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ON THE BETA EXPANSION FOR 
SALEM NUMBERS OF DEGREE 6 

DAVID W. BOYD 

ABSTRACT. For a given /3 > 1, the beta transformation T = T,3 is defined 
for x E [0,1] by Tx := Ox (mod 1). The number 1 is said to be a beta 
number if the orbit {Tn (l)}n>1 is finite, hence eventually periodic. It is 
known that all Pisot numbers are beta numbers, and it is conjectured that 
this is true for Salem numbers, but this is known only for Salem numbers of 
degree 4. Here we consider some computational and heuristic evidence for the 
conjecture in the case of Salem numbers of degree 6, by considering the set of 
11836 such numbers of trace at most 15. Although the orbit is small for the 
majority of these numbers, there are some examples for which the orbit size 
is shown to exceed 109 and for which the possibility remains that the orbit is 
infinite. There are also some very large orbits which have been shown to be 
finite: an example is given for which the preperiod length is 39420662 and the 
period length is 93218808. This is in contrast to Salem numbers of degree 4 
where the orbit size is bounded by 2/ + 3. An heuristic probabilistic model 
is proposed which explains the difference between the degree-4 and degree-6 
cases. The model predicts that all Salem numbers of degree 4 and 6 should 
be beta numbers but that degree-6 Salem numbers can have orbits which are 
arbitrarily large relative to the size of 13. Furthermore, the model predicts that 
a positive proportion of Salem numbers of any fixed degree > 8 will not be 
beta numbers. This latter prediction is not tested here. 

1. INTRODUCTION 

The purpose of this paper is to present some results and observations regarding 
the beta transformations introduced by Renyi [8]. Given p3> 1, the beta transfor- 
mation T = T,g is defined for x E [0,1] by Tx := fx mod 1. Parry [7] defined ,B 
to be a beta number if the orbit {Tn(1)} is finite. If Tn(l) = 0 for some n, then 
/ is a simple beta number. If 3 is a beta number which is not simple, then there 
is some smallest m > 1 (the preperiod length) and p > 1 (the period length) for 
which Tm+P(l) = T'(1). For a simple beta number we define m = 0 and p to 
be the smallest integer with TP(1) = 0. Notice that m + p is the size of the orbit 
{Tn (1)}n>1. 

It is easy to see by induction (see below) that there are integers Ck with 0 < Ck < 

/3 (the digits in the beta expansion of 1) for which Tn(1) = in - Cl3n-1 - - Cn, 
so that Tn(1) = Pn(f), where 

(1.1) Pn(x) = xn_Cixn-1 Cn 

(?1996 American Mathematical Society 

861 

Received by the editor June 20, 1994. 
1991 Mathematics Subject Classification. Primary 11R06, llK16; Secondary llY99. 
Key words and phrases. Salem numbers, beta expansions, polynomials, computation. 
This research was supported by a grant from NSERC. 



862 DAVID W. BOYD 

Thus, if f is a beta number, then f satisfies the polynomial equation R(3) = 0, 
where 

(1.2)) R(x) = { Pm+p (X) - Pm(X) if m > 0, 
PP(x if m =0. 

In particular, a beta number is an algebraic integer whose minimal polynomial P(x) 
divides R(x). The degree D = D(p) := m + p of R is the beta degree of 3, which 
is in general larger than deg(f), the degree of f, which is defined to be the degree 
of its minimal polynomial P. As we observed above, D is the size of the orbit 

{Tn (1)}n>1. 
The polynomial R is called the characteristic polynomial of 3. Parry [7] showed 

that the roots of R other than f lie in the disk IzI < min(2, f). This was improved 
to lzl < (V/5 + 1)/2 by Solomyak [11] and Flatto, Lagarias and Poonen [4] inde- 
pendently. In fact, Solomyak gives an exact description of the compact subset of 
the plane which is the closure of the set of all conjugates (other than f) of beta 
numbers. 

Recall that a Pisot number (or Pisot-Vijayaraghavan number, or PV number) 
is an algebraic integer f > 1 for which all conjugates -y of f with -y 7& f satisfy 

1-xY < 1. A Salem number is an algebraic integer / > 1 for which all conjugates 
-y 7f i satisfy 1-xY < 1 with at least one conjugate having 1-xY = 1. This implies that 
f is reciprocal, so f-1 is a conjugate of f and all other conjugates -y satisfy IOYI = 1. 
Hence, deg(f) is even and > 4 [9, p.26]. 

Schmidt [10] showed that every Pisot number is a beta number. This was also 
proved independently by Bertrand [1]. The idea behind the proof, which is based 
on the box principle, goes back to a paper of Gelfond [5]. Schmidt also showed 
that if every rational x E [0, 1] has a periodic expansion in base f (i.e., the orbit 
{Tn(x)} is finite), then / must be a Pisot or Salem number. He conjectured that 
the converse is true, so in particular that every Salem number would be a beta 
number. A simple result from [3] is that a Salem number cannot be a simple beta 
number: clearly the characteristic polynomial of a simple beta number has a unique 
positive root, but a Salem number f has two positive conjugates, namely f and 
1/f. 

In [3], we showed that if f is a Salem number of degree 4, then f is a beta 
number. (We did not consider Schmidt's more general conjecture there; it remains 
open for Salem numbers of all degrees.) The explicit beta expansion of each such 
f was given. In all cases m = 1, i.e., f (mod 1) is a purely periodic point of T. If 
f has the minimal polynomial P(x) = x4 - ax3 + bx2 - ax + 1, then for fixed a the 
period p = p(b) is a unimodal function of b and takes on values which lie in the set 
{3,5,9}U{p even: 6 < p < 2a-4}. Thus, D = m+p < 2a-3 < 2a = 2 trace(p) for 
all Salem numbers of degree 4. No such bound seems to be true for Salem numbers 
of higher degree. 

If we write can = Tn(1), then the canonical beta expansion of 1 to base f > 1 is 
defined by the "greedy" algorithm: oaO = 1, Cn = loan-,] and can = Oan-1 - Cn, 

for n > 1. Clearly, 0 < cn < 3 for all n, and 

00 

(1.3) 1 =E Cnon 

n=1 
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We will refer to the sequence {cn} as the beta expansion (of 1) for d. If this 
expansion is periodic, with preperiod length m and period length p, we denote it 
by cl ... cp, if m = 0, and by cl .. cm: cm+1 ... cm+p if m > 0. A simple criterion 
for {c, } to be the beta expansion for some 13 > 1 was given by Parry [7,p.407]: the 
sequence C1,C2,... must dominate, in the sense of lexicographic order, the shifted 
sequences Ck,Ck+l,..., for all k > 1. The number d is then determined by (1.3). 
For periodic expansions, 73 is also determined by (1.2). 

Our main purpose here is to consider whether Salem numbers of degree 6 must 
be beta numbers. We compute the beta expansions for all but 80 of the Salem 
numbers of degree 6 and trace at most 15 (there are 11836 such numbers). For all 
but 199 of these, we have max(m,p) < 1000. However, there is one example for 
which (m,p) = (39420662,93218808), and two examples for which we can show that 
D > 109 but do not know whether D < oo. The existence of such examples shows 
that the situation for Salem numbers of degree 6 is certainly more complicated than 
the degree-4 case. However, the fact that there are examples with D very large but 
finite perhaps supports Schmidt's conjecture for Salem numbers of degree 6. 

In ?6, we give a heuristic probabilistic argument based on ideas of the geometry of 
numbers which makes plausible the observed difference between the cases deg(73) = 
4 and deg(7) = 6. The argument correctly predicts that D(73) will be small relative 
to 7 for Salem numbers of degree 4. It predicts that almost all Salem numbers of 
degree 6 will be beta numbers but that D(73) can be arbitrarily large even for small 
7. Moreover, it predicts that for each fixed even degree d > 8 there should be a 
positive proportion of Salem numbers of degree d which are not beta numbers, as 
well as a positive proportion that are beta numbers. We present no computational 
evidence here for this latter prediction. 

The heuristic argument suggests, for Salem numbers of fixed degree d, that the 
size of D(73) is directly related to the size of 13d-l/Idisc(73)l/2. Here disc(73) denotes 
the discriminant of the polynomial P. We explore this connection through some of 
the computed examples for d = 6. 

The heuristic arguments apply equally well to Schmidt's more general conjecture 
concerning the periodicity of the beta expansions of rationals to a Salem number 
base, and predict that Schmidt's conjecture is true for numbers of degree 4 or 6 
and false for numbers of higher degree. For d = 4, the model predicts that the 
size of the orbit {Tn (p/q) } for fixed 7 should be roughly proportional to q4. These 
predictions are not tested here. 

2. RECOGNIZING SALEM NUMBERS OF DEGREE 6 

A Salem number 7 of degree 6 has a minimal polynomial of the following form: 

(2.1) P(x):= x6 +-ax5 +bx4? cx3- bx2 +ax+1, 

where a, b and c are integers. The trace of 7 is trace(7) = -a = 0 7, where 
the sum is over the six conjugates of 73, i.e., the six roots of (2.1). Two of these 
conjugates are 7 and 1/7 and the remaining conjugates satisfy 1731 = 1, so a bound 
on IaI implies a bound on 7 and hence on IbI and cl. So, for fixed a, there is a finite 
set of 7 with trace(73) = -a. Observe that 

6 

trace(73) = -a > 3 + 1//3-Z 17, > 2-4 =-2, 
t=3 
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so trace(p) > -1 for all Salem numbers of degree 6. In fact, there are no such 
numbers with trace -1, 4 with trace 0, 15 with trace 1, and 39 with trace 2. 

It is not difficult to recognize Salem numbers of degree 6. Since P(x) is reciprocal, 
we can write 

(2.2) P(x) = x3U(X + l/X), 

where 

(2.3) U(x) =x 3 + ax + (b-3)x + (c-2a). 

The zeros of U are the numbers pi + 1/pi and hence U must have two roots in 
the open interval -2 < x < 2 and one root with x > 2. This is equivalent to 
the following requirements: (i) U(+2) < 0, (ii) U'(x) has real roots, the smaller of 
which, (l satisfies -2 < (l < 2, and U((,) > 0. We used this criterion in compiling 
our list of Salem numbers. 

We also require U to be irreducible. Since U is cubic, it suffices that U(n) 7& 0 
for any integer n. Only a finite set of n need be checked since, by a well-known 
estimate of Cauchy, U(x) =A 0 for lxl > 1 + max(lal, lb - 31, Ic - 2al) . It is easy 
to see that P can only factor into factors of even degree since the roots f and 1/f 
must belong to the same factor, or else there would be a factor the product of 
whose roots is in absolute value less than 1, which is clearly impossible. Thus, P 
is irreducible if and only if U is irreducible. 

The following useful result is an elementary deduction from the above discussion. 

Lemma 2.1. Let P be as in (2.1) and U as in (2.3). A necessary condition for P 
to be the minimal polynomial of a Salem number is that 

(2.4) U(+2) < 0 and U(n) = 0, 

for -1 < n < 1 + max(lal, lb - 31, Ic - 2al). A sufficient condition for P to be 
the minimal polynomial of a Salem number is, in addition to (2.4), any one of 
U(-1) > 0, U(0) > 0 or U(1) > 0. 

In general, if P is the minimal polynomial of a Salem number of degree d = 2s, 
then there is a monic polynomial U with integer coefficients for which P(x) = 
xsU(x + 1/x). The numbers pi + 1/pi are the zeros of U repeated twice each. The 
following computation gives a useful expression for disc(p): 

disc(P) = (-i)(2) 171 P'(/) =d(-1)S 17 s 
iU'(/3 + 1 /fl)(1 - 2) 

(2.5) i 

= (-1)sP(1)P(-l)disc(U)2 = U(2)U(-2)disc(U)2. 

3. ARE SALEM NUMBERS OF DEGREE 6 BETA NUMBERS? 

In this section we describe the results of a computation of the beta expansions 
for the 11836 Salem numbers of degree 6 and trace at most 15. The complete 
expansion was obtained except in 80 cases. The distribution of the pairs (i,p) 
for these numbers is quite remarkable. For the most part there is a great deal of 
regularity, and the values of m and p are quite small: for all but 199 of the numbers 
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TABLE 3 (a = -3 and b = -1) 

c m p disc(p) disc(p) / 0()t 

5 1 12 485809 172 .412 2.81016 .0689 
4 1 9 3534400 26 52 472 2.95386 .0328 
3 1 7 11471769 32 11292 3.07216 .0222 
2 1 7 25563136 212 792 3.17425 .0175 
1 1 7 45225625 54 .2692 3.26491 .0151 

-1 1 5 88642225 52 .72 .2692 3.42227 .0137 
-2 1 5 102252544 214 .792 3.49209 .0141 
-3 1 5 103245921 34. 11292 3.55736 .0154 
-4 1 14 88360000 26 54 472 3.61877 .0181 
-5 1 12 58782889 112 .172 . 412 3.67857 .0240 
-7 * * 405769 74. 132 3.78470 .3342 

* for c =-7, m + p > 1199978517. 
t C(p3) = (7r/6)235 /disc(o) 1/2. 

surveyed, both m < 1000 and p < 1000. For 9609 of the numbers (81% of the total) 
we have m = 1, but, in contrast to the degree-4 situation, larger values of m do 
occur with a certain regularity. However, among the remaining 199 cases, there are 
at least 79 for which D = m + p > 106 and at least two for which D > 109. 

The two known examples with D > 109 are (a, b, c) = (-3, -1, -7) and (a, b, c) = 

(-5, -2, -11). This might suggest that these 3 are not beta numbers. How- 
ever, there are some very large values of m and p among the cases where (m, p) 
has been determined. The (current) record is attained for (-6, -5, -14), which 
has (m,p) = (39420662,93218808). Other notable values are (-5,-22,-33) with 

(m,Ip) = (8604828,9101), and (-9,-23, -28) with (m,p) = (1979174,11754). 
A sample of these numerical results is presented in two tables organized as fol- 

lows. In Table 1 of the Supplement all quintuples (a, b, c, m, p) with 0 < -a = 

trace(p) < 5 are listed, provided both m < 10000 and p < 10000. The complete 
table for 0 < trace(p) < 15 is over 20 times longer than that presented here and 
has much the same general appearance. Table 2 of the Supplement gives the 36 
values (a, b, c) with -a < 10 for which min(m,p) > 10000. This includes 18 cases 
where only a lower bound for D = m + p is known. 

Although there must be other factors involved, the argument of ?6 suggests that 
the size of D(p) is directly related to the size of C(p) = (wr/6)2/d-1/disc(/)1/2. 

In particular, numbers with smaller discriminants should have larger orbits. The 
prediction of ?6.6 is that the orbit will be finite provided C($) < 1. We illustrate 
this in Table 3, where we list the values of m, pI disc(/3) and C(,3) for the 7 Salem 
numbers with a =-3, b =-1, so -7 < c < 5. The omitted values of c correspond 
to reducible polynomials. 

One might expect that the size of the period of / might depend on arithmetic 
properties of / or perhaps on the existence of approximate multiplicative relation- 
ships between the conjugates -y of / with 1-YJ = 1. If this were true, then one would 
expect powers of /3 to behave in a manner similar to d. A counterexample to this 
expectation is the : with (a, b, c) = (-3, -1, -7), where D > 109. Here, /2 has 

(a, b, c) = (-11, -43, -63) with (m,p) = (1, 102). 
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TABLE 4 (powers of 3 = 1.40126837.. .) 

k a b c m p disc(3) disc(/) 1k c(/3k)t 

1 0 -1 -1 1 7 52441 2292 1.40127 .0065 
2 -2 -1 3 1 9 52441 2292 1.96355 .0349 
3 -3 2 -4 1 10 3356224 26 . 2292 2.75146 .0236 
4 -6 11 -13 1 22 2569609 72 2292 3.85554 .1457 
5 -5 -1 -6 1 14 3436773376 216 2292 5.40265 .0215 
6 -5 -16 -24 8867 439 13424896 28 . 2292 7.57056 1.8607 
7 -14 41 -57 * * 8862529 132 2292 10.60838 12.3727 
8 -14-13 3 131 267 12538872214729 72 474 2292 14.86519 .0562 

* for k = 7, m +p > 1771674. 
t C(:) = (7r/6)2i35/disc(:)1/2. 

Exploring this theme further, we consider the powers of the smallest Salem num- 
ber of degree 6, / = 1.40126. . ., which has (a,b,c) = (0,-1,-1). For 1 < k < 8, 
Table 4 gives (a, b, c) for the minimal polynomial of Ok, the values of m and p, 
disc(/k) and C(pk). The factored form of disc(d3) is given for the sake of interest, 
although the arithmetic properties of / appear to play no role here. 

4. PATTERNS AND REGULARITIES IN THE TABLES 

Many regularities are apparent in Table 1. For example, it is easy to spot 
numerous occurrences of (m,p) = (1,5), (1,6), (1,7), (5,33), etc., and even to 
guess the general pattern of such occurrences. Such results can usually be proved 
by the method of [3]. That is, one guesses the expansion c1 . .. cm: Cm+1 ... Cm+p of 
/, verifies that this purported expansion is a legitimate expansion of a beta number 
/3' according to Parry's criterion, computes the characteristic polynomial R(x) of 
3' by (1.2), and verifies that R(x) is divisible by P(x), the minimal polynomial of 

/3. For example, here are some simple cases: 

Proposition 4.1. Let 3 be a Salem number of degree 6 with minimal polynomial 
P(x) given by (2.1). Then (m,p) = (1,5) if and only if a < b < 0 and a < c < 0 
and a < -1. 

Proof. For convenience, write (a, b, c) = (-A, -B, -C). The minimal polynomial 
P(x) of / must satisfy 

(4.1) P(x) = P6 (x) - P (x). 

This implies that 

(4.2) Cl:C2,. ..,C6 = A:B,C,B,A-1,A-1. 

Next we must determine the conditions under which the expansion satisfies cn > 0, 
for all n, and that, for all n> 1, 

(4.3) (Cl i C2, > (C"', C+, ), 

where, in (4.3), > denotes lexicographical order [7,p.407]. From (4.2), we see that 
the condition c1 > cn > 0, for all n, implies A > 1, A > B > 0, and A > C > 0. 
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But it is easily seen that these conditions insure that (4.3) holds for all n and hence 
that (Ci, c2, ... ) is the beta expansion for a number 3' given by (1.3). 

The right member of (4.2) defines a sequence with m = 1 and p a divisor of 5, 
so either p = 1 or 5. However, p = 1 occurs only if B C = A - 1 and this is 
the expansion of a beta with minimal polynomial x2 - (A + I)x + 1, not a Salem 
number. This can be easily seen from (1.3) or by observing that the polynomial 
U(x) =x3 -Ax2-(A + 2)x + (A + 1) vanishes at x = A + 1. 

The periodicity of {cn4 shows that R(x) = P6(x) - Pi(x) is the characteristic 
polynomial of 3'. But (4.1) shows that R(x) = P(x), the minimal polynomial of /. 
Hence, , = B', so / has (m, p) = (1, 5). 0 

Proposition 4.2. Let /3 be a Salem number of degree 6 with minimal polynomial 
P(x) given by (2.1). Then (m, p) = (1, 6) if and only if (a, b, c) = (-A, B, -C), 
where A, B and C are positive integers satisfying A > 2, A > B, A + B - 1 > C > 
B > 1 with the further condition that if A + B - 1 = C, then A = C and B = 1. 

Proof. Suppose the beta expansion of / is cl: c2 ... c7, so that the characteristic 
polynomial is 

(4.4) R(x) = P7(x) - Pi(x) = x7 - c1 X6 -C5X2- (C6 + 1)x - (c7 - Cl). 

Let P(x) = x6 - Ax5 + Bx4 - Cx3 + Bx2 - Ax + 1 be the minimal polynomial of 
/. If this is to divide R(x), then the quotient must be of the form x + d for some 
integer d =A 0. By a result of Parry mentioned earlier, since -d is a root of R(x) 
other than /, it must satisfy IdI < 2 and hence d = +1. FRom (4.4), d = cl -C7, and 
since cl > C7 by Parry's criterion, we must have d = 1. Equating the coefficients of 
P(x)(x + 1) with those of (4.4) thus shows that 

(4.5) C1:C2, ... i,C7 =A-1:A-B,C-B,C-B,A--B,A-2,A-2. 

The conditions cn > 0 for all n imply A > 2, A > B and C > B. The conditions 
C1 > C2 and cl > C3 imply B > 1 and A+B-1 > C. Finally, if c1 = C3, i.e., 
C = A + B - 1, then we must have C2 > C4, that is A > C; but B > 1 implies 
C = A + B - 1 > A, so in this case A = C and hence B = 1. 

To finish the proof, we must verify that Parry's criterion follows from the in- 
equalities in the statement of the proposition, the equation (4.5) defining cn for 
n < 7, and the assumed periodicity of cn. This involves checking only a finite num- 
ber of cases: for example, to verify that (C1,C2,...) > (C4i ,C5,...), we note that 
C1 > c4 follows from A+ B-1 > C, and that ifc1 = C4, then A = C and B = 1, so 
C2 = C5 (always true here), and C3 = C - B = A - 1 > A -2 = c6. The remaining 
cases are similar and left to the reader. 

Finally, we must verify that the exact period is 6 and not a divisor of 6. For 
example, if p = 1, then (4.5) would imply that A = C and B = 2. Then we find 
that U(x) = X3-Ax2 -x+A, so that U(1) = 0 and hence P is reducible. Similarly, 
p = 2 or p = 3 lead to U(1) = 0 and the reducibility of P. 

Proposition 4.3. Let /3 be a Salem number of degree 6 for which 

(a, b, c) = (-A + 1, -A, -2A), 

for some A > 4. Then (m,p) = (5,33). 
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Proof. Let PA (x) = x 6+X5?+x+-A(x5 +x4+2x3+x2+x). Then PA is the 
minimal polynomial of a Salem number OA, for A > 0, by Lemma 2.1. Let Fq(x) 
denote the qth cyclotomic polynomial (the minimal polynomial of the primitive qth 
roots of unity), and define Q(x) = F2(x)F6(x)F33(x)(x9 + x2 - 1), so that Q is a 
nonreciprocal polynomial of degree 32. We claim that the beta expansion of OA has 
(in,p) = (5,33) and is given explicitly by 
(4.6) 

A, 1,(A-2), A, 1: (A- 2), 0, A, 0, 0, (A-2), 1,1, (A-2), 0, 0, A, 0, (A-2),2, 0, 

(A-4),3,1, (A - 4),2, 0, (A - 2),2, (A - 2),0,2, (A - 4),1,3, (A-4),O,2 . 

To prove this, we note that, for A > 4, the sequence {cn} defined by (4.6) is the 
beta expansion of some /3A[, since it satisfies Parry's criterion. This is obvious since 
ci = A > cn for all n and if equality holds (i.e., n = 8 or 17), then C2 = 1 > Cn+1 

0. The condition A > 4 guarantees Cn > 0 for all n. 
Let RA(x) be the characteristic polynomial of O' . We must next verify that 

(4.7) PA(x)Q(x) = RA(X). 

This is an elementary algebraic computation which is made easier by observing 
that the coefficients of PA (x) and RA (x) are linear functions of A, and hence the 
identity need only be established for two values of A, e.g. A = 0 and A = 1. We 
leave this to the reader who may wish to use a computer algebra system. 

Since Q(x) has no positive roots, (4.7) implies that OA = OA[, and hence that 
(4.6) is the beta expansion of /3A. It is clear in this case that the period of the 
expansion is 33 and not a proper divisor of 33 because of the positions of the two 
Cn = A. C 

Remark 4.1. The condition in Proposition 4.3 is only a sufficient condition for 
(mi, p) = (5,33). There are many other occurrences of (5,33) besides the ones 
described here. 

5. THE COMPUTATION OF THE BETA EXPANSION 

5.1. The basic algorithm. Recalling the definitions of ?1, we write an = Tn(1) 
for n > 0, and Cn = L/3an-1J for n > 1. Consider first how one would compute these 
quantities using an approximation to the real number /. If an approximation /3o to 
/ is used which has Io - /o = c, then the error in the corresponding approximation 
to an is about /3on. Thus, for large n it will be impossible to compute cn correctly. 
In addition, even for small n, it would be impossible to decide whether or not 
Oam = An for some min n. 

On the other hand, if /3 is an algebraic integer, then all an lie in Z[O]. Specifically, 
if /3 has degree d and minimal polynomial P, and if Bn is the polynomial of degree 
d - 1 defined by Bn(X) Pn(X) (mod P(x)), where Pn(x) is as in ?1, then an 
Bn (/3). The Bn thus provide an exact representation of an I so the question a!n = am 
can be effectively answered. Since the Bn satisfy the recurrence 

Bn(X) =xBn-i(x)-cn (mod P(x)), 



BETA EXPANSION FOR SALEM NUMBERS 869 

the computation simply involves a shift of the coefficients of B1_1 followed by the 
replacement of xd by xd - P(x). 

The only difficulty is the determination of c, = L/Bn_i(/3)J. This can be com- 
puted using an approximation /o to / of modest accuracy unless /3c,,-1 is unusually 
close to an integer c. If /3 is a Salem number, standard arguments from transcen- 
dence theory show that 

1,3an-i - cl > (L(Bn-1) + cl + 
1)-d+1, 

where L(Bn_-) denotes the sum of the absolute values of the coefficients of B_1. 
One simply observes that there is an obvious bound on the conjugates of B_ 1 (/) 
owing to the fact that the other conjugates of /3 all have absolute value < 1, and 
that the product of all the conjugates is a nonzero integer. 

In practice, we can simply choose an approximation ,3o to /3 of fixed accuracy e. 
(We usually chose e to be 5 x 10-16 or 5 x 10-32.) The number ( = /oBn_1(0o) 
is an approximation to 3anc-1 whose accuracy is easily estimated. If xBn -(x) = 
blx + b2x2 +. + bdXd , and if r = E lbili(/3o +)i1, then l/oan-1 - l < 7. Thus, 
if the distance from ( to the nearest integer is at least q, then L4J = L3anc- J = Cn. 

Our algorithm begins with e = 5 x 10-16 (double precision). If at some point 
in the computation, the criterion of the previous paragraph fails, the computation 
of ( is repeated with a /0 having accuracy e < 5 x 10-32 (quadruple precision). 
If the criterion fails at this level of accuracy, then the computation is terminated. 
This occurred for only five values of /3 in our entire project, one of which can be 
recognized in Table 2: (m,p) is not given, but the corresponding lower bound on 
D is < 106. 

For each (a, b, c), the values of n for which a change from double precision to 
quadruple precision was necessary were recorded in a file during the computation. 
We indicate below how these values were used in some cases to determine some of 
the larger values of (m, p). 

As a sample of the accuracy needed, suppose we were to take e - 10-13 for the / 
with (a, b, c) = (-3, -1, -7). Then for n = 167305 one computes ( = 1.0000004249, 
suggesting that cn = 1, while in fact /3an-1 = .9999999851, so cn = 0. On the other 
hand, for most values of n, a far less accurate value of /0 would suffice. The two- 
tier arrangement described in the previous paragraph allows one to make use of the 
fast double-precision multiplication on the machine used (an Amdahl 5860) while 
retaining the benefits of a higher-precision calculation when required. One could 
easily envision a multiple-tier approach. 

The sequence {oan} is periodic if and only if {L(Bn)} is bounded. Thus, if / is 
a beta number, its expansion can be computed using an approximation 30 of some 
fixed accuracy (which depends on /3, of course). 

5.2. Variations on the basic algorithm. An alternative approach, which avoids 
the computation of 7 at each step, is to compute cn by using integer arithmetic. Let 
M be the companion matrix to P(x), so that the eigenvalues of M are the conjugates 
of /3. If Bn(x), as above, is such that an- Bn (/3), then the eigenvalues of Bn(M) 
are the conjugates of an and the eigenvalues of MBn(M) are the conjugates. of 
/3can 

Now, /3Can has exactly two real conjugates corresponding to the two conjugates 
/3 and /-1 of /. Since 0 < Ck < / for all k, it is easy to see that the conjugate of 
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/3Oan corresponding to 3-1 is 3-1B(Q3-1) = 3-lPn(3-1) < 0. Let us denote this 
conjugate by an. For c > 0, /3n - c has two real conjugates n - c < 0 and /3n - c 
itself. By definition, cn = max{c /3an - c > O}. Since all other conjugates are 
nonreal, the sign of the product of all conjugates is determined by that of /3n - C, 
and thus 

Cn = max{c: det(MBn(M) - c) < 0}, 
which is a compuation involving only finding the determinant of a finite number of 
matrices with integer entries. 

Note that the matrix Bn(M) is as good a representation of an as is Bn(x) and 
can be computed from the recursion Bn+1 (M) = MBn (M) - cn without explicitly 
computing the coefficients of Bn (X) . Of course, Bn(M) has d2 integer entries rather 
than the d entries of the coefficient vector of Bn(X). 

Since the determinant computed above is just the resultant of xBn(X) - c and 
P(x), another alternative is to use the coefficient vector of Bn (x) to represent an 
and replace the determinant computation by the computation of a resultant at each 
step. Or, combining the approaches of ?5.1 and ?5.2, one could compute cn using 
floating point except in "delicate" cases. 

Experiments showed that the approach of ?5.2 was generally considerably slower 
than that of ?5.1. 

5.3. Detecting periodicity. A standard method for detecting periodicity in 
single-step recurrences is Floyd's algorithm, described in [6, p.7, exs. 6 & 7]. Hav- 
ing computed B1,... ,B2n, one tests whether Bn = B2n. If {Bn} is periodic with 
Bm = Bm+p for minimal m and p, and if n = sp satisfies m < sp < m + p, then 
Bn= B2n. Once n = sp is found, one determines p by finding the minimal divisor 
of n for which Bn = Bn+d. Finally, one finds m by testing whether Bj = Bj+p for 
j < n. 

For small N, one can do this in a straightforward way for n < N by storing a 
table of B1, . .. , B2N. For larger N, once memory becomes insufficient, one instead 
computes Bn, B2n-1 and B2n at each step. This requires 3N of the basic steps to 
reach n = N, rather than 2N. 

If we have not proved that the sequence is periodic by the time we have reached 
B2N, then we know that D = m + p > N. This observation accounts for only one 
of the lower bounds in Table 2, namely (-7, -29, -43), for which the lower bound 
is exactly 106. 

A more useful method for obtaining lower bounds on m + p is based on the 
following observation. Let H(Bn) denote the maximum of the absolute values of 
the coefficients of Bn. During the computation, maintain a list of the record values 
of H(Bn), i.e., those n for which H(Bn) > H(Bk) for all k < n. Clearly, if H(Bn) is 
a record, then B1, .. ., Bn are all distinct, so we know that D > n. In those cases for 
which a preliminary computation up to N = 105, say, had indicated that {Bn } did 
not have a small period, our program continued to compute Bn up to N = 2 x 106 

without employing Floyd's algorithm. If the last record occurred for n > 106, then 
this was larger than could have been obtained from Floyd's algorithm and the cost 
was less than 2/3 the cost of using that algorithm. On the other hand, in those rare 
cases where the last record occurred for n < 106, the computation was repeated 
using Floyd's algorithm and a relatively small (m, p) was usually detected. 

For example, with (a, b, c) = (-9, -23, -28), a computation up to N = 109 indi- 
cated that the last record occurred at n = 1782995, suggesting a periodic sequence. 
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A recomputation of Bn in the range 1780000 < rn < 3800000 found the values 
(m,p) = (1979174,11754). 

As mentioned above, a list was maintained of values of n, Bn for which the com- 
putation of cn required quadruple precision. Let us call these n markers. Suppose 
one has computed B1,. . . , BN, where N > m + 2p, and that one of these markers, 
nl, occurs within the periodic part of the sequence, that is, for m < n < m + p. 
Then, by periodicity, n2 = nr + p must be a marker and thus must occur within 
the list of markers. Thus, by scanning this list of Bn for repeats, one can obtain p 
directly, as well as an upper bound on m. A recomputation of Bn in a short range 
enables one to compute m exactly. 

For example, with (a, b, c) = (-6, -5, -14), we computed Bn up to N = 2 x 108 
and determined that the last record occurred for n = 45622056, suggesting that 
the sequence was possibly periodic. A check of the list of markers revealed that 
Bn= Bn+q for n = 39667761 and n+q = 132886569, and that no marker k between 
these values had Bk = Bn. Thus, the period was revealed to be p = q = 93218808. 
Since n, = 39260289 is a marker, but ni + q is not, the list also showed that 
ni < m < n, and a binary search in this range revealed that m = 39420662. 

On the other hand, for (a, b, c) = (-3, -1, -7), we computed Bn up to N = 1.2 x 
109. The last record of H(Bn) (which was 81363), occurred for nr- 1199978517, 
giving the lower bound for D = m + p listed in Table 2. The computation of 109 
values of Bn required 8.25 hours of CPU time on the Amdahl 5860. Even if p < o0, 
it does not seem practical to compute p in this case by a direct approach unless p 
should happen to be quite small relative to m + p. 

In addition to the markers, a table of Bn for multiples of 106 was also maintained, 
so that the computation could be restarted from any such value without having 
to recompute the entire sequence. Although the markers here arose in a natural 
way from the algorithm employed, one could clearly also use some more artificial 
criterion for inventing markers. For example, one could store all those pairs (n, Bn) 
with the first component of Bn divisible by 1000. Then, in a computation up to 
N = 109 one would expect about 106 values of Bn to be stored, and that one of 
these values would occur within the period unless p was unusually small. 

6. A PROBABILISTIC MODEL 

6.1. Some ideas from the geometry of numbers. If ,B is a Salem number of 
degree d = 2s, then it has two real conjugates, !31 = ,B and !3,+1 = 1/3, and s - 1 
pairs of complex conjugates !3 = 0,+j for 2 < j < s. All the numbers an = Tn (1) 
lie in the set 2(,3). As is familiar from the geometry of numbers [2, p.96], we can 
think of 2(,3) as a lattice A in jRd defined by mapping -y E 2(p) onto the point 
4'(-Y) = (-(1, W(-Y2), Q(-Y2), ,(.S), (S), -yS+i), where -yj denotes the conjugate 
of -y corresponding to the conjugation ,B -* o. 

The determinant of A [2, p.99] is det(A) = 2-(d-2)/2y/ldisc(/3)1, since there are 
d - 2 nonreal conjugates, where disc(p3) denotes not the discriminant of the field 
Q(,3), but rather the discriminant of the order 2(,3) i.e., the discriminant of the 
minimal polynomial P of ,B. Thus, the number of points of A in a large cube of 
volume V is asymptotically V/ det(A). 

Now, consider the iterates an = Tn(1) as points in the lattice A. By definition, 
O < an< 1. The conjugate En of an corresponding to 1/,B is bn = Pn(1/0), 
which satisfies _32/(p3_ 1) < En < 0. For a typical conjugate -y with 1-yI = 1, 
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the corresponding conjugate of a, is yn = IPn (-y)I < 1 + [j I n. However, it is 
reasonable to expect that ay, may be 0(n6) for some 8 < 1. In fact, it is plausible 
that 8 = 1/2, as we argue in ?6.4 below. The following result contains the only 
completely rigorous argument of this section. 

Proposition 6.1. Suppose that deg(,B) = d, and that 1Yn1 = 0(n6) for all conju- 
gates 1-yl = 1, for some 8 < 1/d. Then Z is a beta number (and hence 1ynI = 0(1)). 

Proof. The pointsal, ... ., ae, of the orbit correspond to the points f(avi),... ,(an) 
in the lattice A. By the estimates on the conjugates just given, these n points lie in 
a cube CO of volume Vn = 0(n6d) = o(n), and since the points of the lattice have 
a constant density in Rd, there are o(n) points of the lattice in Cn. By the box 
principle, for sufficiently large n we must have oa, = ae for some i + j and hence 
the orbit is finite. Once we know the orbit is finite, the conjugates ayn lie in a finite 
set, and so certainly 1-yI = 0(1). D 

Remark 6.1. It is not clear how one would prove that 1-yl = 0(n6) with 8 < 
1 for some given ,B. The main virtue of Proposition 6.1 is that it shows that 
there is a threshold for the rate of growth of 1-yl which must be exceeded before 
nonperiodicity is possible. 

6.2. Replacing a cube by a slab. The condition on 8 in Proposition 6.1 can 
plausibly be replaced by 8 < 1/(d-2). The points b(a,), . ., f/ (an) actually lie not 
just in a cube Cn but in a slab Sn with 2 sides of bounded length, corresponding 
to the conjugates ,B and 1/,B, and d - 2 sides of length 0(n6) corresponding to the 
conjugates 1-yl = 1. The volume of Sn is 0(n6(d-2)), which is o(n) if 8 < 1/(d - 2). 
If we assume that Sn lies in "general position" with respect to A, then we would 
expect it to contain Nn = 0(n6(d-2)) = o(n) points of A. It is possible that the 
slab Sn is tilted in such a way as to contain more than its fair share of points of 
A, but we regard this as unlikely. This cannot happen with the cube Cn used in 
the proof of Proposition 6.1 and is the reason it was used there. If the estimate 
Nn = 0(n6(d-2)) could be established rigorously then, for d = 4, the argument 
here could be applied if 8 < 1/2, which is almost what we get from the nonrigorous 
argument of ?6.4. 

6.3. Assuming the orbit is randomly distributed. If we go beyond the box 
principle used in ?6.1 and ?6.2 and imagine that the points of the orbit a,, ... , an are 
distributed "randomly" in the slab Sn, we can allow a larger value of 8. Suppose that 

I7n = 0(n6) with 8 < 2/(d - 2), so the volume Vn of Sn satisfies V1 = - (n6(d-2)) 
and hence, as in ?6.2, Sn contains Nn = 0(n6(d-2)) - o(n2) points of the lattice 
A. Now suppose that the points b(al),... , /(an) are randomly chosen from these 
Nn points. Then, by the "birthday paradox" we will have a, = a. for some i' j 
with probability tending to 1 as n -* oo. That is, the probability that n randomly 
selected points among Nn are distinct is 

n-1 n-1 

k k/Nn) rI exp(-k/Nn) - exp(--n2/Nn) 3 0, 
_ ~~~~~~~~~~~2 

k=1 k=1 

as n -* oo since Nn = o(n2). 

For d = 4, this argument requires 8 < 1, which is just short of what can be 
proved, while for d = 6, the requirement is 8 < 1/2, which is just short of the 
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6 = 1/2 we obtain in ?6.4 by a "random walk" argument. For d > 8, however, even 
the most favorable assumptions would not seem to justify the expectation that the 
orbit { ak } should be finite. 

6.4. A random walk argument to justify 6 = 1/2. Let us try to justify 
the assumption that JynJ = 0(nl/2). Assume that the digits c, are randomly 
distributed according to the following distribution: Pr{cn = j = 1/3, for 0 < j < 
[3] - 1 and Pr{cn = [0] } = (1 - [3] 7/). In addition, assume that the c, are 
independent. Then E(cn) /3/2, E(cn) /32/3 and E(cmcm) /32/12 if m n. 
Now 

(6.1) lttl=11 - Cl7-_ *- -Cn _-n 1 

and 

n 

(6.2) El Zc1i22 /322!/1 + (/2/4)lQ- - 'y+l)/(1 - ,2 /32n/12, 
j=I 

so 

(6.3) /yn 3 (n /12)1/2. 

6.5. Consequences of the assumption 6 = 1/2. Let us explore the consequences 
of the plausible assumption 6 = 1/2. By (6.3), we expect that [-ynl = O(On'/2), 
where the 0 constant is uniform in /3. Thus the region Sn, being the product of two 
intervals of lengths 1 and /2/(/ - 1) and (d - 2)/2 disks of radius O(/nl/2), has 
volume Vn = O(/d-1n(d-2)/2). Since the points of A are distributed with density 
1/ det(A) = 2(d-2)/2/Idisc(/)l1/2, and assuming Sn is in general position, there are 
Nn = 0(/3d-lmn(d-2)/2/disc(/3)1/2) points of A in Sn. If disc(/) is sufficiently large, 
it is thus possible to push through the argument of ?6.2 for d = 4 and the birthday 
paradox argument of ?6.3 for d = 6 to conclude that the orbit of / should be finite. 

More precisely, V(Sn) 3d-I (7rn/12)(d-2)/2, so Nn C(/)m(d-2)/2, where 

(6.4) C() = /3d-1 (7r/6) (d-2)/2/ disc(/) 11/2 

If /3 is large, then the largest terms in disc(/3) are the d - 1 terms involving the 

conjugate ,3; their product is about /32(d-1). If the conjugates on the unit circle are 
nicely distributed, then we would expect the product of terms involving them not 
to be too small and so "typically" disc(/) ,/2(d-l) and C(/3) = 0(1) from (6.4). 
Values of disc(/3) which are untypically small will lead to large values of C(/). 

6.6. The expected size of the orbits. Now, let Pn 1 - n/(C(/3)n(d-2)/2) 
be the probability that a, 7 a, .a.n. , Then the probability that the points 
ai, aY2, ... are distinct is 

(6.5) ( - 1 ) ={ 
0 if d =4 or 6, 

nl C(/3)n(d-4)/2)l >0 if d>8. 

This suggests that almost all orbits are finite if n = 4,6 while a positive propor- 
tion are infinite if n > 8. 



874 DAVID W. BOYD 

We can distinguish the cases n = 4 and n = 6 by considering the expected size 
(D = m + p) of the orbit. Using the familiar fact that E(D) = En Pr{D > n}, we 
compute 

n 

(6.6) qn = Pr{D > n} = ]7(i C(1)k(d-4)/2 

For d = 4, we thus have qn = qn, so 

(6.7) E(D) = qll(l -ql) =C(:) - 1 

On the other hand, if d = 6, then 

- log qn = log n/C(/3) + 0(1), 

i.e., qn An-l/C(p3), so that 

(6.8) E(D){ < ?? if C(3) < 1, 
=_) if CQ) > 1. 

Remark 6.2. For d = 4, we have shown rigorously in [3] that D(13) < 2 trace(,B) -3 < 
2,B + 3. The largest value of D(13) for ,B with a fixed value of trace(,B) is attained by 
the ,B with minimal polynomial P(x) = x4 -ax3 + (2a - 3)X2 - ax + 1. By (2.4), 
P has discriminant (4a - 1)(a2 - 8a + 20)2 _B5 for large ,B, so that from (6.4), 
C(p) p31/2. Thus (6.7) predicts a smaller value for D(p) than actually attained 
but it does predict that large values of D(/3) occur for small values of disc(,B) and 
vice versa. 

Remark 6.3. For d = 6, the data tends to confirm a direct relationship between 
the sizes of C($) and D(/3), although not quite as dramatic as (6.8) would suggest. 
There are some exceptions as well: for example if (a, b, c) = (-9, -37, -55), then 
disc(,B) = 140682625 is quite small, so C(,B) = 6.6956 is large, but D(/3) = 531230 
is not exceptionally large. On the other hand, the example (-3, -1, -7) with 
D(/3) > 1.2 x 109 only has C(,B) = .3342, which is not very large (although it is the 
largest value of C(3) by far in Table 3, i.e., for (a, b) = (-3, -1)). This is perhaps 
to be expected, given the number of unsupported assumptions we have had to make 
to arrive at (6.8). 

Perhaps the most questionable argument is the deduction of the exponent 6 = 

1/2 in ?6.4. Let 1u(n) denote the maximum modulus of the conjugates of acn, i.e., 
the largest modulus of the eigenvalues of the matrix Bn(M) discussed in ?5.2. 
A fit of a power curve to data from the first 20000 values of 1u(n) for the case 
(a, b, c) = (-3, -1, -7) suggests an exponent .3 < 6 < .4 for this example. A plot 
of 1u(n) versus n in this range suggests some sort of random process but perhaps 
not one well described by the model of ?6.4. Note that, for d = 6, we only need 
6 < 1/2 to apply the birthday paradox argument of ?6.3, so if the growth observed 
for n < 20000 were to persist, then ?6.3 would predict a periodic beta expansion 
for this ,B. 

To test this, let us consider the behavior of the record values of H(Bn) for large 
n still for this ,. So, let M(n) denote the largest value of H(Bm) for m < n. For 
n(=. [o(l k = 1 ... . 9we find that 

(6.9) [M(1Ok) : k = 1, . . ., 9] = [6, 54, 172, 414, 1326, 9701, 21497, 58133, 139410]. 
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Fitting a power curve to these 9 values (by a linear least squares fit to their loga- 
rithms) gives a curve 3.26n 54, suggesting 8 > 1/2. On the other hand, using only 
k = 4,.. ., 9 gives 8 .51, while the data for the 5 values k = 5,.. ., 9 is very well 
fitted by a curve with 8 1 .39. Apparently, this data does not exclude or confirm a 
growth rate of n1/2* 

Another instructive example is (-1, -7, -11), where (m,p) = (2438,863). Here, 
,ur(n) is quite well fitted for n < 2000 by a curve Anr, with 8 = .4. Of course, this 
cannot hold for n -* oc since ,ur(n) is ultimately periodic. 

Remark 6.4. Our computations have concentrated on the question of whether Salem 
numbers are beta numbers and not on Schmidt's more general conjecture that, for 
every Salem number 3 and every rational x E [0,1], the orbit {Tn (x)} should be 
finite. Our heuristic arguments apply equally well to this conjecture. If x = p/q, 
then the iterates Tn(x) lie in (1/q)Z[03], and hence we need only replace the lattice 
A by (1/q)A in the arguments of ?6.1 to ?6.6. The only change is that the density 
of the points of (1/q)A in Rd is qd times as large as the density of the points of 
A. Thus, the qualitative predictions of ?6.1 to ?6.4 are unchanged, i.e., we predict 
that Schmidt's conjecture is true for Salem numbers of degree 4 and 6 but not for 
higher degrees. The main change in the more quantitative analysis of ?6.5 and ?6.6 
is that C(,B) must be replaced by qdC(!). Thus, ?6.6 would suggest that, for fixed 
,B, the size of the orbit {Tn(p/q)} should increase with q as predicted by (6.7) and 
(6.8). That is, for d = 4 the size of the orbit should be roughly proportional to q4, 
and for d = 6 we should expect unusually large orbits as soon as q6C(3) > 1. It 
would be interesting to test these predictions by further computation. 
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