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CLASS NUMBER 5, 6 AND 7 

CHRISTIAN WAGNER 

ABSTRACT. We outline the determination of all imaginary quadratic fields with 
class number 5, 6 or 7. 

1. INTRODUCTION1 

In this paper we outline the proof that the following table contains all discrimi- 
nants -d < 0 of imaginary quadratic fields with class number h = 5, 6 or 7. 

TABLE 1. Fundamental discriminants with class number 5, 6 or 7 

| h] d, -d (fundamental) discriminant, h(-d) = h 
5 47,79,103,127,131,179,227,347,443,523,571,619,683,691,739,787, 

947,1051,1123,1723,1747,1867,2203,2347,2683 
6 87,104,116,152,212,244,247,339,411,424,436,451,472,515,628,707, 

771,808,835,843,856,1048,1059,1099,1108,1147,1192,1203,1219, 1267, 
1315,1347,1363,1432,1563,1588,1603,1843,1915,1963,2227,2283, 2443, 
2515,2563,2787,2923,3235,3427,3523,3763 

7 71,151,223,251,463,467,487,587,811,827,859,1163,1171,1483,1523, 
1627,1787,1987,2011,2083,2179,2251,2467,2707,3019,3067,3187, 
3907,4603,5107,5923 

Recently, S. Arno [1, 2] combined methods of H. Stark [16] for h = 2 and H. Mont- 
gomery and P. Weinberger [11] for h = 2 and 3 to solve the class number-4 problem2. 

Arno had to overcome the problem of d having up to three distinct prime divisors, 
but could profit from the small number of leading coefficients of the reduced binary 
quadatic forms. In our case, d is simplified to at most two prime divisors, but 
the larger number of coefficients results in certain estimates being much worse. 
Therefore, we have to combine the abovementioned methods in another way as 
Arno. For h = 8 both items take a negative turn: up to four prime divisors and 
eight coefficients, which makes this case seem impregnable. 
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'General information on Gauss' class number problem may be obtained from the articles by 

S. B6cherer [3], D. Goldfeld [6], J. Oesterl6 [13] and J.-P. Serre [14]. 
2As the referee pointed out to me, S. Arno has now extended some of these results. Arno has 

treated the class number problem for all odd h from 5 to 23. 
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2. CLASS NUMBER, DISCRIMINANT AND FORMS 

The restriction of h to the values 5, 6 or 7 implies conditions that must be 
fulfilled by the discriminants and the leading coefficients in their reduced (binary 
quadratic) forms, which occur in certain formulas of the abovementioned methods. 
In this section we list some of these conditions. This will help us later in reducing 
the computer work for searching for discriminants with class number 5, 6 or 7. 

We are interested in reduced forms f(x, y) = ax2 + bxy + cy2 with discriminant 
-d, i.e., forms with -d = b2 - 4ac and -a < b < a < c or 0 < b < a = c (which 
implies a < +/d/3). An example is the principal form 

2* +4Y2 ford-0 (mod4), 
x2+xy+ 41y2 for d 3 (mod 4), 

which is the only reduced form with 1 as leading coefficient a. 
Throughout this paper we let fi(x, y) = aix2 + bixy + cjy2, i = 1, .. , h, be 

the reduced forms with discriminant -d, numbered in a way that their leading 
coefficients 1, a2, a3, ... , ah are in ascending order, i.e., 1 < a2 < a3 < *.. < ah 

Lemma 2.1. Let f (x, y) = ax2 + bxy + cy2 be a reduced form with discriminant 
-d. Then y =A 0 implies f (x, y) > c, and y = 0, x 4 0 implies f (x, y) > a. 

Proof. See Stark [16, Lemma 3]. a 

Lemma 2.2. Let h > 1. Then a2 is prime and a2 = min {p prime (d) + -1 

Proof. The integer a2 is prime, otherwise choose p prime, p I a2, p < a2. The 
number of representations of p with forms with discriminant -d is 

(1) R(p) = (d) 1 (d) 1+ (b+ 4a2c2) 1+ (2) > 1 
tl t p P P tip 

FRom Lemma 2.1 only the principal form can represent p. This can happen only 
when y =A 0. But then by Lemma 2.1 

(2) < pp<a2 < , 

consequently d < 16 and h = 1. This is a contradiction. 3 
Now a2 is represented (by f2), so (d z-1. Let p be prime, p < a2, (p) d 

-1. As in (1), R(p) > 1, but because of (2), p cannot be represented. Contradiction. 

Lemma 2.3 (Heilbronn). Let -d < 0 be a discriminant, h = h(-d), p a rational 

prime number and (p) = 1. Then p > (d) h 

Lemma 2.4 (Heilbronn). Let -d < 0 be a discriminant, a > 0 squarefree, a I d 

and a < (d) 2, Then there is exactly one reduced form with discriminant -d and 
leading coefficient a. 
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2.1. Odd class number. Suppose h = 2n + 1 with n E No. This is the simplest 
case. By the theory of genera (2t-1 h, where t is the number of distinct prime 
divisors of d), -d is a prime discriminant, thus has the form -4, -8 or -p with 
p -3 (mod 4) prime. It is easy to calculate h(-4) = h(-8) = 1; we confine 
our analysis to the discriminants with d -3 (mod 4) prime. We will see that the 
coefficients of the reduced forms behave well. 

Lemma 2.5. Let h > 1 be odd, f (x, y) = ax2 + bxy + cy2 be a reduced form other 
than the principal form with discriminant -d = b-2- 4ac. Then 0 < lbl < a < c. 

Proof. We have b 74 0, because d is odd. If lbl = a, then -d = a(a - 4c). With 
a > 1 and d prime, this leads to a = d, a contradiction. If a = c, then b > 0 and 
-d= (b-2a)(b+2a). This leadsto b+ 2a=d and b-2a= -1,sob=2a-1 >a, 
a contradiction. [ 

Remark 2.6. Let h > 1 be odd, f (x, y) = ax2 + bxy + cy2 with 0 < lbl < a < c. 
Then obviously ax 2- bxy + cy2 is reduced too. So besides the principal form there 
are respectively pairs of reduced forms, which differ only by the sign of b (but are 
nonequivalent) . 

Corollary 2.7. Let h > 1 be odd. Then a2 = a3 and a2,a3 < a4, i.e., there is 
exactly one pair of forms with a2 as leading coefficient. 

Proof. The equalities a3 = a4(= a5) lead to R(a2) > 4 (each form represents with 
x = 1,y = 0). But because of Lemma 2.2 and (a2,d) = 1 we have R(a2) = 

1 + (d) =2. [ 
Va2 

Lemma 2.8. Let h > 1 be odd. Then a2 > (d) h 

Proof. From Lemma 2.2 and Lemma 2.3, because (a2, d) = 1. [ 

Lemma 2.9. Let h > 3 be odd. Then a4 is prime or a4 = a2 with 1 < n 2 l? d 

The proofs of this lemma and of Lemma 2.11 are variations of the proof given 
for Lemma 2.13 and are therefore omitted. The upper bound for n can be obtained 
with the help of Lemma 2.8. We also omit the proof of Corollary 2.10, which works 
like the one for Corollary 2.7. 

Corollary 2.10. Let h = 5 or h = 7. Then a4 = a5 and in case of h = 7, 
a4, a5 < a6, i. e., there is exactly one pair of forms with a4 as leading coefficient. 

Lemma 2.11. Let h = 7. Then a6 is prime or a6 = ana' with n,m E No, 
1< n+m < 4. 

We can sum up the results of the preceding lemmas in a way which is useful for 
us later. 

Lemma 2.12. 1) In the case of h = 5 we have 1 < a2= a3 < a4= a5, in the case 
of h = 7 we have 1 <a2 = a3 <a4= a5 <a6= a7. 

2) Suppose a2 has a lower bound A E R. Let P2 < P4 < P6 be the three least 
prime numbers > A. Then in the case of h = 5 or h = 7, a2 > P2 and a4 > p4; 
moreover, in the case of h = 7 and A > 4, a6 > P6. 
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Proof. 1) From 2.6, 2.7 and 2.10. 
2) We have a2 > P2 because a2 is prime by Lemma 2.2. Now by Lemma 2.9 

and 1), a4 > p4 or a4 > a2. Bertrand's postulate yields a prime number p, a2 < 

p < 2a2 < a2, hence it is safe to take the first bound. Finally, in case h = 7, by 
Lemma 2.11 and 1), a6 > P6 or a6 > a2. Bertrand's postulate yields for a2 > 4 two 
prime numbers p, q, a2 < p < q < 4a2 < a2, so it is safe to take the first bound. [ 

The condition A > 4 is satisfied except for very small discriminants (cf. Lemma 
2.8). 

2.2. Even class number. Suppose (restrictively) that h = 2n with n odd (e.g., 
h = 6); then by the theory of genera the number t of distinct prime divisors of d 
equals 2. This is because on the one hand, 2` I h, so t < 2, and on the other 
hand, h is always odd for discriminants with t = 1 (prime discriminants). Further, 
take into consideration that -d _1 (mod 4), or -d _ 0 (mod 4) and - d _ 2,3 
(mod 4); then d must have one of the forms 

4p withp prime, p_ 1 (mod 4), 
dzzs 8p with p prime, p>2, 

pq with p, q prime, p_ 1 (mod 4), q -3 (mod 4). 
When the class number is even, there are, unlike for odd class number, not 

necessarily pairs of reduced forms (see Lemma 2.4). For the moment, we collect all 
reduced forms with a2 as leading coefficient under the term f2. 

Lemma 2.13. Let h > 4 be even, f(x, y) = ax2 + bxy + cy2 be a reduced form 
with -d = b2 - 4ac and a > a2. Suppose further that the leading coefficients of all 
reduced forms other than the principal form and f2 with discriminant -d are > a. 
Then a is prime or a = an with n > 1. 

Proof. Let d' = +(d Q). Because a2 < (d) = a2 (d3) we have a2 <( 

Suppose a is not prime, say p I a, p < a, p prime. Like in (1), R(p) > 1. By 
Lemma 2.1 at,most fi and f2 can represent p. Like in (2) (with a instead of a2), 
fi does not represent p, therefore f2 must represent p. Here, with Lemma 2.1, 
p = a2 or p > c2. Thus, a has the form a np, *--pm with n,m c No, p2 prime, 

d dl i1) A? > C2 4a2 
= ,...,m, andso 

- > a -2 (-) > a > a2 

If m > 2, then i- > (j- , d' < 16 and a2 = 1. This is a contradiction. If m = 1, 

then n > 1, otherwise a is prime, which is contrary to the supposition. So dl > a2 dl 

and a2 1. This is a contradiction. Li 

Lemma 2.14. Let h = 6. 
1) Suppose a2 d. Then a2 > (d) 6 and a3 = a2. 

if a2~~~~ 2) Suppose a2 d. Then a3 is prime, a3 > (d)? . Moreover, if a2 < (1 3d)2 

then a4 = a3. 

Proof. 1) By Lemma 2-2, (a-d)+ -1; since a2 t d, we have -d 0; hence, (a2n a2n 

()-d 1. Here, on the one hand, a2 > (4)6 by Lemma 2.3, and on the other 
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hand, the number of representations R(a2) = 1 + (a) 2. One form with leading 
coefficient a2 yields only one representation. The form fi cannot represent a2 (cf. 
(2)). If a2 < a3, then the remaining forms cannot do so either (cf. Lemma 2.1). 

2) We have (5) 0, so R(a2) = 1, hence a3 > a2. By Lemma 2.13, a3 is prime 

or a3 a2 with n > 1. The latter yields R(a3) = Etla3 ( ) = En = (ac)= 1. 

Consequently, a4 > a3 and in f3(x, y)= a3x2 + b3xy + c3y2 it must be that b3 0 
or b3 = a3 (otherwise there are two forms with a3, and a4 = a3, cf. the remark 
to Lemma 2.5). Both cases result in a contradiction: b3 = 0 gives -d =-4anc3, 
b3= a3 gives -d = an(an - 4c3), and -d is no discriminant. So a3 must be 
prime. Because a2 already divides the discriminant, a3 cannot do the same, since 
otherwise, depending on the form of the discriminant (see the beginning of this 

1 1 1 

section) and with the help of the inequalities d < ( I ) 2 ( ) 2 resp. d < 8 ( ) 2, we 
get a contradiction. Hence, (ad) +1. Furthermore, ( ad) # -1, because a3 is 

trivially represented. Now Lemma 2.3 gives the second part of the assertion. 
Finally let a2 < ( s3d) 2. We have R(a3) = 2 like above. One form with leading 

coefficient a3 yields only one representation. The form fi cannot represent a3 (cf. 
(2)). If a3 < a4, at most a reduced form with a2 as leading coefficient can represent 

a3 (cf. Lemma 2.1). But then (cf. Lemma 2.1), (d) > a3 > C2 > d and 

a2 > ( 136 d) 2. This is a contradiction. [1 

Corollary 2.15. Let h = 6. Then a2 and a3 are prime, and a3 > (d) 61 

2.3. Integers having prescribed quadratic character. A result of D. H. Leh- 
mer, E. Lehmer and D. Shanks [10] can be used to obtain effective lower bounds 
for discriminants with "small" class number and "big" leading coefficients of the 
associated binary quadratic forms. We will use this in ?3 for class number 5. 

Lemma 2.16. Let p be a prime, p > 2. Define 

Mp-min {nE N |(n) =-1 for all q prime, 2 < q < p}. 

Then a2 > p implies d > Mp. 
If d is a prime, then in the definition of Mp we restrict n to be prime, thu-s 

obtaining possibly greater values of Mp, i.e., better lower bounds for d. 

Proof. Let a2 > p > 2. Recall that by Lemma 2.2, a2 is prime and (d) -1 

for all prime q, 2 < q < a2. Therefore, d > Ma2. The inequality Ma2 > Mp holds 
trivially. L 

The prime values for Mp we will use are M131 = 193310265163, M137,139 = 
229565917267, M149 = 915809911867 and M19l = 30059924764123. They are taken 
from D. H. Lehmer, E. Lehmer and D. Shanks [10]. It may be noted that our Mp 
equals Lehmer's Nq, if q is the greatest prime less than p. The value for N149 had 
to be corrected, see [16]. The number M19i is N181 of [15]. 

3. ENCIRCLING THE RANGE 

We apply the methods of Stark and Montgomery-Weinberger to "midsized" dis- 
criminants. First, we restrict the size of d with the help of 
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Theorem 3.1. Let -d < 0 be a discriminant with class number h. Then 

h> If1 * (1- [2 2]p) logd, 

where the * indicates that the greatest prime divisor of d must be omitted. 

This theorem originates from the works of D. Goldfeld [4] in 1976, B. Gross and 
D. Zagier [7] in 1983, and J. Oesterle [12, 13] in 1984. 

Lemma 3.2. Let -d < 0 be a discriminant. If h = 5, then d < 10120; if h = 6, 
then d < 10574; if h = 7, then d < 10168. 

Proof. If h = 5 or h = 7, then d is prime (cf. ?2.1). If h = 6, then d has exactly 
two distinct prime divisors (cf. ?2.2). Now use Theorem 3.1. Oi 

Now we turn to d with order of magnitude up to 101l ... 1014 (depending on the 
class number). They are searched with the use of a computer. It would be very time- 
consuming, for example, to examine all discriminants in the range 1 < d < 1011 for 
class number 5. However, Lemma 2.3 helps to reduce the work. Let p be a prime 

and d > 4ph. Then by Lemma 2.3 we have (-d) 1 for all prime q, 2 < q < p. 
This means that in a first step we can discard a certain quantity of d's by looking 
at their quadratic character modulo small primes. In a second step we examine the 
remaining d for class number h by searching for reduced solutions (-a < b < a < c 
or 0 < b < a = c) of -d = b2 - 4ac. 

Thus, in the range 1 < d < 1.33 1011 we obtain the d-values for h = 5 as listed 
in Table 1. Using results of ?2.3, we can slightly raise the bound 1.33 1011: for 
d > 1.33 1011, by Lemma 2.8, we have a2 > 131. By Lemma 2.16 this leads to 
d > M131 > 1.9331- 1011. Repeating this argument, we get sucessively a2 > 139, 
d > M139 > 2.2956. 1011, a2 > 149, d > M149 > 9.1580. 1011, a2 > 191, d > 
M19i > 3.0059 1013. 

Lemma 3.3. Suppose h(-d) = 5; then d is one of the numbers listed in Table 1 
or d> 3. 1013. 

In the case of h = 6 and h = 7, ?2.3 cannot be used to reduce the range. 

Lemma 3.4. Suppose h(-d) = 7; then d is one of the numbers listed in Table 1 
or d > 8 1012. 

Lemma 3.5. Suppose h(-d) = 6; then d is one of the numbers listed in Table 1 
or in case of 

1) 17923 d, a2 = 2; d > 6.2 1013, 
2) 17923 d, a2 = 3; d > 3 1013, 
3) 17923 d, a2 > 5; d > 2 1013, 
4) 17923 d; d > 1.1 - 1014. 

We omit the programming details here and refer to [17]. The programs ran about 
5 minutes for h = 5, 55 hours for h = 6, and 11 hours for h = 7 on the IBM 3090 of 
the University of Freiburg i. Br. For control purposes the programs were also run 
on the CRAY 2 of the University of Stuttgart. 

The rest of the paper deals with the remaining "midsized" d. 
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4. BASICS OF STARK'S METHOD 

Stark (for details, see [16]) starts from the following representation of the zeta 
function (K(s) = ((s)L(s, X-d) of EK = -(2 d), 

((s)L(s, x-d) = ((2s) a-' + ((2 - 2s) F ) ( d - S- 

f F(s) 472, f 
(3) + L h(s,f). 

f 

The summation is over a complete system of nonequivalent binary quadratic 
forms f =f (x, y) = ax2 + bxy + cy2 with discriminant b2 - 4ac = -d. The error 
terms h(s, f) are 

(4) h(s, f) = a-s X (x-[x]-) dx f((x + 2l + 2) dx. 

f'1- * dx 1~\ 2a} 4a2 

For these error terms, Stark [16] gave estimates. We adopt them with slight 
modifications. 

Lemma 4.1. Let s = Jf + ir, a > 2 and k E N, k > 3. Then 

Proof. See Stark [16, Lemma 1]. Simply change the estimate for (~(m) to ((m) < 

-~~~~~~~~~~~ 

0/(m - 1)/(m - 2) (m > 3). 
k 

1 

Lemma 4.2. Leta < (d)2 and s = +iT. Then for all JCEN 

hh(s,f)< 4s (Z1+T+ 77 z 2 ) 

Proof. See Stark [16, Lemma 2]. We do not use the estimate for 

(5) ](2s+1)- ~2d+1 

instead, we let s = 2 + iT in (5) and obtain 

J (x- [x]-2 ) d~ { ( (x + 2i)'D4 2 ) } dx 

K I V2 1 /((2-3 cos2 x) cos X)2 + (27 sin2 x cos x) dx 

(6) < ~3dj2 1 3sin (arccos 4)+ r 
(6) <42s1s1 4 2) 3-}n 

2 +~~~~~~~~~~L 
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5. BASICS OF MONTGOMERY-WEINBERGER 

Let -k < 0 be a discriminant with (d, k) = 1. Further, let 0 be a complex 
number with 101 < 1, the value of which depends on the context in which it occurs, 
e.g., 0 in Lemma 5.1 and 0 in Lemma 5.3 need not be the same. Montgomery and 
Weinberger [11] proceed from 

Lemma 5.1. Let (d, k) = 1, t > 0. Then 

(7) 

(k~\it 
it L( . + it, Xk) L( . + it, Xkd ) F( + it) y 2 ) = iM(t) sin C(t) + ftE(t), 

in which 

M(t) = 12t((1 + 2it) F(2 + it) Pk( 2 + it) A(' + it) 

(p(t) = arg i (1 + 2it) r(- + it) Pk (2 + it) A(2 + it) 

with 

Pk(S) = (i p-2,), A(s) = ZXk(a)a, 

plk f 

and 

__r2 7rnidl y2r E() ~ a 0 ak Y,Xk(f (j, y)) exp 
kyir 

k n=1 n)z (2 k ) 

where Ko is the modified Bessel function of the second kind (note that E(t) > 0). 

If in (7) we let t be the imaginary part of a zero 2 + it of L(s, Xk), then 

(8) jsinp(t)l < tE(t) 

This relation, with sufficiently large d and appropriate choice of k and t, may be 

used to get a contradiction to the assumption of a small class number. The following 
lemmas provide estimates for M(t), p(t) and E(t). For proofs see [11]. 

Lemma 5.2. Let O < t < 2. Then M(t) ? 7 
npHI k(1 - p-1) JA(2 + it) I 

Lemma 5.3. Let 0 < t < 6. Then 

ep(t) = t (C + log( 87r ))+ 3c(h) + 2 p 

in which C = 0.577215664 ... is Euler's constant and c(h) < |A( + it) 

Lemma 5.4. Let k > 3060, 0 < t < Define 

a, a2 7 gd20 
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Then, if all forms f are reduced, 

E(t) < 8 (-) log k I(2 + 3p-) 6(a). 
plk f 

Proof. While proving Lemma 9 of [11], Montgomery and Weinberger get 

1k E(t) < 4 k7 ) 1tI(2 + 3p -3) E a 9(2ak) 

with g(x) = e (1 + log (1 + i)). So the summands of the sum over f have the 
form 

2alk ( rd\ (11 7 2ak 

dexp1 / d+log 
I 

1 

The third factor, by means of the inequality a < /, is bounded uniformly for all 

a by log k (for k > 3060). 

If a is not effectively known, we will use the last lemma either under the (non- 
31 trivial) assumption a < (d) or under the (trivial) assumption a < (d) in b(a). 

6. CLASS NUMBER 5 AND 7 

In case of an odd class number both Stark's and Montgomery-Weinberger's 
method can be applied. In [17] we used the first method for class number 5 and 
the second method for class number 7. However, the adaption of Stark's method 
was somewhat more tedious, so for brevity here we proceed like in [11]. This is 
straightforward; therefore, we can confine ourselves to a short survey. Details on 
working with Montgomery-Weinberger's method appear in ?7. 

For h = 5 we examine the range 2. 1012 < d < 1052 and distinguish three 
cases for the leading coefficients a2 (= a3) and a4 (= a5) of the reduced forms by 

comparing them with (d) 3. If the ai are "small", then Lemma 5.4 will give us a 
"good" bound for E(t). If the ai are "big", then the bounds for IA(' + it) and 
c(5) in Lemmas 5.2 and 5.3 will be "good". In all cases we use k = 17923 and 
t = 0.030986 (see Table 2). Finally, we examine d in the range 1052 ... 10120, using 
k = 115147 and t = 0.003158. The result is 

Theorem 6.1. Suppose 2. 1012 < d < 10120. Then h(-d) :A 5. 

TABLE 2. Zeros 2 + it of L(s, Xk) for various k; from [11] 

k t + 10-60 
17923 0.030986 
28963 = 11 . 2633 0.033774 
30895 = 5 37* 167 0.018494 
37427 = 13* 2879 0.019505 

115147 = 113* 1019 0.003158 
123204 = 4 3 . 10267 0.010650 
139011 = 3 46337 0.012930 
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For h = 7 we examine the range 8. 1012 < d < 10168 and distinguish four cases 
for the leading coefficients a2 (= a3), a4 (= a5), a6 (= a7) of the reduced forms, 
completely analogous to h = 5. We get 

Theorem 6.2. Suppose 8. 1012 < d < 10168. Then h(-d) =A 7. 

7. CLASS NUMBER 6 

7.1. Results with Montgomery-Weinberger. We first turn to d < 1052 and 
distinguish certain cases for the coefficients a2, a3, .. ., a6 (like we did for h = 5,7). 
The problem is that a2 no longer needs to be relatively prime to d, and therefore 
the lower bound of Lemma 2.8 will fail. We distinguish the cases 17923 t d and 

17923 1 d. In the first case we further distinguish a2 = 2, a2 = 3, 5 < a2 < K 

and a2 > (d) 6, and in the latter case a2 = 17923 and a2 < 17923. 

1. 17923td 

l(a) a2 = 2 

Here we restrict our argument to d being even, because if d is odd, then by 

Lemmas 2.2 and 2.3 2 > (d) 6 Further, by Lemma 2.14 we have a3 prime, a3 > 

(d)6 and a4 = a3. 

Lemma 7.1. Let 17923t d, a2 = 2, and suppose 2.3. 1014 < d < 1052 ai > d 3 

i = 3,... ,6. Then h(-d) =y 6. 

Proof. A sample proof is given in the next lemma. We have ai > 38598, i = 3,... ,6. 
Take k = 17923 and t = 0.030986. 

Lemma 7.2. Let 17923 t d, a2 = 2, and suppose 6.2' 1013 < d < 1052, ai < (d) 3 

i=3,4, ai > (), i= 5,6. Then h(-d) = 6. 

Proof. We have a3,a4 > 163, a5,a6 > 24934. Take k = 30895 = 5 37 167 
((d, k) = 1, else d = (4p or 8p) < 8 167) and t = 0.018494. Then 

1 i+(-~~30895 12-it 2 _ 2 
A(-?+it) > 1+1 24934 

2 2-N/163 N/2493. 

>1.707 

and thus M(t) > 2.0820 by Lemma 5.2, 
log 2 2log 163 + 2log 24934 

c(6) < N/2- v 6 v'24 9-< 0.9211 
1.707- 2 _ 2 

and E(t) < 43.5542 by Lemma 5.4, Isin o(t) I < 0.3869 by (8). But 0.3991 < p(t) < 
1.2863 by Lemma 5.3. 

Lemma 7.3. Let 17923 t d, a2 = 2, and suppose 6.2 ' 1013 < d < 1052 and 

l) ai <(d) 3,i= 3,4,5, a6 > (d) 
3 or 4 4 

o 

2) ai < (d) 3, i = 3,. ,6. 
Then h(-d) =A 6. 

Proof. In both cases take k = 30895. O 
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In ?7.2 we will use Stark's method to close the gap 6.2. 1013 < d < 2.3. 1014, 

which was left by Lemma 7.1; so for all d with a2 = 2 we will have the uniform 
bound 6.2 1013. 

l(b) a2 = 3 

Here we have (for d > 2916) d- 0 (mod 3) by Lemmas 2.2 and 2.3. Further, by 

Lemma 2.14 we have a3 prime, a3 > (d) 6 and a4 = a3. 

Lemma 7.4. Let 17923 t d, a2 = 3, and suppose 3* 1013 < d < 1052 and 

1) ai > (d) 3, i = 3, . .. ,6, or 

2) ai < (d)3, i =3,4,a (d)3,> i = 5,6, or 
4 4~~_ o 

3) ai < (d)3, i = 3,4,5, a6 > (d)3, or 

4) ai < (d)3, i = 3,. ,6. 
Then h(-d) = 6. 

Proof. In all cases, let k = 37427 = 13 2879 ((d, k) = 1, else d = 3p < 3 2879), 
t = 0.019505 and use ( -37427) = 1 to estimate IA(' + it) |. O 

l(c) 5 < a2 < (4) 

Here, d- 0 (mod a2) by Lemmas 2.2 and 2.3. Further, by Lemma 2.14, a3 is 

prime, a3 > (d) 6 and a4 = a3. 

Lemma 7.5. Let 17923 t d, 5 < a2 < (d) 6; suppose 2 1013 <d K 1052 and 

1) ai > (),i = 3, . .. ,6 or 

2) ai < (d)3 i = 3,4, ai > (d) i = 5,6, or 
4 4~~_ o 

3 ai <(d)13, i =3,4,5, a6 >(d) 
3 or 

4) ai < (d)3, i =3,.. ,6 
Then h(-d) =A 6. 

Proof. In all cases, let k = 17923. 

l(d) a2 > (4) 

Lemma 7.6. Let 17923 t d, 2. 1013 < d < 1052 and 

1) a2> (d)3 or 

2) (4) < a2 < (4) 

Then h(-d) 54 6. 

Proof. In both cases, take k = 17923. O 

2. 17923 1 d 

Here, d has exactly two distinct prime divisors. Without loss of generality we 
may assume 17923 to be the smaller one, since otherwise d < 4 108. Further, 

assume 17923 < (d) 2, since otherwise d < 2 109. Lemma 2.4 yields the existence 
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of a reduced form with discriminant -d and 17923 as leading coefficient. Therefore, 
a2 < 17923. 

2(a) a2 = 17923 

Lemma 7.7. Let 17923 1 d, a2 = 17923, and suppose 1.1 1014 < d < 1052. Then 
h(-d) 4 6. 

Proof. Take k = 28963 = 11 2633. O 

2(b) a2 < 17923 

Here, d 0 0 (mod a2), else 17923 is not the smallest prime divisor of d. By 

Lemma 2.14 it follows that a3 = a2. Both coefficients are prime and > (a) 6. 

Lemma 7.8. Let 17923 d, a2 < 17923; suppose 1.1 1014 < d < 1052 and 

1) ai > (d), i = 4,5,6, or 

2) a4 < (3 ai > ()3, i = 5,6, or 

3) ai <(d) 3,ji =4,5, a6 >(d) 3,or 4 4~~ o 

4) ai < (d)3, i = 4,5,6. 
Then h(-d) 54 6. 

Proof. In all cases, take k = 28963. O 

Finally, we consider d from 1052 to 10574. It is necessary to examine just two 
cases. 

Lemma 7.9. Suppose 1052 < d < 10574 and (d, 115147) = 1. Then h(-d) =A 6. 

Proof. Clearly, a2 > 2. By Corollary 2.15 we have ai > (d)6, i = 3,... ,6. Take 
k = 115147 = 113* 1019. O 

Lemma 7.10. Suppose 1052 < d < 10574 and (d, 115147) > 1. Then h(-d) =A 6. 

Proof. We have 113 1 d or 1019 1 d. But then (d, 123204 = 4 . 3. 10267) = 1, 
otherwise d is too small. Take k = 123204, t = 0.003158. We have ai > 113, 

i=2 ... 6(a2 < 113 a2 < (d)6 a2 d d=>d too small; but a2= 113 is 
possible, cf. Lemma 2.4). We get M(t) > 0.5282, c(6) < 0.4956, E(t) < 2. 10-7 

and Isin p(t)I < 5 10-9. But 0.7024 < p(t) < 7.1664. Therefore, p = r+?0108 or 
= 27r+010-8. By Lemma 5.3 we see that 10122 < d < 10126 or 10250 < d < 10254 

must hold. 
However, we can also work with k = 139011 = 3 . 46337, t = 0.003158. Then we 

get M(t) > 1.0566, c(6) < 0.4956, E(t) < 4. 10-8 and lsin p(t)l < 5. 10-10. But 
also 0.8723 < p(t) < 8.6843. Therefore, p = ir + 010-8 or p = 2ir + 010-8. By 
Lemma 5.3, 10100 < d < 10103 or 10206 < d < 10208 must hold. The contradiction 
of the results for the two k's proves the lemma. 0 

7.2. Results with Stark's method. We will only examine the case a2 = 2, 

ai > (d)3, i = 3,... ,6, 6.2 . 1013 < d < 2.3 1014 (remember Lemma 7.1 and 
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preceding remarks), which could not be treated with the method of Montgomery- 
Weinberger. (The condition 17923 t d is insignificant here.) 

Let 'bm = 2 + i-m be a zero of the Riemann zeta function ((s). Putting 4,m 
in (3) gives 

d Ef h(2 +iTm, f) 

+-2jTm) F(2 -Tm) (i ? 22+m ? 2%2 ?a52 ? a-+iTm) 

C(1 ?2~Tm) F(2 + iTm) (1 + 2-2-iTm + 2a- 2 irm + a-im + a-Tm) 

Define 

fEm F-7-2 arg ((2qm) - 2argfr(qm) (mod 2rr), 0 < CI!m < 2r, 

1 "1n + 

Let O01 < 1 as in ?5. For a3 ? 191 let 

6ma,a5,a6) -I hQ7m, fl )lt+1thQ5m, f2)I|+2 |h(qm, f3)I|+ Ih(?im,X f5)1+I?IhQ7+m, f6)I 
IC(2fm)I (|1?+ 2~- 2 -irmn |-_2a3 2 _ a5 2-a6 2i ) 

Lemma 7.11. Suppose a2 = 2, a3 > 191, 6m(a3,a5,aG) < I. Then there is an 
integer xm with 

Tmlog (47r2) = 2m+r + 2Xm 

?2arg2ir)r(i ( 1 2- +iTm2 + 2a3 2 +irm + a T 2 + +a+ Z ) 

? 2'6m(a3,as, a6)0. 

Proof. Cf. Stark [16, Lemma 6]. C1 

Lemma 7.12. Suppose a2 = 2, a3 > 751, -m(a3, a5, a6) < 2 for m = 1 and m = n. 
Then 

= -x+ An +-(-arg (1 + 22+iT )-arg (1?+21+iTn)) 

Le 11 1asin?5 Fr / 191 1l11t 

0 2a32+a52?a62 +2a32? a52? a6= 
3 fl | 1?+ 22 +iTl + |1+ 22+iTn _ ) 

+ 6 (ri6i(a3I a5, a6) ? (a3, as 2 a6)) a 

Proof. Cf. Stark [16, Lemma 7]. However, here we use the relation 

(9)eg rg(1 xm zw+iz')t=harg(1 +z) + ll for K- <2 

(9 ag1??')ag(?)?d 

3 31z I1z 62 
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TABLE 3. fm and related quantities; from Stark [16] 

m Tm r+5 1109 |(2$m)+149 I m +5 10-10 Am+5. 10-109 

1 14.134725142 0.189940085 1.9488 . 
2 21.022039639 0.744277023 0.8310 1.487262004 -0.461786352 

Lemma 7.13. Suppose a2 = 2, a3 > 191 and d > 20000. Then 

f 1027+ 200.0 d-1 (0.427- 2%- -2 a )- form = 1, 
5m(a3,as,a6) < 1 1 1i-1 

10-27 + 807.4 d-* (0.951 -2a3 2 _a 2 a-62) for m = 2. 

Proof. For ai = 1 and a2 = 2 we could use Lemma 4.1 (with 4 > 5000) to get 

jh(m, f)j < 10-30 for m < 2 (with k = 137). For a3,... , a6 we used Lemma 4.2 
to get Ih(qm, f)I < C d- 4 with C = 97.4 for m = 1 (with J = 2) and C = 167.7 for 

m = 2 (with J = 3). By direct computation we obtained 1 + 2-c-'rl > 0.427, 

21 2 -2 > 0.951. See also Table 3. O 

Lemma 7.14. Suppose d > 6.2 1013, a2 = 2, a3> (d)3 Then 

x1 > 2.249 log d - 8.543 - 0.398 (2- ? + 2a3 2 + a5 + a6 

d > 41.39 exp (0.444 x - 0.177 2- 2 + 2a3 2 + a5 2 + a6 2 

Under the assumptions made, we always have xi > 63, and if xi > 67, then 
d > 2.3 1014. 

Proof. Analogous to [16, Lemma 8]. We have 61(a3,a5,a6) < ' -by Lemma 7.13, 
because a3,... , a6 > 24934. Now use Lemma 7.11 and the inequality Iarg(1 + z)j < 
51zj for lzl < . I O 4 

~~~10* 

Lemma 7.15. Suppose d > 6.2. 1013, a2 = 2, ai > (d) i-3,... ,6. Then 

X2 --Xi-A2 - ( arg (1+22+iT)-arg 1+2-2 
T2 ~~~1 -ag(?2?i2) 

< 10-27 + a3 2 - +a2 + 2 ) 

1d-- (`2 200.0 +807.4 6 j4 7 _1 1 _1 1 _ 
6 1) 0.427-2a3 l-a5 2 _a-!y 0.951-2a3 2-a5 2-a 2 \0427-a3 a5 -6 3. 

Proof. Directly from Lemma 7.12, because 61 (a3, a5, a6) < ' and 62 (a3, a5, a6) < 

by Lemma 7.13. H 

Lemma 7.16. Suppose 6.2* 1013 < d < 2.3 1014, a2 = 2, ai > (d) 3 3,. . 6. 
Then h(-d) 7/ 6. 
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Proof. We have ai > 24934, i = 3,... ,6, and x1 > 63 by Lemma 7.14. We want 
to show that xi > 67, for then d > 2.3 1014 by Lemma 7.14. By Lemma 7.15 we 
have 

x2 x1-A2 - arg (1 + 2- arg (1 + 2-+i2)) < 0. 14. 

But from 

- (-arg (i ? 2I+iT) - arg 1 + 2-2?+i2 = -0.5414 + 10-40 

and 2 = 1.487262004 + 5* 10-100, A2 = -0.461786352 + 5 10-100 (cf. Table 3) 
it follows that 

x2 - -xI -A2 - arg 1 + 2-2 )-arg (1 + 2-2 )) > 0.15 

for x1 = 63, ..., 66, because X2 is an integer. 

In a last theorem we are summing up the results of this section. 

Theorem 7.17. Suppose 
1) 17923 d, a2 = 2, 6.2 1013 < d < 10574 or 
2) 17923 d, a2 = 3, 3. 1013 < d < 10574, or 
3) 17923 d, a2> 5, 2. 1013 < d < 10574, or 
4) 17923 d, 1.1. 1014 <d < 10574. 

Then h(-d) =A 6. 
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