b,c € Zp. Suppose a+c =1 (mod 4), b=
2 (mod 4) and a # 0. Then, for the PRN {x,} in Theorem A, we have
(I) If c is an even number, hence a is odd, then

D), < 2KM~Y/*(log M)* + 1.12M /2 log M + 1.35M /2 + 4/M,

with K = 2/{(2%/2 = 1)BP(J?}.
(L) If c is odd (hence a is even), then writing a = 2ta’,a’ odd, we have

DY, < 2/2M~*{2K (log M) + (1.12) log M + 1.35} + 4/M + 2L/M?,

with K = 2/{(2%/2 = 1)BP(J?} and L = 22{2(t — 1)(t + 2)? + 14(t + 6)?},
assuming that w 2 t + 6.
Theorem 2. Let M = 2%, w 2 6. Let 0 < r < 2 and A(r) = (4 —r?)/(8 — r?).
Suppose ¢ € Zyps is given.
If c is even, there are more than A(r)M/8 values of a € Zps such that a +c =
1 mod 4, and for any b € Zps with b = 2 mod 4, we have

D§p, 2 K'M™? with K'=r/(n+2).

If c is odd, there are more than A(r)M/32 values of a € Zy such that a +c =
1 mod 4, and for any b € Zpr with b= 2 mod 4, we have

D), 2 2K'/3)M~Y? with K'=r/(r+2).
Our proofs of Theorems 1 and 2 are almost the same as in [9, Theorem 2], [6,

Theorems 1-2], respectively. The lattice structure of the sequence generated by
(1.4) will be studied in another paper.
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2. PROOF OF THEOREM 1

We closely follow the method in [9, p.141]. Let M =2% w 2 6.

Suppose m = 2f, with a positive integer f, be given. For k 2> 1, let Ck (m) be
the set of all nonzero lattice points (hi, ..., hx) € Z* with —m/2 < hj £ m/2, for
155 <k We put

1 for h =0,

r(h,m) = { msin(r|h|/m) for h € C1(m),

and for h = (hq, ..., hg) € Cx(m) we define
k
T(h, m) = Hr(hj,m)'
=1
For real s we write e(s) = e?™. For z,y € R¥, z -y denotes the inner product.

We put, for integers u, v,

S(u,v;m) = Z e((un + vm)/m),

nEGm

in which @ € G,, denotes the number such that 7mn = 1 (mod m). This sum has
the following properties [12, 9]:

(2.1) S(u,v;m) = S(1,uv;m) if wisodd,
(2.2) S(u,v;m)=0 if u+v=1 (mod 2),

(2.3) S(u,v;m) =298 (u/2%,v/2% 27 if u=v=0mod2%and d< f,

where in (2.2) and (2.3) we assume that f = 2. Further (see [9, p.140]),

4 if v=3 mod4,
2.4 S(1,v;8)| =
24 1501, v:8) {0 otherwise,
4v/2 if =1 d 4,
(2.5) |S(1,v;16)]={ V2 if v L omo
0 otherwise,
(2.6) 1S(1,v;32)| < 8\/2"‘ V2 if v=5mod8,
otherwise.

For f = 6, we have

2(f+3)/2 if v =1mod 8§,

(2.7) |S(1,9;:27)] < { 0 otherwise.

The following lemmas are from [9, p.136 and p.140].
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Lemma 2.1. Let m = 2 be an integer and let yo,y1,...,yN—1 € Z* be lattice
points all of whose coordinates are in [0,m). Then the discrepancy of the points
tn =yn/m,0 < n < N — 1, satisfies

1
+NZ

hGC)C(m)

N-1

DN(t07tla °~'atN—l) é

3=

(

n=0

Lemma 2.2. Let m = 2/. For f 26 and r odd, we have

(2.8) 3 cse(TFly o S H Dog2) Z)(log 2) i +0.2126m,
keCy(m),k=r(mod 8) m m
and for f 2 3 we have
mlkl,  (f+1)(log2)
2. - - ’ ’
( 9) Z CSC( - ) p m+0 3024m

keC (m),k odd
Now we prove Theorem 1. Since {yo, %1, .., ¥n/2-1} = Gur, we have
{Wn,Yn+1);0 S n < M/2 -1} ={(n,an+ b+ cn); n € Gu}.

Lemma 2.1 yields

0
(2.10) Dy S _M Z ™7
eCs(

where for h = (h1, h2) € C2(M) we have

(h)’ _ I Z 6((h1 +hgc)n+h2aﬁ+ hob

Vi )]=]S(h1+hzc,h2a;M)[.

neGnm

Now ged(h1, he, M) = 2¢ with 0 £ d < w — 1, so splitting up the following sum
according to the value of d, we get

Y- ¥

heCq (M)

-1

Sm) _
rb, ) 2T

S

[
i

with
Ty =

Z |S hq +h20, hoa; M)|

) y
where the last sum is extended over all h=(hq, ho) € Co(M) with ged(hy, ho, M) =
2¢_ Tt follows immediately that

1

2.11 w1 =1+ —.
(2.11) Tw-1 +2M
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Now consider 0 £ d £ w — 2. Write k1 = hy1/2% ko = hy/2¢. If one of k; or ky is
even, then (2.3) and (2.2) imply S(h1+hac, hoa; M) = 0. Thus it suffices to suppose
that both ki and k; are odd.

We divide the proof into two cases (I) and (II):

(I) c is an even number, hence a is odd. In this case, (2.3) and (2.1) yield

S(h1 + hoc, hoa; M) = 22S(1, (k1 + kac)kea; 2@~ 9).

Thus we obtain

Z |S(1,(k1 +k20)k2a; 2w—d)|

__od
(2.12) Ta=2 r(k129, M)r(ky29, M)

k1,k2€01(2w_d)
k1,k2 odd

For 0 £ d £ w— 6, we use (2.7) to get
(2.13) Ty £ 200F 92N (k1 2%, M)r(ko27, M)} 2,

with the sum over odd numbers ki,ky € C1(2¥~¢) such that (k; + kac)kga = 1
(mod 8), that is, k1 + k2c = koa (mod 8), i.e.,

(2.14) k1 = ka(a—c¢) (mod 8).

Thus we have

|k | |k

(215) Td é 2(—3w+d+3)/2 Z CSC(2w—_d Z CSC(2—w—_E).
ko€C1 (2% %) ki1€C1(2¥79)
k2 odd k1=k2(a—c) (mod 8)

Together with (2.8) and (2.9), this yields

_ 1 —d+1)log2
W +0_2126}{(i————-|7—;—‘——)——9—g-— +0.3024}

2
< 2<w-3d+3>(2{% +0.127log M +0.1401 + 0.0122d°}.

Td é 2(w—3d+3)/2{

Therefore, as in [9, p.142],

w—6
(2.16) > Ty < MY?{K (log M)? + 0.56 log M + 0.675} — %,
d=0

with K = 2/{(2%/% — 1)n}.
For d = w — 5, we get from (2.6) and (2.13)

Tw-5 <277 24/2+V2 Z csc(ﬂg?') Z csc(ﬂg;l),

k2€C1(32) k1€C1(32)
k2 odd k1=5k2(a—c) (mod 8)
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in which we note that, in the second sum, k1 = k2(5a — ¢) = 5k2(a — ¢) mod 8,
since c is even. As in [9, p.142], by distinguishing the casesa —c=1lora—c=5
mod 8, we have
(2.17) Tos < 240/M.

Similarly, using (2.4), (2.5) and (2.13), we get
(2.18) Tw_s4 < 60/M, Tu_3< 14/M.
Since |S(1,v;4)| = 2 for v odd, it follows from (2.12) that
(2.19) Tw_s = 4/M.
By combining (2.11) and (2.16, 17, 18, 19), we get

w—1
= Ta< MY*{K(log M)* +0.56log M + 0.675} + 1,
d=0

with the constant K in (2.16). The desired result follows from (2.10).

(I) ¢ is an odd number, hence a (# 0) is even, a € Zp;. Put a = 2ta’,a’ odd.
Consider some 73,0 S d S w— 2.

We always assume that both k; = h;/2¢,j = 1,2, are odd. Put 2° =
ged (k1 + k2c, 0,294 1) and ry = (ky + koc) /25,70 = kpa/2°.

(II-1) Suppose t 2w —d— 1. If s <w —d — 1, then

S(h) = S(hy + hac, hoa; M) = 24758 (ry, r; 2% ~479) = 0

by (2.2), since r; is odd and r; is even. If s = w — d — 1, then

S(h) = 292¥ 74718 (ry, 795 2) = 2271 = M/2.

If w—d 2 3, then

M 1
n=¥ %
od d
2 k1+k2c=0 mod 2¥—%-1 T(kl ’ M)'I”(k22 ,M)
k1,k2 odd

1 | ko]
=5 Z CSC(W) Z CSC(Qw-—d)
k2€01(2w_d) ’Clecl(zw_d)
k2 odd ki=—koc mod 2¥ 41

{(w—d+1)log2

< L

2 n2(w—d)
S 537 +0.3024}2 2

by Lemma 2.2. Since 3 S w —d < t+ 1, we have

+0.3024}2.

_ 221 (£ 42)log2
d =
M T
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If w—d=2, then
csc’(m/4) 4

< =
Tu-2 S 457 M
Hence,
(2.20)
Y, Ti=Tuat+ Y, T
w—22d2w—t—1 w—32d2w—t—1
4 (t—1)2%F1 (t+2)log?2
< = 0.3024}2
sS4t i { - +0.3024}7,

\

in which the second term does not appear if ¢t = 1.

(II-2) Now suppose 1 St S w—d — 2.

We define s and 71,2 as above. Obviously, s < ¢, hence w—d —1—s = 1. Thus
one of r; or 7o must be odd. If one of 1 or r5 is even,

S(h) = S(hy + hac, haa; M) = 29458 (ry 75522~ %=5) = 0

Hence both r; and r, must be odd, which implies s = ¢.
Let d £ w —t — 6. We argue as in the case d £ w — 6 of (I), with w — ¢ instead
of w; we obtain

k k
T, < 9(-3w+d+t+3)/2 Z CSC(;:L_Zdl) Z escf ;:L_ld|)
koeC1(2¥9) k1€C1(2¥~%),k; odd
ko odd rire=1 (mod 8)
_ o(—3w+d+t+3)/2 : k2| |k
_2( v )/ Z (Qw d) Z (2w d)
k2eC1(2¥79) k1€C1(2¥~%),k1 odd
k2 odd r1=r2 (mod 8)
_ o(—3w+td+t+3)/2 m|k2| |k |
D DR D SR )
koeCy(2¥™9) k1€C;(2¥~%),k; odd
k2 odd k1=k2(a—c) (mod 8-2%)
—3w+d+t+3)/2 k2| k1|
< o(—Bw+d+t+3)/ Z CC(2w ) Z (2w =)
koeC1(2¥™ %) k1€C1(2¥~%),k; odd
ko odd ki1=ka(a—c) (mod 8)

< glu-adrees)/2g (W= d + 1) log2 d;rl) log2 | (.9196){ =4+ Dloe? d; 1og2 | 3004
2
< 2<w—3d+t+3>/2{@4§7‘:‘f—) + (0.127) log M + 0.1401 + 0.0122d%},

since the set {ki;k1 = k2(a —c) (mod 8- 2)} is contained in {ky;k1 =
ko(a — ¢) (mod 8)}. Hence we obtain, as in [9, p.142],

w—t—6
(2.21) > Ty < 2/*M'*{K(log M)* +0.56 log M + 0.675} — 876/M,
d=0

with K = 2/{(2%/% - 1)7?}.
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For d = w — t — 5, we have as in [9, p.142], with 7; and r; as above,

/ k k
Tw—t5 < 27%724/2 4+ 2 Z csc(§L+L;|) Z csc(glti,)‘)

k2€C1(20F5) k1 €C1(2475),k1 odd
kz odd 7“17‘2':‘5 (mod 8)

<272+ 2 Z csc(gyjil) Z csc(giﬁg)

ko€Cy(2¢19) k1€C1(2t1%),k1 odd
k2 odd k1=kz(5a—c) (mod 8)

since {k1;71m2 =5 (mod 8)} = {k1;k1 + koc = 5koa (mod 8 - 2!)} is contained in
{k1; k1 = k2(5a — ¢) (mod 8)}. Thus we get

(2.22) Tw—t—5 < (t+6)% 2213 /01
Similarly, using (2.4), (2.5), we get
(2.23) Tw_t_a < (t+5)22% /M, T, s 3<(t+4)?2%/M.
Since [S(1,v;4)| = 2 for v odd, it follows that
(2.24) Tw—t—2 < (t+3)2 222 /M.

By (2.11), (2.20), (2.21), (2.22), (2.23), (2.24), we obtain
w—1

> Ty < 22 M'V*{K (log M)* + 0.56 log M + 0.675} + 1 + L/M,
d=0

with K = 2/{(2%/2 — 1)7?} and L = 2%#{2(t — 1)(t + 2)? + 14(t + 6)2}. Thus, the
desired result follows from (2.10).

3. PrROOF OF THEOREM 2

The proof is almost the same as in [6].

When c is an even number. Calculating as in [6, p.778], putting h = (1,1,0,...,0),
we have '

k Yn + Ynt1

(r+2)MDi), 2|3 e(=—3 )] = [S(L+ 6,03 M)| = [S(1L, (1 + c)a; M)
By [6, Lemma 4], there exist more than A(r)M/8 values of (1+c)a € Zy; such that
(1+¢c)a =1 (mod 8), and |S(1, (1 + ¢)a; M)| = rM'/2. Then a = 1 + ¢ (mod 8),
hence a+c=1+2c=1 (mod 4).

When c is odd. If ¢ =1 + 8k, then put h =(3,1,0,...,,0) and get

3(n +2)MDE), 2 |3 (VY = |5(3 4 ¢, 0 M)|

= 4]S(1 + 2k, a/4; M/4)| 2 4r(M/4)*/? = 2rM*/2,
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for more than A(r)M /32 values of (142k)a/4 with (14+2k)a/4 = 1,ie., a/4 = 142k
mod 8. Thena=4+8k =3 +¢, hence a +¢c= -3+ 2a =1 mod 4.
If ¢ = 3 + 4k, then put h = (-1,1,0,...,0) and get

—Yn + 'n,'
(r+2)MD{), 2 |3 ()| = |S(c — 1,0, M)

= 2|S(1+ 2k,a/2; M/2)| Z 2r(M/2)"/? = /2rM'/?

for more than A(r)M/16 values of (1+2k)a/2 with (14-2k)a/2 = 1,ie., a/2 = 142k
mod 8 Thena=2+4k=c—1,hencea+c=1+2a =1 mod 4.
If ¢ = 5+ 8k, then put h = (-1,1,0,...,0) and get

(m+2)MD), 2 S(c — 1,a; M)| = 4|S(1 + 2k, a/4; M/4)| 2 2rM*/?

for more than A(r)M/32 values of (1+2k)a/4 with (1+2k)a/4 = 1,i.e.,a/4 = 1+2k
mod 8 Thena=4+8k=c—1,hencea+c=1+ 2a =1 mod 4.
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