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TWO-LEVEL ADDITIVE SCHWARZ PRECONDITIONERS 
FOR NONCONFORMING FINITE ELEMENT METHODS 

SUSANNE C. BRENNER 

ABSTRACT. Two-level additive Schwarz preconditioners are developed for the 
nonconforming P1 finite element approximation of scalar second-order sym- 
metric positive definite elliptic boundary value problems, the Morley finite 
element approximation of the biharmonic equation, and the divergence-free 
nonconforming P1 finite element approximation of the stationary Stokes equa- 
tions. The condition numbers of the preconditioned systems are shown to be 
bounded independent of mesh sizes and the number of subdomains in the case 
of generous overlap. 

1. INTRODUCTION 

In this paper we develop two-level additive Schwarz preconditioners for the sys- 
tems of linear equations resulting from nonconforming finite element approxima- 
tions of elliptic boundary value problems. We obtain results with optimal conver- 
gence rate (i.e., the condition numbers of the preconditioned systems are uniformly 
bounded) when the overlap between subdomains is generous for the following three 
cases: (I) the P1 nonconforming finite element for the Laplace equation, (II) the 
Morley finite element for the biharmonic equation, and (III) the divergence-free P1 
nonconforming finite element for the stationary Stokes equations. Our precondi- 
tioner is a variant of Dryja and Widlund's (cf. [10]) preconditioner for conforming 
finite element methods (cf. also [14]). 

There is some recent work in this area for scalar second-order equations. Sarkis 
(cf. [15]) has developed a two-level additive Schwarz method using P1 nonconform- 
ing finite elements on both grids, which is insensitive to the jumps in coefficients 
but converges in a suboptimal rate. Cowsar (cf. [8]) has obtained the optimal 
convergence rate for a two-level additive Schwarz method using P1 nonconforming 
finite elements on the fine grid, but P1 conforming finite elements on the coarser 
grid. 

In our approach, both the fine-grid and the coarse-grid spaces are nonconform- 
ing. The critical step is therefore the construction of intergrid transfer operators 
with certain properties. Our construction is based on the connection between the 
nonconforming finite element space and an appropriate conforming finite element 
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space. For problems (I) and (II) we use the P2 conforming Lagrange finite element 
and the P5 Argyris finite element, respectively. Problem (III) is treated through 
the connection between the Morley finite element and the divergence-free P1 non- 
conforming finite element. The results in this paper were first announced in [3]. 

The rest of this paper is organized as follows. The abstract theory for scalar 
elliptic problems is developed in ?2. We show in ??3 and 4 that the abstract 
theory is applicable to problems (I) and (II) by constructing the intergrid transfer 
operators and verifying the assumptions of the abstract theory. In ?5 the theory for 
scalar problems is modified and applied to the elliptic system of stationary Stokes 
equations. 

Throughout the paper we use the following conventions for Sobolev norms and 
semi-norms of a function v defined on an open set G: 

IIVIIHm(G) =(i/ S j d )V d 1/ 

and 

IVIHm(G) =( 5 (vI dx 

We shall also denote the space of polynomials of degree less than or equal to f on 
G by Pf(G). 

2. ABSTRACT THEORY 

Here we will develop a theory for scalar elliptic equations which satisfy homo- 
geneous Dirichlet boundary conditions. Let Q be a bounded polygonal domain in 
R2. We assume that Q = UJ 1 Qj, where Qj are open subdomains of Q. Let TH 
be a quasi-uniform triangulation of Q and Th be a subdivision of TH such that Th 
is aligned with each &Qj. The parameters H and h represent the mesh sizes. We 
assume that there exist nonnegative C' functions 01, 02 , Oj in R2 such that 

(2.1) Oj = O on Q\Qj, 

(2.2) =i = onQ, 
j=1 

C 1,2jII C 
(2.3) IIV0jI?L < C 62V20J?LX ? 

where V20 is the Hessian, C is a universal constant and 8 is a parameter, 0 < h < 
C18, 0 < 6 < C2H. The constructions of Qj and Oj are standard (cf. [10]). The 
parameter 8 measures the amount of overlap among the subdomains Qj. From now 
on, C (with or without subscripts) will denote a generic positive constant indepen- 
dent of h, H, 6, and J. We assume that there exists an integer NC independent of 
h, H, 6, and J such that any point in Q can belong to at most NC subregions. We 
shall also assign the value 1 to the parameter k for second-order problems, and the 
value 2 for fourth-order problems. 
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Let Vh be a finite element space associated with Th whose members vanish at the 
boundary nodes, and Vj be the subspace of Vh whose members vanish at all nodes 
that are not interior to Qj. The existence of the partition of unity 01, 02,'' ,OJ 

implies that 

J 

(2.4) Vh =E Vj. 
j=1 

Also let VH be a finite element space associated with the triangulation TH whose 
members vanish at the boundary nodes of Q. The members of Vh and VH are 
piecewise polynomials of degree less than or equal to k. 

The discretized problem is: 
Find u E Vh such that 

(2.5) ah(,V) = F(v) VV E Vh, 

where ah( ,-) is a positive definite symmetric bilinear form on Vh and F E Vh. We 
assume that there is also a related positive definite bilinear form aH(.,*) defined on 
VH. 

For the description of the preconditioner we adopt the notation in [18]. Let (,)h 
and (-, )H be two inner products on Vh and VH respectively. 

We define Ah : Vh - Vh, Aj: Vj - Vj and AH VH - VH by 

(2.6) (AhvW)h=ah(VW) VV,WEVh, 

(2.7) (Ajv,W)h=ah(VW) VV,WEVij, 

(2.8) (AHVW)H = aH(v,W) Vv,W E VH- 

The operators Qj: Vh Vj, 1 < j < J, are defined by 

(2.9) (Qjv,W)h=(v,W)h VVEVh,WEVj. 

The operators Pj: Vh ) Vj, 1 < j < J, are defined by 

(2.10) ah(PjV,w) = ah(v,w) Vv E Vh,W EVj 

It can be easily proved that 

(2.11) AjPj = QjAhi I < j < J. 

We assume that there is an intergrid transfer operator IH : VH - Vh such that 

(A.la) IHv Hk(h)?<C |V Hk(TH) VV E VH, 

(A.Ib) IHV V <HC(h)?CH VfHk(H) VVEVH, 0<f<k-1, 
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where the (possibly) nonconforming norms |Hm (Th) and |Hm ( HTH) are defined by 

IVIHm(Th) = S/ (T) VV E Vh, 
TCTh 

IVIHm(TH):= S WHm(T) VV E VH- 
TCTH 

We also assume that 

(A.2a) ah(vv) (resp., aH(vv)) is equivalent to IvI Hk(Th) (resp., IvHk(TH)) 

for v E Vh (resp., v E VH), and 

(A.2b) ah(vw) <C IV Hk(Thj) IW Hk(Th) 

for all v E Vh, w E Vj, where 

VH()1/2 
IVIHk(Thj) = IVIHk(T) 

TCQj 

The operators Ih, Pph :Vh -VH are defined by 

(2.12) (ifh vW)H = (VJIHW)h VV E Vhw W EVH, 

(2.13) aH(Phvw) = ah(vIHW) VV E Vh,W E VH. 

In terms of operators, we can also express (2.13) as 

(2.14) AHPhH = IhHAh. 

Also, (A-la), (A.2a) and (2.13) imply that 

(2.15)HV 
Ph Hk(TH) < C|v Hk(Th) VV E Vh. 

The two-level additive Schwarz preconditioner B: Vh - Vh is defined by 

(2.16) B:= IRHIfh + 5RjQj, 
j=1 

where RH (resp., Rj) is an approximate solver of AH (resp., Aj) which is symmetric 
positive definite with respect to (, *)H (resp., (-, *)h)- 

The discretized problem (2.5) can be written as: 

(2.17) Ahu = 

where F(v) = (f,V)h VV E Vh- 



NONCONFORMING TWO-LEVEL SCHWARZ PRECONDITIONERS 901 

The preconditioned system is: 

(2.18) BAhU = Bf. 

The operator BAh is symmetric positive definite with respect to ah(*, ) because of 
the defining properties of the various operators and (2.4), and hence has positive 
eigenvalues 0 < Amin(BAh) < < Amax(BAh)4 Our goal is to show that 

(2.19) Amax(BAh) < C 
Amin (BAh ) 

By (2.11) and (2.14) we have 

(2.20) BAh = IHRHIh h+ ERjQjAh 
j=1 

= IHRHAHPhH + E RjAjPj. 
j=1 

Note that in the case where RH = A41 and Rj = A-1, (2.20) can be simplified 
to 

J J 

(2.21) BAh = IHPhH + E P3 = (IHAHIIhH) Ah + E PS 
j=1 j=1 

Comparing (2.21) with equation (13) in [15], we see that the two preconditioners 
are slightly different. 

The techniques we use to bound the eigenvalues are based on the ideas of Dryja 
and Widlund in [10] and [11] (see also [18]). Their theory has also been extended by 
Zhang (cf. [19]) to fourth-order problems in the case of conforming finite elements. 
We begin with the upper bound for the eigenvalues of BAh. 

Lemma 2.1. The following inequality holds: 

J 
(2.22) 5ah(Pjv,Pjv) < CN ah(v,v) Vv E Vh. 

j=1 

Proof. By (A.2) and (2.10) we have 

ah(Pjv, Pjv) = ah(V, Pjv) 

< C IVIHk(Th ,) IPjVIHk(Th) 

< C IVIHk(Thj) ah(PjvPjv). 

Therefore, 
ah(Pjv, Jv) ? C VIHk(Thj). 
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Summing over 1 < j < J, we find by (A.2a) and the definition of N, that 

J 

Zah(Pjv,Pjv) < CN IVk(h) < CNcah(v,v)- O 

j=1 

Lemma 2.2. The following upper bound for the eigenvalues of BAh holds: 

Amax(BAh) < Cw1 Nc, 

where1 :-max(p(RHAH),*p(RlAl),... , p(RjAj)) and p(.) denotes the spectral 
radius. 

Proof. By (2.20), (2.13), (2.15), (2.22) and (A.2a) we have 

J 

(2.23) ah(BAhV, v) =ah(IHRHAHPhH V, v)+Z ah(RjAjPjv, v) 
j=1 

J 

-aH(RHAHPhHV, PhHv)+Z ah(RjAjPj v, Pjv) 
j=1 

<wi [aH (Ph v, Ph v) + E ah(Pjv, Pjv) 

L 
~~~~j=1 

<w 1 [C ah (v, v) + C Nc ah (v, v)] 

< C w NC ah(v, v). 

In this derivation we have also used the fact that RHAH (resp., RjAj) is symmetric 
positive definite with respect to aH(*,.) (resp., ah(, )Iv. The lemma follows 
immediately from (2.23). O 

We now turn our attention to the lower bound for the eigenvalues of BAh. We 
assume that there exists an operator Jh/: Vh - VH with the following properties: 

(A.3a) I~h Hk(TH) <? V Hk(Th) VV E Vh, 

(A.3b) Jh VVH <(Th)<CHk Hk(Th) VVEVh, O<f<k-1. 

Note that in our theory, the finite element spaces Vh and VH are connected by the 
operators IH JhH, (A.1) and (A.3), but only IH appears in the preconditioner. 

Let Hh be the nodal interpolation operator associated with 7Th. We assume that 

(A.4a) llh(Av) Hk(T) < C AvlHk(T) VT E Th, V E 'Pk(T), A E 'Pk l(T) 

and 

(A.4b) IIIJh(gv)I L2(T) < C ( 191IL-(T) + (k - 1) h 1V791LOO(T)) ||V||L2(T) 

VT E Th, v E 'Pk(T), g E C0(T), where C only depends on the minimum angle in 
Th. 
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Lemma 2.3. Given any v E Vh, there exists v( E VH, vj E Vj (1 < j < J) such 
that 

(2.24) v = IHV() +ZVj 

j=l 

and 

(2.25) aH(v ,v) + Zah(vjvJ) < CNC (I + (H)2) ah(VV). 
j=1 

Proof. Let v( = J/jv and v; = Ih (Oj (v - IHvo)), where 
rlh is the nodal variable 

interpolation operator associated with Vh. Clearly, (2.24) holds. 
We treat the cases k = 1 and k = 2 separately. For k = 1, let Oj.T = 03 F Q dx 

for all T E El. Then we have by a straightforward computation that 

(2.26) |0J - 0jT|| LL(T) < h ||V0 31 L<(T) 

Let w = V - IHv(). Then by the triangle inequality, a standard inverse estimate 
(cf. [7, 6]), (A.4), (2.26), (2.2) and (2.3) we have 

(2.27) lVi H'(T) Ifh(OjW) H1(T) 

< 10j.TW H1(T) + flh[(Oj - Oj.T)WLH1(T) 

< IWIH1(T) + Ch' Hl|h[(0j - OjT)AWIL2(T) 

< |W|H1(T) + Ch' 110g -Oj.'T|Lz(T) IIWIIL2(T) 

< |W|1H(T) + H IIWIIL2(T)- 

Summing the square of (2.27) over T in Qj, we find by (A.2b) that 

(2.28) ah(VjVj) < C (wH1(Th j) 62 L2(2j)) 

Summing (2.28) for 1 < j < J, we obtain 

(2.29) Ziah(vj, vj) < C NC (ah(w W) + - 
1WI12 

By (A-la) and (A.3a) we have 

|W H1(Th) = |V-IHV()TH'(Th) 

K |V|H1(Th) + VOIH1(Th) 

< |V H1(Th) + C IV()OH'(TH) 

= IVIH'(Th) + C lJhHVIH1(TH) 

< C IVIHI(Th) 
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which together with (A.2a) imply that 

(2.30) ah (w, w) < C ah (V, V) . 

On the other hand, by (A.3b), (A.ib), (A.3a) and (A.2a), 

(2.31) |IW IL2(Q) = |IV - IHhJhHV |L2(Q) 

< ||V-JhHVI L2(Q) + |jJhHV-IHJhHV||L2(Q) 

<CH IVIH1(Th) + CH JhHVI H1(TH) 

<OCH V H1(Th) 

< CH ah(VV). 

Similarly, by (A.2a) and (A.3a), 

(2.32) aH (vo, vo) < C ah (v, v) 

Inequality (2.25) now follows from (2.29)-(2.32). 
For k = 2, let Oj,T be the linear interpolant of Oj on T, i.e., 0jT E P1(T) and 

OjT = Oj at the vertices of T. It is clear that 

(2.33) |j j,T|| L(T) < lj11 L(T) and ||VOjT ||L (T) < C IV0j|| L(T), 

where C depends only on the minimum angle of the triangulation Th. 

By a simple homogeneity (scaling) argument we also have 

(2.34) ||Oj - OjT|IILL(T) + h ||V(0j - j,T) II L (T) 

< COh 2lV2O JlL-(T)i 

where C again depends only on the minimum angle of the triangulation Th. 

Let w = v - IHvo. Then by the triangle inequality, a standard inverse estimate, 
(A.4), (2.33), (2.34) and (2.3) we have 

(2.35) 

IViIH2(T) =.I| h(0jW)IH2(T) 

< |hi(jTW) |H2(T) + |h[(Oj - OJT)WL H2 (T) 

< C IOjTW IH2(T) + Ch || Hh[(0j - Oj,T)W] |L2(T) 

< C jI|jT||L?(T) 1W1H2(T) + IIV~jTIIL-(T) IWIH1(T)) 

+ Ch (2 1j - dj,T||LO(T) + h 1IV(0j -jT)||L(T)) IIWIIL2(T) 

< C (1W1H2(T) + 6 |WJH1(T) + J2 IIWIJL2(T)) 

Summing up the square of (2.35) over T in Qj, we find by (A.2b) that 

(2.36) ah(VjVj) ? < (wH2(T + IWIH1(Th j) + 1 L2(Q)) 
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Summing up (2.36) for 1 < j < J, we obtain 

(2.37) Zah(vj,vj) C CN, (ah(wW) + T2W1l(Th) + - W L2(Q) 

As in the previous case we deduce from (A.la), (A.2), and (A.3a) that 

(2.38) ah (w, w) < C ah (v, v) 

and 

(2.39) aH (vO, VO) < C ah (V, V) 

Also, analogous to (2.31), we have by (A.1), (A.2) and (A.3) that 

(2.40) |IWIIL2(Q) + HIWIH1(Th) CH ah(VV) 

Inequality (2.25) now follows by combining (2.37)-(2.40). O 

Lemma 2.4. The following lower bound for the eigenvalues of BAh holds: 

(2.41) Amin(BAh) > C N ( 
Nc(1 + (H1)2k)' 

where wo min(Amin(RHAH), Amin(RiAi), , Amin(RjAj)). 

Proof. Let j3 Nc(1 + (H)2k). Given any v E Vh, by Lemma 2.3 there exists 
VO E VH, vj E Vj (1 < j < J) such that (2.24) and (2.25) hold. It follows from 
(2.25) that 

J 

(2.42) C3ah (V, V) > aH (V0,0) + ah (Vj, vj) 
j=1 

J 

-(Rl41RHAHVO, VO)H + Z(RI1lRjAjvj, Vj)h 
j=1 

> Wo [(RH vo, VO)H + E(R1V;, Vj)hI 

where we have used the fact that RHAH VH VH (resp., RjAj: Vj > Vj) is 
positive definite with respect to (Rj1., -)H (resp., (Rj-1, )h). 

Let TH := IHRHAHPh and Tj RjAj Pi. In other words, we can rewrite 
(2.20) as 

(2.43) BAh= TH+ Tj. 
j=1 

Using (2.24), (2.13), (2.10), the Cauchy-Schwarz inequality, (2.42) and (2.43), we 
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have 
J 

ah(V,V) =ah(IHVO,V) + E ah(vj, v) 

j=1 

J 

-aH(vOPh v) + Zah(Vj, PjV) 

j=1 

J 

- (RH Vol RH AHPh V)H + Z(R-172v RjjAJpv) 
j=1 

< (RIvo Vo O)1/ (AHPhHV, RHAHPhHV) / 

J 

+ Z(RI-vj I V I/ j2 P v R(AAPv )/2 , j S ) S h j\ Rj Aj ' j J v h 
j=1 

(RH1VO, VO)12 aH (PhHv, RHAHPhH V) 1/2 

J 

+ ~(R7lvj, vj))j2ah(Pjv, RjAjPjv)1/2 
j=1 

J 

(R-1 vv)1/2ah(v THV)1/2 + ,(R Ivj, Vj) 2ah( ,T JV)1/2 

j==1 ~ j= / J \ z ~~JJ 
<|(RH IVo IVO) H + E (R,- vj,Vj) h |1/2 ah (v, TH v) + E ah (v, Tj v) |1/2 

\ j~ ~ ~ ~~=1 / j=1 

- 1/2 ah(V,V)1/2ah(VBAhV)1/2 

which implies that 

(2.44) ah(v, v) < -ah(v, BAhv) 
wo 

Inequality (2.41) now follows immediately from (2.44). 0 

In summary, we have the following theorem. 

Theorem 2.1. Under the geometric assumptions (2.1)-(2.3) and the assumptions 
(A.1)-(A.4) on the finite element spaces we have 

Armax(BAh) < C W N2 (1+ (H\)2k\) 

Amin (BAh) - W0 \/ 

Therefore, if the approximate solvers RH and Rj are accurate enough so that 

w, is bounded and w0 is bounded away from zero, and if the overlap between 

subregions is generous enough so that H is bounded, then the condition number of 

the preconditioned system is bounded independent of h, 6, H and J. 

Remark. If we are more careful about the definition of Qj and Oj, then the factor 

1+r (Hi)2 of Theorem 2.1 can be reduced to 1+ (i#i)2k 1. This is done by using a 

trace theorem type argument in [17], which can be applied to nonconforming finite 

elements after a slight modification (cf. [4]). 
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3. SCALAR P1 NONCONFORMING FINITE ELEMENT 

In this section we apply the abstract theory to the P1 nonconforming finite 
element (cf. [9]) approximation of the Laplace equation. The finite element space 
Vh is defined by 

Vh {v E L2(Q): V E P1(T) VT E Th, v is continuous at the 

midpoints of interelement boundaries, and v vanishes 

at the midpoints along QJ}. 

VH is defined the same way with respect to TH. Members of Vh (resp., VH) are 
completely determined by their values at the midpoints of 7h (resp., TH). 

The symmetric positive definite bilinear forms ah (.,-) and aH (.,-) are given by 

(3.1) ah(vl,v2)=E Vv *1 Vv2 dx Vv1, v2 E Vh, 

and 

(3.2) aH (V1, V2) = j ViVV2 dx V V1, V2 e VH 

The inner products (, )h and (., .)u are just the L2-inner products restricted to 
Vh and VH, respectively. Note that the natural nodal basis functions in Vh are 
L2-orthogonal, so that the constructions of the Qj are trivial. 

Assumptions (A.2) and (A.4a) are trivially satisfied, while (A.4b) follows from 
the following quadrature formula: 

j v2dx = ITI 
[(v(ml))2 + (v(m2))2 + (V(m3))2] Vv E P(T), 

where mi1, M2, and m3 are the midpoints of the three sides of the triangle T. 
It only remains to define the operators IH and Jhf, and to verify assumptions 

(A.la), (A.ib), (A.3a), and (A.3b). We introduce two other finite element spaces 
Wh and WH, where 

Wh := {W E C(Q): WIT EP2(T) VT E Th and w= O on &Q}, 

and WH is defined similarly with respect to TH. The members of Wh (resp., WH) 
are completely determined by their values at the vertices and midpoints of 7Th (resp., 
TH). Note that WH C Wh since Th is a subdivision of TH. 

We define Eh : Vh - Wh and Fh: Wh > Vh by 

f (Ehv)(Tn) = v(m) for all internal midpoints m E Th, 

(3.3) t (EhV) (p) = average of vi (p) for all internal vertices p E Th, 

where vi = vIT? and Ti E Th contains p as a vertex, and 

(3.4) (Fhw)(m) = w(m) for all midpoints m E Th. 
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The operators EH: VH - WH and FH: WH - VH are defined similarly with 
respect to TH. 

The intergrid transfer operator Ih VH Vh is given by 

(3.5) IH :=Fho EH- 

The operator Jh: Vh - VH is given by 

(3.6) J/h:=FH ? QH Eh 

where QHJ: Wh - WH is the L2-orthogonal projection operator. The relations 
of these operators are illustrated by the commutative diagrams in Fig. 1 (where i 
stands for natural injection). 

Vh Fh Wh V Eh Wh 

IhTTi Jh Qh 

VH > WH VH < WH 
EH FH 

FIGURE 1 

Note that Ih is represented by a sparse, banded matrix with respect to the 
natural nodal bases of Vh and VH. 

The estimates (A1) and (A.3) are established through a sequence of lemmas. 
The next lemma follows from the result of Bramble and Xu in [2]. 

Lemma 3.1. The following estimates on QH hold: 

(3.7) Qh WH1(Q)<CWH1(Q) VWCEWh, 

(3.8) ||w-QHfW L2 (Q) <?CH|WH1(Q) VWEWh. 

Lemma 3.2. The following estimates on Fh and FH hold: 

(3.9a) JFhWIH1(Th)(<?C|W|H1(Q) VWEWh, 

(3.9b) |FHWIH1(TH) < C |W H1(Q) VW E WH, 

(3.10a) |w|-FhwIL2(Q) <Ch W|H1(Q) VW E Wh, 

(3.1Ob) ||w-FHw||L2(Q) <CHIW|H1(Q) VWEWH. 

Proof. It suffices to establish (3.9a) and (3.10a). On a reference triangle T,. H1(T) 

defines a norm on the quotient space 1P2(T)/Po (T). Given any w E P2(T), let 
WI E P1(T) be defined by w'(mi) = w(mi) at the midpoints mi (i = 1,2,3) of 
T. Since w' = w if w E Po(T), w W W- W' is a well-defined linear map from 
P2 (T)/PO (T) into P2(T). Therefore we have 

(3.11) ww L2(T) C WIH1(T) VW E P2(T). 
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FIGURE 2 

The estimate (3.11) together with a homogeneity argument yields 

(3.12) |w|-FhwlIL2(Q) <Ch WIH1(Q) VWEWh, 

where C depends only on the minimum angle of Th. 
By a standard inverse estimate and (3.12), we obtain 

IFhWIH1(Th) < W - FhWlHl(Th) + IWIH1(Th) 
< Ch 1 W-FhwlwL2(Th) + IWIH1(Th) 
< C OWlH1 (Q) O 

Lemma 3.3. The following estimates on Eh and EH hold: 

(3.13a) IEhV H1(Q) ? 0 IVIH1(Th) VV E Vh, 

(3.13b) IEHV H1(Q) ? 0 V H1(TH) VV V VH, 

(3.14a) V - EhV||L2(Q) < Ch IVIH1(Th) V Vh, 

(3.14b) IIV-EHV||L2(Q) < Oh V H1(TH) VV V VH. 

Proof. It suffices to establish (3.13a) and (3.14a). Observe that FhoEh = Id. Hence 
by (3.9a) we have 

(3.15) v - EhV||L2(Q) = IIFh(Ehv)-EhV 
< Ch EhVIHl(Q) 

In view of (3.15), the whole problem is reduced to proving (3.13a). 
Let T E Th be a triangle away from &Q, and G be the union of all triangles 

in Th sharing a vertex with T (cf. Fig. 2). (The triangle T is itself in G.) Let 
VG = {v E L2(G): V T E P1 (T) V T C G, v is continuous at the midpoints of the 
interelement boundaries}. 

Given v E VG, let v' E P2(T) be defined by 

f v'(mi) = v(mi) for i = 1, 2, 3, 

I V'(pi) = average of vij at pi for i = 1, 2, 3, 

where vij = v IT and Tj C G contains pi as a vertex. 
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FIGURE 3 

Let I H1(G) be defined by 

1/2 

IVIH1(G) = (z VI1(T)) 1 VV VG. 
TcG 

Observe that 

(3.16) IVIH1(G) = 0 v E Po(G) 

v'=v onT 

IV IHl(T) = 0. 

It follows from (3.16) and a homogeneity argument using reference triangles that 

(3.17) IvIIH1(T) < C1IVIH1(G) VV e VG, 

where C depends on the number of triangles in G and the shape of the triangles in 
G. Since Th is quasi-uniform, Ci ultimately depends on the minimum angle in Th. 

The same estimate holds if the triangle T is close to aQ, in which case the 
members of VG will vanish at certain midpoints (cf. Fig. 3). 

Summing up the square of (3.17) over all triangles T E Th, we obtain 
(3.13a). LI 

Proposition 3.1. Assumptions (A.1) and (A.3) hold for IH and Jh' defined by 
(3.5) and (3.6), respectively. 

Proof. The estimates (A.la) and (A.3a) follow immediately from the estimates 

(3.7), (3.9) and (3.13). 
Using (3.10a), (3.14a), and (3.13b), we have 

I|IHV - VIJL2(Q) = IlFh(EHV) - VI(L2(Q) 

< IFh(EHV) - EHVIIL2(Q) + fJEHV - VIfL2(Q) 

< Ch |EHVIH1(Q) + CH IVIH1(TH) 
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Similarly, using (3.10b), (3.8), (3.14a), (3.7), and (3.13a), we obtain 

4|J/ V-V |1|L2(Q) = FH (Q(EhV)) -V L2(Q) 

< K FH(QH (EhV)) - QH (Ehv) | L2 (Q) 

+ IIQhH(Ehv)- EhV IL2(Q) + IIEhV-VIIL2(Q) 

<CH IQH(EhV) IH1(Q) +CH EhV H1(Q) +Ch |VIH1(TH) 

<CH |VH1(TH). ? 

Therefore, the abstract theory in ?2 is applicable to the case of the scalar P1 
nonconforming finite element approximation of the Laplace equation. The gener- 
alization to more general symmetric positive definite second-order scalar elliptic 
problems is straightforward. 

Remark. We can also use the P1 conforming finite element space on the coarser 
grid. Let 

VH := {V E C(Q) VIT EcP1(T) VT E TH and vOaQ = O}. 

Since VH C VH we can define IH: VH - Vh to be the natural injection. Assump- 
tions (A.la) and (A.ib) then become trivial for jHh 

Let the operator FH: WH - VH be defined by 

(FHw) (p) = w(p) for all vertices p E TH. 

The estimates (3.9b) and (3.10b) with FH replaced by FH can be established by 
arguments analogous to those in the proof of Lemma 3.2. Hence, if we define 

Jhl :Vh- 7 VHby 

Jh =FH?Qh ?QEh, 

then assumptions (A.3a) and (A.3b) hold for JhH. Therefore, our theory is also 
applicable for these choices and we recover the results in [8]. 

4. THE MORLEY FINITE ELEMENT 

In this section we apply the abstract theory to the Morley finite element ap- 
proximation of the biharmonic equation. Let Vh be the Morley finite element space 
associated with Th. Then v E Vh if and only if it has the following three properties: 

(i) VIT is quadratic for all T E Th 

(ii) v is continuous at the vertices and vanishes at the vertices along &Q 
(iii) a' is continuous at the midpoints of interelement boundaries and vanishes at 

the midpoints along &Q. 
VH is defined the same way with respect to TH. Members of Vh (resp., VH) are 
completely determined by their values at vertices of Th (resp., TH) and the values of 
their normal derivatives at the midpoints of Th (resp., TH). The symmetric positive 
definite bilinear forms ah(.,.) and aH( ,-) are defined by 

2 &92V1 &2V 

(4.1) ah(V1, V2) S= IS 
2 

VV1, V2CEVh E 5xox 0X1X 
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and 

(4.2) aH(VIV2) SJT Sx VV21 &V2 

The inner product ( )h is defined by 

(4.3) (V1 iV2) h =h 2E V1 (P)V2 (P) + h E a1 (m) aV (mn) EV V1 2 C Vh 
&n n 

P m 

where the summation is over all vertices p and midpoints m of the triangulation 
Th. The inner product (, ')H is defined analogously with respect to TH. It follows 
from a standard calculation using reference elements and a homogeneity argument 
for almost affine elements (cf. [7]) that 

3 3 9 2 

(4.4) C1 IIVL2(T) < T (v(pi))2 + T2 (mi)) L2(T) 

for all v E P2(T), where C1, C2 depend on the shape of T. Hence we have 

(4.5a) CHVHI2(Q) < (v,v)>h < C H|VHL2(Q) V C Vh 

and 

(4.5b) C IIVI2(Q) (V,V)H < C ||V|122(Q) Vv E VH. 

Assumption (A.2) is trivially satisfied. Let T F Th and II be the Morley nodal 
variable interpolation operator from C1(T) into P2(T). For g c 01(T) and v E 

P2(T) we have by (4.4) 

(4.6) 

II(gV)H 12(T) ? C [ITI g[(pi)V(pi)]2 + IT12 5 (&(V) (mi))) 

< C (I 9I L- (T) L2(T) + T2 V9 Lo(T) S(mi)2), 

A homogeneity argument shows that 

3 

(4.7) |T| Ev(m)2 < C3 V|L2(T) VV E P2(T), 
i=l 

where C3 depends only on the shape of T. Assumption (A.4b) now follows from 

(4.6) and (4.7). 
Next, we verify assumption (A.4a). Let T be a reference triangle. Since | IH2(T) 

is a norm on the space P3((T)/P1 (T), and H - - ( is a well-defined linear map 
from P3(T)/P1(T) into P3(T), we have 

|n- OH2(T) < C4 I(IH2(T) V E P3(T), 
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where C4 depends only on the shape of the triangle T. Therefore, 

(4.8) IH2(T) < (1 + C4) 1(H2(T) V(EP3(t) 

Assumption (A.4a) now follows from (4.8) and a homogeneity argument for almost 
affine elements. 

It remains to define the operators IH and Jh', and to verify assumptions (A1) 
and (A.3). As in the case of P1 nonconforming finite elements, we introduce two 
spaces Wh and WH, where 

OW 
Wh :W eW E C'():WITE P5(T) VT E Thandw= a =Oon OQ On} 

and WH is defined similarly with respect to TH. Note that Wh (resp., WH) contains 
the Argyris finite element space Wh (resp., WH) whose members are completely 
determined by the values of their derivatives up to second order at the vertices of 
Th (resp., TH) and their normal derivatives at the midpoints of Th (resp., TH) (cf. 
[1]). Note also that WH C Wh since Th is a subdivision of Th, but WH V Wh- 

As in the case of P1 nonconforming finite elements, the operators IH and Jh' are 
defined through the commutative diagrams in Fig. 1, where Eh Vh - Wh C Wh 

(resp., EH VH - WH C WH) and Fh: Wh - Vh (resp., FH WH - VH) are 
defined as follows: 
(4.9) 

I (Ehv)(p) = v(p) for all internal vertices p E Th, 

(Oc'EhV) (p) = average of (Ovi) (p), al = 1 for all internal vertices p eE Th, 

(O'EhV)(P) = 0, Ja = 2 for all internal vertices p E Th, 

(,9 EhV) (m) = m (m) for all internal midpoints m E 'Th, 

where vi = vIT% and Ti contains p as a vertex, and 

(4.10) f (Fhw)(p) = w(p) for all internal vertices p E Th, 

I ( ' (Fhw)) (m) = j (m) for all internal midpoints m E Th. 

The nodal values of Ehv are zero along OQ. The definitions of EH and Fh are the 
same with respect to TH. 

The operators IH: VH - Vh and JhH : Vh - VH are then defined by 

(4.11) Ih :=Fho EH 

and 

(4.12) JhH := FH ? QoEh, 

where QH : Wh - WH is the L2-orthogonal projection operator. 
Again, note that 4h is represented by a sparse, banded matrix with respect to 

the natural nodal bases of Vh and VH. 
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Lemma 4.1. The following estimates on QhH hold: 

(4.1) i h W 2()< C |W |H2 (Q), 

(4.14) | |- QfW _ 
|wL2(Q) + H w -QHW QHH (Q) ? OH2 w|H2(Q), 

for all w E Wh. 

Proof. Let w E Wh. By Theorem 4.1.2 in [19], there exits w' E WH such that 

(4.15) w-W |HS(Q) < CH 2 
|W|H2(Q)), s = 0,1,2. 

Let QH: L2(Q) - WH be the L2-orthogonal projection operator (hence QhH = 

QHJWh). By (4.15) and standard inverse estimates, we have for s = 0, 1,2, 

(4.16) |w - Qh IHS(Q) < |W - W' + IQH(W' - W)IHs(Q) 

<CH2-s |WHH2(Q) +CH {lQH(W' -w) |L2(Q) 

<CH 2sWIH2(Q)+CHS||l(w( - W)|L2(Q) 

<CH2-s IWIH2(Q). 

The estimates (4.13) and (4.14) follow immediately from (4.16). 

The proof of the following lemma is similar to the proof of Lemma 3.2 and is 
therefore omitted. 

Lemma 4.2. The following estimates on Fh and FH hold: 

(4.17a) |FhWIH2(Th) < C WIH2(Q), 

(4.17b) IFHTDIH2(TH) < C 1WIH2(Q), 

(4.18a) lw -FhwH|L2(Q) + h w-FhWlHl(Th) < Ch2 |W|H2(Q), 

(4.18b) llD-FHzfIIL2(Q) +H |wD-FHIH1(TH) <CH2 2W|H2(Q), 

for all w E Wh and wD E WH. 

Lemma 4.3. The following estimates on Eh and EH hold: 

(4.19a) IEhVIH2(Q) < CItVH2(Th)l 

(4.19b) |EHVDIH2(Q) < C IVIH2(TH), 

(4.20a) |V- EhV||L2(Q) + h v - EhVlHl(Th) < Ch2 V|H2(Th), 

(4.20b) ||fv-EHV|I|L2(Q)+H I|-EHVIH1(TH) <CH2 VIH2(rH)) 

for all V E Vh and vE VH. 

Proof. It suffices to establish (4.19a) and (4.20a). Let v E Vh, T E Th, w = VIT and 
w = (EhV) T. The two functions w,wCv E P5(T) are related by 

3 

(4.21) w -wfV = E E Oce (W -0 (pi) ra,1i, 

i=l Ioel=1,2 
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T 

FIGURE 4 

where the points Pi are the vertices of T, and the functions rc,i are the nodal 
basis functions corresponding to the nodal variables (0"v)(pi) of the Argyris finite 
element. The following estimates are obtained by the standard techniques of almost 
affine family of finite elements (cf. [7]): 

(4.22) |rCei||L2(T) < C(T)h2 for jlo = 1, 

(4.23) <rci L2(T) ? C(T)h' for loa| = 2, 

where hT = diam T, and C(T) represents a generic positive constant which de- 
pends continuously on the minimum angle of the triangle T. By a standard inverse 
estimate and (4.9) we have 

(4.24) ac (W - f) (pi) I= aceW(Pi) 

<V I W2 (T) 

<C(T)h-1 |V|H2 (T)) 

for alc = 2. 
Recall from (4.9) that for alc = 1, [0c,(EhV)](P) = average of &cvj(p), where 

v; = v IT, and Tj contains p as a vertex. Suppose T1 and T2 are two triangles in Th 
sharing the common edge e which contains p as an endpoint. Since vIT, and vIT2 
agree at the two endpoints of e, the difference of &8(vlT1) and &8(vIT2) (s is the arc 
length along e) at p is bounded by (IeI/2)[ vIw,2(T1) + IvIw2 (T2)]. 

Similarly, since the normal derivatives of vIT, and vIT2 at the midpoint m of e 
agree, the difference of &,.(vIT1) and &. (v IT2) (n is a normal of e) at p is bounded 
by (leI/2)[ vIw'2(T1) + IvIw2 (T2)]. 

Therefore, we have the following estimate: 

3 

(4.25) E E 0ao(W -'O(Pi)| < kT E hT1 I(VIT1)IW,2 (TI) 
i=1 jCej=1 T 

< kTEC(T') (VIT) IH2(T'), 

TI 

where the summation is over all the triangles T' which share at least one vertex 
with T (cf. Fig. 4), and kT is a constant which depends only on the total number 
of such T'. 
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Combining (4.21)-(4.25) and using the quasi-uniformity of Th, we have 

(4.26) Iv -EhVIIL2(T) < Ch VE IVH2(TI) 
TI 

Note that estimate (4.26) also holds if some of the vertices of T belong to OQ. 
Summing up the square of (4.26) over all the triangles T in Th, we obtain 

(4.27) 1v - EhVI L2(Q) < Ch2 VIH2 (Th). 

The rest of the estimates in (4.19a) and (4.20a) now follow from standard inverse 
estimates and the triangle inequality. O 

The following proposition follows from Lemmas 4.1-4.3, just as Proposition 3.1 
followed from Lemmas 3.1-3.3. 

Proposition 4.1. Assumptions (A.1) and (A.3) hold for IH and JhH defined by 
(4.11) and (4.12), respectively. 

5. DIVERGENCE-FREE P1 NONCONFORMING FINITE ELEMENT 

In this section we adapt the abstract theory to the divergence-free P1 noncon- 
forming finite element approximation of the stationary Stokes equations. We as- 
sume that Q is simply connected (i.e., flow without obstacle). The case where there 
are obstacles is more complicated and is discussed elsewhere (cf. [5]). Throughout 
this section we use undertildes to denote vector-valued functions and operators. 
The operators curl and div are given by 

curlp= OP/x)2 rl -Op/Oxi J 
Dy1 Dy2 

divv= + 
Ox1 OX2 

The finite element space Vh is defined by 

Vh := {V E L2(Q): v, EP1(T) VT E Th,vis continuous 
at the midpoints of interelement boundaries, v vanishes at the 

midpoints along OQ, and div(vIT) = 0 VT E Th}. 

VH is defined the same way with respect to TH. 

The symmetric positive definite bilinear forms ah(,.) and aH(,.) are given by 

2 Ovi2Ow 
(5.1) ah(vW) dJi 0 2dx Vv, Eh 

TCGTh Ti,.1 

and 

(5.2) aH(v,W):= 29xVv w E VHw 
TCTH ij=1 
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FIGURE 5 

In order to define the inner products ( h, *) and (-, .)H, we must first describe the 
bases of Vh and VH. 

Let e be an edge in Th. Denote by cke the piecewise linear function on Q (with 
respect to Th) that takes the value 1 at the midpoint of the edge e and 0 at all 
other midpoints. 

The first kind of basis function is associated with internal edges. Let 

(5.3) sue := kete, 

where e is an internal edge and te is a unit vector tangential to e (cf. Fig. 5). 
The second kind of basis function is associated with internal vertices. Let p be an 

internal vertex and let el, e2, ... , ex be the edges in Th that have p as an endpoint. 
Let 

(5.4) 1p : eiI Oet nei e 

i= 1 

where ne% is a unit vector normal to ej pointing in the clockwise direction (cf. Fig. 
5). Then Bh :={te: e is an internal edge of Th}U{vp: p is an internal vertex of Th} 

is a basis of Vh (cf. [16]). The basis BH (resp., Bj) of VH (resp., Vj) is defined 
similarly. 

Let v = aip-ei + E bj pj and w = Eoiqtej + E Z3 p, be two members of Vh, 
where the summations are taken over all internal edges and all internal vertices. 
Then (v, w) h is defined by 

(5.5) (v, W)h := h2 aioi + h4 bjIOj. 

The inner product (., .)H is defined similarly. 
The theory developed in ?2 cannot be directly applied to the problem here be- 

cause of the divergence-free constraint. To be more specific, the vj's defined in the 
proof of Lemma 2.3 do not satisfy the divergence-free constraint. 

We will modify the theory in the following manner. We establish assumptions 
(A.la) and (A.2), and then Lemmas 2.1 and 2.2 remain valid. We will then prove 
Lemma 2.3 directly by exploiting the connection between the divergence-free P1 
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nonconforming finite element and the Morley finite element. Since Lemma 2.4 
remains unchanged, Theorem 2.1 then holds. 

Assumption (A.2) is trivially true. In order to define Ih and verify assumptions 
(A-la) and (Ailb), we need to consider the connection between Vh (resp., Vj, VH) 
and the Morley finite element spaces defined in ?4, which we denote by Mh (resp., 
Mj, MH) here. 

There is an isomorphism between Mh and Vh (cf. [12]) given by the operator 
curlh, where 

(5.6) (curlh0)IT =curl (IT) VET E h. 

The isomorphism curlH: MH ) VH is defined similarly. Note that curlh 
M3 

is an 
isomorphism from M. onto Vj. The inverse of curlh (resp., curlH) will be denoted 

by curly (resp., curl-'). 
In terms of the basis Bh of Vh, we have a simple description of curlh. Let b E Mh. 

Then we have 

(5.7) curlh'O = ai/tei + ;, bjS, 

where a , = 9 (mi), mi is the midpoint of edge ej, tet is obtained by rotating Te% 

clockwise through a right angle, and bj = ,(pj). 
We are now ready to define the operator IH. Let Ih be the intergrid transfer 

operator between the Morley spaces MH and Mh defined in ?4. The operator 

IH: VH - Vh is defined by 

(5.8) Ih := curlh o 
~ 

? ocurl-1. 

The relations between these operators are illustrated by the commutative diagram 
in Fig. 6. 

curlh 

Vh ( V Mh 

H H 
VH - MH 

curlH- 

FIGURE 6 

In view of (5.7), Ih is represented by a sparse banded matrix with respect to the 
bases Bh and BH. 

Note that we have the trivial identities 

(5.9a) |curlhV)|H1(Th) = 1P H2(Th), jjcurlhVhPL2(Q) = L'01H1(Th) 

and 

(5.9b) |curlHq$H1(TH)= -H2(TH), jcurlH0$1L2(Q) = I0IH1(TH), 



NONCONFORMING TWO-LEVEL SCHWARZ PRECONDITIONERS 919 

where b (resp., A) is piecewise C1 with respect to Th (resp., TH). 

Lemma 5.1. Assumption (A.la) (for k = 1) holds for IH defined by (5.8). 

Proof. It was established in Proposition 4.1 that IH has the following property 

(5.10) IH'OIH2(Th) ? C bI H2(TH) V' E MH. 

Assumption (A-la) follows immediately from (5.8), (5.9) and (5.10). O 

Finally, we establish Lemma 2.3 in the present context. 

Lemma 5.2. Given any v E Vh, there exists vo E VH, Vi E Vj (1 < j < J) such 
that 

J 

(5.11) v = I 
A 

+E 
j=1 

and 

(5.12) aH(Vo,Vo) + ah(j,j) < CN (I + ( A94) ah(v,v)- 

j=1 

Proof. Let b = curlh-1v E Mh. It follows from Proposition 4.1 that Lemma 2.3 holds 
for the Morley finite element spaces. Therefore, there exists Vo E MH, Oj E Mj 
(1 < j < J) such that 

J 

(5.13) + = IHbO?+E j 
j=1 

and 

(5.14) VbO 2(TH) ? E H2(Th) < CNC (1+ ( Ii)4) 1V)H2(Th) 

Let vo = curlH 00 and = curlh'bj for 1 < j < J. Then, using (5.8) and (5.13), 
we obtain 

v = curlhV 

J 
=Crh (IH? + Ad fi) 

= curlh (IHcuilH1Do ? E curlh Via 
jj=1 

J~~~~ 
= curh hcrl'v + ,Vp-- 

j~=l 

The estimate (5.14) can be rewritten, using (5.9), as 

|VOIH1(TH) Z E I H1(Th) <CNC y1? ( i)4) VH1(Th) 

j=1 

which is equivalent to (5.14) by (A.2). E 

As was pointed out earlier, Lemmas 5.1 and 5.2 yield the following theorem. 



920 SUSANNE C. BRENNER 

Theorem 5.1. The two-level additive Schwarz preconditioner B for the divergence- 
free P1 nonconforming finite element method defined by (2.16) satisfies 

Amax(BAh) <c C N (1 
Amin(BAh) - the Io S eao 

where Ah is the operator respresenting the discretized stationary Stokes equations. 
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