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DISSECTIONS OF p: q RECTANGLES 

CHARLES H. JEPSEN 

ABSTRACT. We determine all simple perfect dissections of p: q rectangles into 
at most twelve p: q rectangular elements. A computer search shows there are 
only eight such dissections, two of order 10, three of order 11, and three of 
order 12. 

1. INTRODUCTION 

We consider a generalization of the problem of squaring the square. In that well- 
known problem, one wishes to dissect a square into smaller squares (the elements 
of the dissection). A dissection is perfect if no two elements have the same size. A 
dissection is simple if no proper subset of its elements forms a rectangle; otherwise 
the dissection is compound. The order of a dissection is its number of elements. 
The smallest order of a simple perfect dissection of a square (i.e., a simple perfect 
squared square) is 21 [4]. Recent work of Bouwkamp and Duijvestijn [2, 5, 6] has 
yielded a complete list of all simple perfect squared squares of order at most 25. 

In [7], we investigated the problem of finding a simple perfect dissection of a 
1: 2 rectangle (one whose ratio of width to height is 2 or 2) into 1: 2 rectangular 2 
elements. Since these elements have two possible orientations, one would expect 
dissections of much smaller order than with square elements. Indeed, we found two 
simple perfect dissections of order 10. We further discovered that these are the only 
such dissections of order less than or equal to 12. 

In this paper, we consider the general problem of finding a simple perfect dissec- 
tion of a p : q rectangle into p: q rectangular elements. (This problem was posed by 
Muller in [8].) What relatively prime integers p and q give a dissection of smallest 
order? What are all such dissections of small order, say at most 12? We find: 

1) There are two simple perfect order-10 dissections of 1 : 2 rectangles into 
1 : 2 rectangular elements. (These are the dissections in [7].) 

2) There are three simple perfect order-11 dissections. The ratios of the 
rectangles and their elements are 1: 3, 1: 5, and 1: 7. 

3) There are three simple perfect order-12 dissections, of ratios 4 : 7, 3 : 7, 
and 1: 9. 

This is a complete list of all such dissections of order < 12. 
Figures 2-9 below show these eight rectangles. The captions give a code analo- 

gous to the Bouwkamp code for dissections into squares. Each number is the shorter 
side of an element. A number with a prime denotes an element with horizontal ori- 
entation; no prime means vertical orientation. The codes and rectangles are also 
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given in Table 1 below. Note the large size of the 3: 7 rectangle compared to the 
other rectangles. 

We generate dissections from c-nets, an idea developed in the basic paper of 
Brooks, Smith, Stone, and Tutte [3]. In ?2, Theorem 2 shows how to produce all 
simple dissections. This theorem is a variation of the main result in [7], repeated 
below as Theorem 1. In ?3, we describe the computation that yielded all simple 
dissections of order less than or equal to 12. 

TABLE 1. Simple perfect dissections of p: q rectangles 

Order Ratio Code 
Dimensions 

10 1:2 (17', 10,4,7') (1', 12) (6) (14', 3) (11') 
31 x 62 

10 1: 2 (24,28', 19') (9', 20) (12,31') (11', 2) (7') 
59 x 118 

11 1: 3 (37', 10', 17') (9,7') (24') (27', 13') (3,23') (14') 
64 x 192 

11 1: 5 (109', 78', 25) (31', 47') (83', 41', 16') (5,67') (42') 
192 x 960 

11 1: 7 (41', 30', 7) (11', 19') (31', 13', 8') (5', 23') (18') 
72 x 504 

12 4 : 7 (220', 196') (92', 104') (112,88', 68') (20', 128', 12') (116') (108') 
416 x 728 

12 3: 7 (444', 807', 441) (189,363') (78', 237', 633', 222') (159') (411') (396') 
1440 x 3360 

12 1: 9 (67', 9,52') (29', 23') (53', 14') (6', 17') (39', 11') (28') 
120 x 1080 

2. THE MAIN THEOREM 

According to the theory developed in [3], every simple order-n dissection of a 
rectangle into rectangular elements comes from a c-net (a 3-connected planar graph) 
having n + 1 edges. So our starting point is a list of c-nets with at most 13 edges. 
(Drawings of such c-nets can be found in [1].) Given a c-net with n + 1 edges and 
m + 1 vertices, removing an edge yields a p-net with n edges and m + 1 vertices; 
the p-net yields an order-n dissection of a rectangle. (Figure 1 shows an example 
with n = 10.) In [7], we developed a procedure for finding the dimensions of the 
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a) ~~~~~b) c) 

FIGURE 1. A c-net yields a simple dissection 

(a) A c-net with 11 edges and 6 vertices. 

(b) The p-net obtained by removing the edge joining PI and P6. 
(c) The dissection given by the p-net. 

elements. We review the procedure and extend it to handle the general problem 
under investigation here. 

Label the vertices of the p-net as PI,- . , P,+ 1 so that the horizontal line segment 
through Pi is above the line segment through P. if i < j. Denote by E,, the element 
in the dissection whose top and bottom edges lie along segments containing Pi and 

P.. (The edges in the p-net are also labeled E,,j.) We encode the information given 
in the p-net as an m x n matrix B defined as follows. Label the n columns of B by 
the indices for the n elements. The entries in B are: 

The entry in the ith row of column (ij) is 1. 
If j < m, the entry in the jth row of column (i'j) is -1. 
All other entries are 0. 

In the example of Figure 1, the matrix is: 

(12) (13) (14) (15) (23) (26) (34) (36) (45) (56) 

I I I I 0 0 0 0 0 0~ 
-1 0 0 0 1 1 0 0 0 0 

B= O -1 0 0 -1 0 1 1 0 0. 

O O -1 0 0 0 -1 0 1 0 

O O O -1 0 0 0 0 -1 I 

We encode the shapes of the n rectangular elements in a diagonal matrix C. Let 
hiL,andwt1be the height and width of Ei, let c-L =w'1 /,, and let C be the n x n 

diagonal matrix whose diagonal entries are the c1., Let h (resp. w') be the column 
n-vector consisting of the h,L, (resp. w',,). Then 

(1) ~~~~~~w = Ch. 

Suppose, for definiteness, we fix the width of the dissected rectangle at I and let C' 
be the column m-vector with first entry I and all other entries 0. Then 

(2) Bw = C. 
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(Proof. The first entry in Bwt is E wlj, the width of the dissected rectangle. For 

i > 1, the ith entry in Bwi is 
- (E widths of the elements above the horizontal line segment through Pi) 
+ (E widths of the elements below the horizontal line segment through Pi) 
= 0.) 

Now introduce new variables. For 1 < i < m, let yi be the distance between the 
horizontal line segments through Pi and Pm?i+ Let ' be the column m-vector of 
the yi. Then 

(3) h=BT y. 

(Proof. hij = yi- yj) 

Putting (1), (2), and (3) together, we have established all but the uniqueness in 
the following result. 

Theorem 1. The vectors h and w? are uniquely determined, up to multiplication 
by a constant, by the matrices B and C. We find h and w by solving (BCBT)iy e 
for y and then computing h = BT and w = Ch. 

(The proof of uniqueness, a straightforward linear algebra argument, is given in 
[7].) 

To apply this procedure for a given ratio p: q, the cij are all taken to be p/q 
or q/p. (In [7], each Cij is either 1 or 2.) Now suppose the ratio p: q is to be 2 
determined. We modify the procedure as follows. 

Let w be the width and h be the height of the dissected rectangle and let x = w/h, 
a variable to be determined. Then each ratio cij is either x or l/x. Let w'i be the 
column (n + 1)-vector whose first n entries are the wij and whose last entry is w. 
Let B1 be the m x (n + 1) matrix whose first n columns are the columns of B and 
whose last column has first entry -1 and all other entries 0. From (2) we have 

(4) Bl1wt1 = 0. 

Form 2n (n + 1) x (n + 1) diagonal matrices where the first n diagonal entries 
are either x or l/x and the last diagonal entry is -x. Denote any such matrix by 
Ci(x). Let hi be the column (n + 1)-vector whose first n entries are the hij and 
whose last entry is -h. Then, with y defined as above (and noting that Yi = h), 
from (3) we have 

(5) B, y = h, 

Further, 

(6) C,(x)hI = Wll 

From (4), (5), and (6), we get 

(7) (BICI(x)Bf)y = 6. 

Equation (7) says: A p: q rectangle has a simple dissection into p: q rectangular 
elements only if the symmetric m x m matrix B10C(x)BT is singular, i.e., only 
if det(BICI(x)BT) = 0. If we replace the matrix BICi(x)BT by B1(xCl(x))BT, 
then det [B1 (xCi (x)) BT] is a polynomial in x of degree at most 2m. The above 
argument establishes our main result. 
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FIGURE 2. A simple order-10 dissection of a 31 x 62 rectangle (ratio 1:2) 
(I17',10, 4,77')(1', 12) (6) (14', 3')(11') 

FIGURE 3. A simple order-10 dissection of a 59 x 118 rectangle (ratio 
1:2) (24,28',19')(9',20)(12,31')(11',2)(7') 

FIGURE 4. A simple order-11 dissection of a 64 x 192 rectangle (ratio 
1:3) (37',10',17')(9,7')(24')(27',13')(3,23')(14') 
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FIGURE 5. A simple order-li dissection of a 192 x 960 rectangle (ratio 
1:5) (109',78',25)(31',47')(83',41',16')(5,67')(42') 

FIGURE 6. A simple order-lI dissection of a 72 x 504 rectangle (ratio 
1:7) (41',30', 7)(11',19')(31',13',8')(5', 23')(18') 

FIGURE 7. A simple order-12 dissection of a 416 x 728 rectangle (ratio 
4:7) (220', 196')(92', 104')(112,88', 68')(20',128',12')(116')(108') 

FIGURE 8. A simple order-12 dissection of a 1440 x 3360 rectangle (ratio 
3:7) (444',807',441)(189,363')(78',237',633',222')(159')(411')(396') 
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FIGURE 9. A simple order-12 dissection of a 120 x 1080 rectangle (ratio 
1:9) (67', 9, 52')(29', 23')(53', 14')(6', 17')(39', 11')(28') 

Theorem 2. If there exists a simple dissection of a p: q rectangle into p: q rectan- 
gular elements, then either p/q or q/p is a positive rational zero of the polynomial 
det [Bi (xCi (x)) BT] 

3. COMPUTATION OF THE DISSECTIONS 

We now describe the scheme for computing all simple dissections of order < 12. 
We used Maple to generate the dissections as follows. (The programming was done 
by my colleague Eugene A. Herman. His assistance is gratefully acknowledged.) 

The input is the adjacency matrix for a p-net from which the matrix B1 is com- 
puted. The diagonal matrix Ci (x) is initialized to have diagonal entries x,... , x, -x 
and then is successively updated by a grey code, creating a main loop executed 2' 
times. The program computes the m x m determinant d(x) = det [Bi (xCi (x)) BT] 
and then finds the zeros of the polynomial d(x). A success is reported only if the 
polynomial has a positive rational zero not equal to 1. 

The total number of successes reported for n < 12 was 87. Some results were 
duplicates because of symmetry in the p-net. Others contained elements of size 
0. Still others had elements of the same size; i.e., the dissections were not per- 
fect. After the answers were checked by hand, the trimmed list contained only the 
eight dissections given in the introduction and shown in Figures 2-9. We have not 
attempted to go beyond n = 12. 

The computational complexity of the problem is interesting to note. The pro- 
gram was run on an HP 712/60 workstation with 32 meg of RAM. The computation 
for each p-net with n = 12 took 90 minutes. Further, the computation consumed 
so much memory that it was impossible to run two p-nets in succession. So a 
shell script was devised whereby Maple was entered, one p-net was run, Maple was 
exited, and the process was begun anew. The case n = 12 required 51 days of 
continuous running time. My guess is that the case n = 13 would take at least six 
times as long using the present program. 

Where do we go from here? Certainly, we could find the results for larger values 
of n. We might also investigate compound dissections. I have done this for 1: 2 
rectangles dissected into 1 : 2 rectangular elements and have obtained a complete 
list of all such dissections for orders n < 12. This builds on [8] in which Muller 
shows, among other results, that the compound dissection of a 1: 2 rectangle into 
1: 2 rectangular elements of smallest order is the dissection of an 18 x 36 rectangle 
into 8 elements. It would be interesting to know if this is the smallest order for a 
compound dissection of a p: q rectangle into p: q rectangular elements. 
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