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BOUNDARY ELEMENT MONOTONE ITERATION 
SCHEME FOR SEMILINEAR ELLIPTIC 
PARTIAL DIFFERENTIAL EQUATIONS 

YUANHUA DENG, GOONG CHEN, WEI-MING NI, AND JIANXIN ZHOU 

ABSTRACT. The monotone iteration scheme is a constructive method for solv- 
ing a wide class of semilinear elliptic boundary value problems. With the avail- 
ability of a supersolution and a subsolution, the iterates converge monotoni- 
cally to one or two solutions of the nonlinear PDE. However, the rates of such 
monotone convergence cannot be determined in general. In addition, when the 
monotone iteration scheme is implemented numerically through the boundary 
element method, error estimates have not been analyzed in earlier studies. In 
this paper, we formulate a working assumption to obtain an exponentially fast 
rate of convergence. This allows a margin 6 for the numerical implementation 
of boundary elements within the range of monotone convergence. We then in- 
terrelate several approximate solutions, and use the Aubin-Nitsche lemma and 
the triangle inequalities to derive error estimates for the Galerkin boundary- 
element iterates with respect to the Hr(Q), 0 < r < 2, Sobolev space norms. 
Such estimates are of optimal order. Furthermore, as a peculiarity, we show 
that for the nonlinearities that are of separable type, "higher than optimal 
order" error estimates can be obtained with respect to the mesh parameter h. 
Several examples of semilinear elliptic partial differential equations featuring 
different situations of existence/nonexistence, uniqueness/multiplicity and sta- 
bility are discussed, computed, and the graphics of their numerical solutions 
are illustrated. 

1. INTRODUCTION 

Numerical solutions of nonlinear partial differential equations (PDEs) are im- 
portant in applications. Historically, such work is done primarily by the finite 
difference methods (FDM) and finite element methods (FEM). While boundary 
element methods (BEM) have steadily gained popularity among engineers and sci- 
entists in their work of computing solutions of PDEs, owing to the very nature of 
their formulation, BEM are still regarded by many people as mainly applicable to 
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linear PDEs. Nevertheless, progress has been made; several researchers have ap- 
plied BEM to encompass nonlinearities in elliptic boundary value problems (BVPs) 
with some success. For example, 

(i) when the governing equation itself is linear, with nonlinearities occurring only 
in the boundary conditions, then the applicability of BEM is quite ready. A 
nonlinear integral equation can be formulated on the boundary; an essen- 
tial feature and an advantage of BEM are retained. Error analysis for such 
problems has been done by Ruotsalainen and Wendland [15], e.g.; 

(ii) when the governing equation is nonlinear, with the nonlinearities occurring 
in the lowest-order terms (leading to a semilinear PDE), Brebbia and Walker 
[5], and Sakakihara [16] have considered iteration schemes for such problems. 
Accurate numerical results for certain examples have been obtained. But no 
error analysis and convergence for the discretized scheme were established in 
[5] and [16]. 

The semilinear elliptic PDEs considered in [5] and [16] are of the form 

Au(x) F(x, u(x)) on Q. 
( Bu(x) = g(x) on aQ, 

where Q is a simply-connected bounded domain in RN with C? smooth boundary 
&Q, F: Q x JR -> Et is smooth such that F(x, u) is nonlinear in u, B is a linear 
boundary operator of the form 

(1.2) Bu = u or Bu - + a(c)u, with a(x) > 0 Vx E aQ 

and n is the unit outward normal on aQ. A straightforward iteration scheme sug- 
gested by Brebbia and Walker in [5] goes as follows: 

Initialize: Take an initial guess uo(x); 

Iterate: Solve, for n 0, 1, 2, ... 

(13 1 Un+l (x)=F(xun(x)), xEQ. 
I '(Bun+ )(x) =g(x), xE &Q, 

where at each iteration Un+ (') is solved by a boundary element method. Although 
this scheme appears quite natural and sometimes even produces nice numerical 
results, unfortunately, for "strong" nonlinearities, it fails to converge in general, as 
will be shown in ?2. 

On the other hand, the iteration scheme used by Sakakihara in [16] is the mono- 
tone iteration scheme: 

(1) Choose a A > 0 "sufficiently large"; (cf. (2.9)) 

(2) Initialize: Take an initial guess u0o(x); 

(3) Iterate: Solve, for n = 0, 1, 2, ... 

(1.4) AUn+ I(x) - AUn+ I(x) -Aun (x) + F(x, un (x))), x E Q 

| |(B~n+ 1) (X) = (X)7 x E aqt. 
(Here Un+1 is also solved by a boundary element method, but 

other general numerical methods may also be used.) 
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The monotone iteration scheme is a well-known constructive method for solving 
semilinear elliptic PDEs of the type (1.1). When some supersolutions and subso- 
lutions (also known as barriers) are available, monotone convergence of the iter- 
ates un+1(x) (of the undiscretized scheme) can be established [2, 12, 17]. In [16], 
Sakakihara used the Green's formula, i.e., the commonly called direct approach, to 
formulate boundary integral equations (BIEs) to solve each Un+i (x). The conver- 
gence of boundary layer densities in those BIEs can be readily established, yielding 
the convergence of Un (X) to some u(x) satisfying (1.1), i.e., a solution of (1.1). 
Nevertheless, in practical BEM computations, a BIE formulation of (1.4) must be 
discretized. Analysis of convergence and error for the discretized problem requires 
the knowledge of regularities of several singular integral operators involved in the 
BIEs. Such work is missing in [16]. 

In boundary element computations of PDEs, indirect formulations using only 
simple- or double-layer potentials to represent the solution are known to have 
several important advantages, one among which is a significant reduction of the 
amount of quadrature involved. Here, in our opinion, using the simple-layer po- 
tential representation (plus a volume potential to account for the right-hand side 
-Aun(x) + F(x, un(x)) in (1.4), see the second integral in (3.8)) is preferable to the 
direct formulation adopted in [16]. This will be the basic approach taken in this pa- 
per. We will undertake the task of establishing convergence and error estimates for 
the discretized Galerkin boundary-element scheme corresponding to this approach. 
In our attempt to establish convergence, we are faced with some fundamental issues 
in the study of nonlinear PDEs: nonexistence of solutions, or the existence of multi- 
ple solutions, some of which are known to be unstable [12, 17]. (Unstable solutions 
may be briefly explained as a saddle-point type critical point on the solution mani- 
fold, which must be obtained through a mountain-pass lemma [3] kind of argument 
and are thus unobtainable as solutions of a maximization/minimization variational 
problem. Or, unstable solutions may be regarded as an unstable equilibrium of a 
corresponding dynamic problem.) Only after these questions are properly under- 
stood can one talk about which solution the numerical iterates are converging to. 
Indeed, this may help explain why earlier workers had not been totally successful 
in deriving any error estimates or convergence for the boundary element monotone 
iteration scheme. Not surprisingly, a certain additional working assumption (see 
[H] in ?4) is needed in order for the Galerkin boundary element scheme to converge. 
This assumption, although looking somewhat restrictive at first glance, is actually 
natural because of the needs to be able to estimate errors, especially after seeing 
several types of concrete examples of semilinear PDEs analyzed and computed in 
?7. 

The organization of the paper is as follows: 
(i) In ?2; we provide some further background material and discussion. 

(ii) In ?3, we prove the antimonotone convergence property of simple-layer den- 
sities of the (undiscretized) boundary integral equations according to our 
formulation. 

(iii) In ?4, we establish convergence and error estimates for a Galerkin boundary 
element scheme, subject to the Dirichlet boundary condition. By comparing 
various intermediate approximate solutions, error estimates Huh - UioollHr(Q) 
are obtained which are sharp for the H (Q) Sobolev space norms, 0 < r < 2. 

(iv) A distinctive feature of BEM for semilinear PDEs is that we are able to obtain 
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"higher than optimal order" error estimates with respect to h, provided that 
the nonlinearity is separable (cf. (5.1)). This is presented in ?5. 

(v) Error estimates for the semilinear PDE subject to the Neumann or Robin 
boundary conditions are discussed in ?6. 

(vi) In ?7, some typical cases of semilinear elliptic PDEs are discussed and com- 
puted, with numerical solutions illustrated. 

The collocation scheme is computationally more convenient than the Galerkin 
one. Our numerical results in ?7 are obtained via the former instead of the latter. 
At this moment we are still trying to analyze errors for the collocation scheme. 
This, along with several other related problems, has been partially studied [8] and 
will appear elsewhere. 

2. A STRAIGHTFORWARD ITERATION SCHEME 

AND THE MONOTONE ITERATION SCHEME 

We first review the straightforward iteration scheme (1.3). We show through an 
ODE example that (1.3) does not converge in general. 

Example 2.1. Consider 

(2.1) {dX2u(x) 
- u3(x) , 0 <x< 1, 

u(O) = u(1) = 0. 

The differential operator dx2 represents the simplest elliptic operator in one dimen- 
sion. Multiplying the equation in (2.1) by u and integrating by parts, we obtain 

H11 (X)12 + u4(x)]dx = 0. 

Therefore, (2.1) admits a unique solution that is trivial. (This trivial solution is, of 
course, stable.) 

Let us find iterative solutions of (2.1) by (1.3): 

Set uo(x) = C > 0; 
| Solve, for n = 0,1, 2, ... 

(2.2) l [ un~1(x) = u3(X), X G [0,1], 

1'l Un+1 (0) = Un+ (1) = 0- 

For n = 0, for example, we get 

u8(X) = , 

C2 

ul(0) = ul(1) = 0 ?i31 = ?, a, =- 2 

hence 

(2.3) ui(x) = (X2 -X). 
2 
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In general, we have 

(2.4) un(x) = canxm?* +., 

where the leading coefficient an and the power mn can be uniquely determined 
recursively: 

ao = C, mO = 0 

(2.5) a3___ _ __ _ _ 

inl1= (3mn+ 2)(3mn + 1) mn+l= 3mn + 2, n = 0,1, 27.. 

From (2.5), it is not difficult to show that if we choose C > 2ko for any ko > 6, 
then 

a~ ko m 
2 
)-oo asri -+ oo. an > k Mn + 3 x asn . 

Consequently, the iterates un(x) in (2.4) cannot converge to the unique solution 
u(x) 0 0 of (2.1). 0 

Thus, the direct iteration scheme (1.3) does not work for Example 2.1 if the 
initial state uo(x) _ C is not small. In contrast, the monotone iteration scheme 
(1.4) works for Example 2.1 for any C E JR if uo(x) 0- , i = 1,2, are properly 
chosen, because 

(i) if Ci > 0, then ii(x)- C satisfies 

Ji2/(X) - 2(X)3 = -C1 < 0 on (0,1), 

{ (x) = Ci > 0 at x = 0,1. 

Therefore, Ui(x) is a supersolution, cf. (2.7). 
(ii) If C2 < 0, then v'(x) 0 C2 satisfies 

( V -V(X)3 = 2-C2 > 0 on (0,1), 

{ v(x) = C2 < 0 at x = 0 ,1. 

Therefore v(x) is a subsolution, cf. (2.8). 
If we choose A > 0 and C E JR such that 

A > max(3C, 3C2), C E (C2,C1), 

then for the nonlinearity F(x, u) = u3 in Example 2.1, we have 

A aF A -3u2> 0 VU E (C2,CC) 

The monotone iteration scheme (1.4) will work for Example 2.1, by Theorem 2.2 
below. 

To make this paper sufficiently self-contained, in the following we state a version 
of the monotone iteration theorem. 
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Theorem 2.2 ([2, 12, 17]). Let F(x,u) be Cl with respect to (x,u) G Q x R. 
Consider the boundary value problem 

A Au(x) - F(x, u(x)) = 0 on Q. 
(2.6) 

( Bu(x) = g(x) on aR 

where B is given by (1.2) with a E C (a&Q), a(x) > 0 and ac(x) 0 0 if Bu 7 u on 
&Q, and g E 02(&Q). Let , v e 02(Q) satisfy u- > v- as well as 

fU A(x) - F(x, ui(x)) < 0, x E Q. 

(2.7) 
( Bu(x) > g(x), x E &Q, 

A /\v(x) - F(x, vi(x)) > ?0 x E Q. 

(2.8) 
(BV(x) < g(x), x E &Q. 

(We call u- and v, respectively, a supersolution and a subsolution forsatisfying (2.7) 
and (2.8).) Choose a number A > 0 such that 

(2.9) A- F(x, u) >0 V(x,u) E Q x [a,b], a = infv, b = supii, 
(9u 

and such that the operator (A - A, BI1aQ = 0) has its spectrum strictly contained in 
the open left-half complex plane. Then the mapping 

(2.10) T: q >- w, w = To, 

(2.11) o E C2(Q), o(x) E [a, b] Vx E Q, 

where w(x) is the unique solution of the BVP 

/Aw(x) - Aw(x) = -Ao(x) + F(x, O(x)), x E Q 

Bw(x) = g(x), x E Q, 

is monotone, i.e., for any q$, 02 satisfying (2.11) and q1 < 02, we have 

(2.12) TOIJTq2 satisfy (2.11) and To,1 < T2 on Q. 

Consequently, by letting FA(x, u) -Au ? F(x, u), the iterations 

UO v(x) = u(x) , 

(2.13) (/-A)un+1(x) = FA(xun(x)), x E Q. n = 0,1,2, .... 

BUn+1 = g on M 
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and 

vo(x) = vx) 

(2. 14) (A (/-A)Vn+1 (x) = FX (x) Vn (x) ) x ERQ n =0, 1 ,2, .. . 

I Bvn+l = g on M 
yield iterates un and Vn satisfying 

(2.15) v = VO < V1 < * n < < Un <_ < U1 < U= 

so that the limits 

(2. 16) BOO (x) _ liM tUn (X) 

and 

(2.17) v00 (x) lim vn (x) 

exist in C2 (Q). We have 
(i) vO? < uo on Q; 

(ii) voc and u0o are both stable solutions of (2.6); 
(iii) If voo # u00, then there exists an unstable solution b E 02(Q) of (2.6) such 

that 
v00 < < uOO. ? 

Remark 2.3. The rate of convergence in (2.16) and (2.17) is not available in general. 
To make the numerical analysis possible in our subsequent development, obviously 
some additional working assumption is needed. Otherwise, numerical discretiza- 
tions cause errors and make the computed solutions deviate outside the range of 
monotone interations (2.9). This will be formulated in the important [H] condition 
in ?4. ? 

Remark 2.4. (a) We note that there is a useful further formulation of the above 
theorem in the weak (i.e., distributional) sense. 

(b) For simplicity of presentation, from now on, we will assume that F, g, u-, v 

and aQ (consequently, also uOO and voo) are all C' (Q), considering that this is not 
the main issue here. D 

3. FORMULATION OF BOUNDARY INTEGRAL EQUATIONS 

BASED ON THE SIMPLE-LAYER REPRESENTATION 

Let E(x) be the fundamental solution satisfying 

(3.1) (A - A)E(x; A) = -6(x), x E RN, 

where 8(x) is the Dirac delta function. It is known ([6, p. 341], e.g.) that 

N-2 

(3.2) E (x; A) = ()~H> (ivTAjxD, N > 2 
4 27lx 
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where H (.) is the Hankel function of order I -1 of the first kind. In particular, N ~~~~~~~~~~~~2 
we have 

(3.3) E(x; A) = IKo (vAIX), N= 2, 

where Ko is the Macdonald function of order 0, and 

(3.4) E(x; A) = e N = 3. 

Let the assumptions of Theorem 2.2 be satisfied. We first consider the case when 
the boundary condition is Dirichlet: 

(3.5) Bu(x) _ u(x) = g(x), on aR 

and defer the discussion of the Neumann and Robin boundary conditions to ?6. For 
the boundary integral formulation of the monotone iteration 

(3.6) |(A - A)Un+l(X) = FA(x,Un(x)), x C Q, 

( una+(x) = g(x), x E aQ, 

the boundary integral equation by the standard direct formulation for the unknown 
aUn+?/an is 

(3.7) 

j E(x - y; A) U+1 '(Y) dTy=1g(x)+ aE(x - y; A) g(y)duy 

- j E(x - y; A)FA (y, un (Y))dy, x E aQ, 

as given in Sakakihara [16, (3.3)]. Once ubn+a/&n is solved in (3.7), Un+1 on the 
entire Q can be obtained by quadratures on Q and aQ. 

The indirect formulation is based upon the following ansatz ([6, 9, 10]) 

(3.8) 

Un+i(X) = (S?\Rn+l)(X) - V (Un)(x) 

j E(x - y; A)n7+1 (y)doy - j E(x - y; A)FA (y, Un (y))dy, x C Q, 

where q7n+1 (.) is an unknown boundary layer density defined on aQ to be solved by 
the BIE 
(3.9) 

j E(x - y; A)rn+1 (y)duy = g(x) + E(x - y; A))FA(y, Un(y))dy, x E aQ. 

Comparing (3.9) with (3.7), we see that a large amount of numerical quadrature 
(involved in the evaluation of fen 

OE gdy) is bypassed. This approach is more 

advantageous. 
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Let a, b E R, A > 0 be chosen such that for any $ e (Q), 

(3.10) aF(x, q(x)) A <O Vq: a < q(x) < b, x E Q. 

For any q E C? (Q), the volume potential in (3.8) defines a continuous mapping 

VA: C (Q) C (Q), VA()(x) j E(x - y; A)FA(y, q5(y))dy, x 

cf. [6, p. 216], e.g. By the trace theorem, we have 

(3.11) Vr(q$) _Vx(q)IaQ E C? (&Q). 

The trace of the simple-layer potential Sx in (3.8) is denoted by Sx: 

(3.12) SA7- SA771aQ. 

It is well known that SA has the following regularity: 

( S: H (&Q) -* Hr+l (Q), isomorphically, Vr E RI 
3 

SA is a strongly elliptic pseudodifferential operator of order -1 on aQ. 

Now define a mapping T on C?b(Q) { { C??(Q) I a < q(x) < b on Q} 

(3.14) 77 = TO, 

where rR is a function defined on aQ satisfying the BIE 

(3.15) j E(x - y; A)7r(y)duy J E(x - y; A)FA(y, q$(y))dy, x E &Q 

By (3.11), and (3.13)-(3.15), we have r7 C?C(&Q), and that 

(3.16) T: Cab(Q) > Co (Q) 

is continuous. 
We now establish the main theorem in this section. 

Theorem 3.1. The mapping T in (3.14) is antimonotone, i.e., 

q1,q 2 E Ca(Q) q1 (X) ?< 2(X) VxEQ 

implies 

(3.17) 'T0 > fI 2 on&Q. 

Proof. Let 

(3.18) 7i =Toi, i = 1, 2, on aQ. 
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Extend q1 and q2 to R1 by 

01 ? X QC =R N\nj 

(3.19) qi(x)T i = 1,2. 

~i (x), X Q, 

Then through a localization procedure ([6, Chap. 6]) it is not difficult to show that 

(3.20) qi CH -'(1N), for any e > 0, i = 1, 2. 

From the definition of S.r77 in (3.8), by abuse of notation, extend S.r77 to all RN, 
i.e., 

(S')(X) = J E(x - y; A)r (y)d-y, x c RN. 

We also extend VX to R N by defining 

(3.21) (Vx)(x) = J E(x -y; A)Fx(y, (y))dy, x C RN 

where 

(3-22) OWxq$()) 
0 if X eQ. (3.22) 1A(X7 (I)(X)) - { F(x, 0 (x)), if x G QC 

From (3.16), (3.19), (3.20), (3.22) and [6, Chap. 6], we have the regularities 

(3.23) 77i c COO(OQ), V cq$ c H12C (RN), for any e > 0. 

Now define 

(3.24) Wi (x) = (S?'Xi)(x) - (VqXi)(x), i = 1,2, 

"+" if x G QC, "_" if x Q. 

By (3.14) and (3.15), we have w7-oQ 0, i = 1,2. Also, on Q, we have 

(A/- A)w7 (x) = F(x, qi (x)) = A-q(x) + FF(x, qi(x)), i = 1,2. 

Therefore, wi- is the (unique) solution of the BVP 

/(A-A)wT(x) = Ajx+~,jx)on Q 
(3.25) {(x= (x iI(x)+F(xsb(x)) on i 1,2. 

Similarly, from (3.15) and (3.22)-(3.24), wi satisfies the exterior BVP 

(3.6 - A)w(x) = O on Q , (3.26) {,j4>( ni = 1,2. 
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We now show that w+, i = 1,2, satisfying (3.24) and (3.26), are trivial. For 
x E Qc, lxi large, and y c Q, we have 

(3.27) 

Ix-yi= lxl2-2Kx,y)+lyl2 

=ixi[1i 1 (2(x~y)-IYI2 ) ? 1x y72 (-2(xy)? ) +. I 

The fundamental solution E(x; A) in (3.2) is known to have fast decay for lxi large 
when A > 0. For example, when N = 3, this is obvious from (3.4). For N = 2, we 
have [1] 

(3.28) E(x, A) = 2 Ko(\XI xI) 

2 2 VXI 8IA} 
Using (3.27) and (3.28) in (3.24), we obtain 
(3.29) 

1 [1+ {jYq~~d 
|2 22 xj [1 + 

O(|X|- 2)] {Je4x8l/8d 

wt (X) = - -J e-'|I-YI FA (y, Oi(Y))dY} N =2; 

4w lxi~~~~V-lxy |4rX [1 + (9(lxl1)] {| e- 77Y(y)do-y 

- j e- Xl-y FA(y, i (y))dy} N =3. 

For space dimension N > 3, similar expressions can be obtained. Note that each 
integral inside the parentheses above decay with an exponential rate e-Ilxl for lxi 
large. 

Let 

QCR =Qcn{fxcR | lxi <R}, forlarge R>O. 

From (3.26), we obtain 

0 = f[( - A)wt(x)]wt(x)dx QC 
lim [fR j w+ (x) -fd (lV-i (x)l2 + Aiw?(x)l2)dxl 

R---*oo [JQC an JC 

= - I (lVwt(x)12 + Alwt(x)l2)dx, QC 
where the limit of the boundary integral over aQc tends to 0 as R -+ oo because 

faQ &znx I~ ()d -a~ &w(x wi (xa +f)wi(x)?dr 

- f aw O (x) w?(x)d (r= lxi), 
Ixl=R ar 

D 



954 YUANHUA DENG, GOONG CHEN, WEI-MING NI, AND JIANXIN ZHOU 

and the above integral tends to zero as R -- oc by (3.29). Hence wt (x) 0 on Qc, 
i = 1, 2. Define 

f+ w(x) - + 
x) x C 

(3.30) w(x) = 2 w-(x)-wj(x), x1Q 

Then 

(3.31) w(x) _ 0 for x c Qc 

On Q, the function w satisfies 

(3.32) 
(A - A)w(x) = -A[02(X) - q1(x)] + [F(x, q2(X)) - F(x, q1(x))] 

[+ (z)-+ X)] [_ 
F 
F(X, 02 (X)) -F (X, 01 (X)) 

< 0 by (3.12), 

and on &Q, it satisfies w _ 0. Thus, 

(3.33)f (,A-A)w < 0 on Q. 
= = 0 on 9Q 

If w(x) < 0 for some x E Q, then 

(3.34) min w (x) < 0. 
xe i 

Assume that 
w(xo) = min w(x). 

xEQ 

Then xo 0 Q by Hopf's boundary point lemma [13]. Thus x0 c &Q. But 

(3.35) 0 > w(xo) = 0, by the boundary condition in (3.33), a contradiction. 

Therefore, 

(3.36) w(x) > 0 on Q. 

Let Vj be the volume potential in (3.23). Since Fx 
(2,Vi(*)) 

c H2 ?(IN) (just 

as in (3.20)), by elliptic regularity we have 

(3.37) V E H2 ?(IR), i = 1,2, for any e > 0. 

Further, let 
(Vxqi)+ = Vxq i(x) if x E Qc, 

(Vxqi)-(x) = Vxqi(x) if x E Q. 

Then the trace theorem gives 

& 
_TZ 1 t E (OQ), fr any 0 < e < 1. 
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Choose any s: 0 < e < 1. Then by the continuity of the normal trace operation we 
have 

09 - ~ ~ ~ & 
(3.38) y<VA i)+ 

-VAi-nan Vj = 0 on aQ,i = 1,2. 

Also, let 

(3.39) (SWr1)i(x) = j E(x-(; A)Anir(i ) do> i = 1,2, 

"+" if x E QC, "_" if x EQ. 

Then, on aQ, 

(3.40) a 
[w+ (x)-w-x)] =-a w-(x) (by (3.31)) an an 

= w- (x-nh)-w- (x) 
ht0 h 

=limw (x-nh) (x aQ) 
hJO h 

> 0 by (3.36). 

But from (3.38), we also have 

a [W+ (x)-W (x)] 
_ a 

an =an 1[((SX'q2)+(X) ((VA02)+(x))-(l)(-(A )+)] 

-[((SAq2)-(x) - (Vb2)-(x)) - ((SXul)-(x) -(VX0)-(X))] 

= ___ -(SArhi)+(X)] - [(Sr,\I2)-(X)-(Sxm)ix)]} 
-an 

=-2 (X) - (-m(X)) (by [6, Corollary 6.5.1]) 

=Th(X)-r12(X) > 0 by (3.40). El 

Hence the proof is complete. 

Some numerical evidence of Theorem 3.1 is provided in Fig. 7.2. 

Corollary 3.2. Let g c C' (aQ) be given. Let (3.10) be satisfied. Define 

(3.41) Tg: C b(Q) --> C'(aQ), T = 

where iq is the solution of the BIE 

(3.42) j E(x - y; A>)n+l (y)day = g(x) + j E(x-y; A)FA(Y, 0(y))dy, x E aQ. 
Te i 

Then Tg is also antimonotone.O 
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Corollary 3.3. Let the assumptions of Theorem 2.1 be satisfied. Let the monotone 
iterations 

(UO (X) = ii(x) c C? (Q), 
(3.43) (A - A)un+1(x) = Fx(x,un(x)), x C Q, 

Un+l(x) = g(x), x c &Q, 

and 

(vo(x) = v(x) c C?(Q), 

(3.44) (,A - A)vn+1(x) = Fx(x,Vn(x)), xC Q, 

I Vn+l(x) = g(X), X &Q, 

have iterative solutions Un+l and Vn+l represented, for n = 0, 1, 2, .. ., as 
(3.45) 

un+1(x) = j E(x - y; A)u?n+l(y)dy - j E(x - y; A)FA(y, Un(y))dy, x E 

(3.46) vn+1 (x) = j E(x-y; A) vn+r (Y)d(y -jE(x-y; A)Fx (y, vn(y))dy, xC Q, 

where the simple-layer densities bn+1 (0) and vn+l (.) are determined from 

(3.47) irn+1 = TgUni Vn+i = TgVni n = 0O 1, 2,... 

Then 

(3.48) Poo = lim An, VOO = lim vn 
n--oo n-+oo 

exist in C? (&Q) such that 

(3.49) 8l <DP2<-- <<Un< *vv > UOO<VOO <<Vn<- < V2< Vl 

As in Remark 2.4, we again note that the rate of convergence of (3.48) is not 
available in general. 

4. ERROR ESTIMATES FOR THE GALERKIN BOUNDARY ELEMENT SCHEME 

We first recall some basic regularity properties of the operators corresponding to 
the simple-layer and volume potentials. For q$ c C? (Q), let Vxq$ denote the volume 
potential defined by 

(4.1) (V>q$)(x) = j E(x - y; A)q$(y)dy, x c Q. 

Then it is known (cf. [6, Theorem 6.3.1], e.g.) that VA can be extended to be an 
operator such that 

(4.2) VA: Hr(Q) -- Hr+2(Q) continuous, Vr > -1. 

1V,\011H-+2(Q) < ? Crjj7Hr(Q), Vq$ c Hr(Q), r > -1, 
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for a constant Cr > 0 independent of q$. The trace of (4.1) induces an operator 
VAFr defined by 

(4.3) (Vx,rpq)(x) (V,\q)(x), x E &Q; 

it satisfies 

(VAr: H'(Q) - H+ (&Q) continuous, Vr > -1, 

(4.4) there exists Cr > 0 such that 

J 'V, FjrjH+23 Q1) < CrIJq$1Hr(Q), VO c Hr(Q), r > -1. 

Note the relationship 

(4.5) Vfq$ = VAF(, q$)) 

from (3.8). 
Let the simple-layer potential SA be as defined in (3.8), and let SA be the corre- 

sponding trace as given in (3.12). It is known ([6, Chap. 6]) that 

SA: Hr(&Q) -Hr+ (Q) continuous, Vr ER, 

(4.6) there exists Cr > 0, such that 

I I S1Hr+32 (Q) < Cr 1 ?HIr(Q)V, V G Hr(&Q). 

Also, from (3.13), for each r 11, there exists a Cr > 0 such that 

(4.7) Cr ||1|jHr(aQ) ?< ||S&1|Hr+1(aQ) < Crflj7jHIr~aQ V) 1 V Hr (Q). 

Let {Sh I 0 < h < ho} be a 1-parameter family of finite-dimensional boundary 
element approximation spaces that form an (f,m)-system Sh7 (&Q), with ?,m c 

=+ {0 1, 2, ...... }, ? > m + 1, on &Q, in the sense of Babuska and Aziz [4], 
satisfying 
(1) Approximation property: 

For each $ c Ht (&Q), there exists a qh C Sh such that 

(4.8) 1s - qhjHHS(OQ) < Ct'ShV-sjj~jjHt(aQ), Vh: 0 < h < ho0 

where -f < s < t < f; IsI, Itl < m, and Ct,s is a constant independent of h and q$. 
(2) Inverse property: 

There exists a constant Ms8t > 0 such that 

(4.9) jj/hjjHt(OQ) < Msths Vtq/h||H-(aQ)) V)h C Sh, Vh: 0 < h < ho0 

where s < t, and IsI, Itl < m. 
We now implement the monotone iteration scheme according to Corollary 3.3. 

For definiteness, we will only discretize the (supersolution) systems (3.47) and 
(3.49). The subsolution systems (3.43) and (3.46) are analogous and thus can 
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be handled in a nearly identical way. The Galerkin boundary element method can 
be formulated as follows: 

(i) Set 

(4.10) us(x) = i(x), x E Q, cf. the first equation in(3.43). 

(ii) For each n = 0,1, 2,. . ., and h: 0 < h < ho, find 1+l E Sh such that 

(4.11) (SArn1,+ voh) = (9 + VA,rF(., Un),q h), Vqh E Sh, 

where (, ) signifies the L2(&Q) inner product. 
(iii) Define 

(4.12) un (X) - (SAt?l)(x) - (VAF(., Un))(X), x E Q, n = 0, 1, 2,... 

Note that (4.11) and (4.12) correspond, respectively, to the discretization of (3.42) 
and (3.45). We also see that in (4.11) and (4.12), quadrature evaluations are in- 
volved in the determination of VAF(*, un) and VA,rF(*, un). Since, in principle, 
these quadrature evaluations may be carried out to as high an accuracy as desired, 
we assume that VAF(., Un ) and VA,rF(., Un ) are exact (although in practice, these 
quadrature evaluations are rather tedious because the integration is carried out on 
the domain, and numerical errors are involved). From now on, without further 
mention, we also maintain all the assumptions and notation used in Theorem 2.2. 

Our main objective is to estimate IlUoo - Un IIHr(Q), where u00 is a stable solution 
as announced in Theorem 2.2(ii). The following working assumption is crucial; it 
enables us to obtain rates of convergence: 

(There exist constants yi and Y2 such that 
[H] J -Al < yi? 

< aF(xu) 
?<2, Y V(X, u)Q. QEQ x [a,b], 1 where A1 > 0 is the smallest eigenvalue of -A on Q subject 

to the homogeneous Dirichlet boundary condition. D 

Because QF continuous, it easily follows from [H] that for a sufficiently small 

6 > 0, there exist ?l and 72 such that 

(4.13) -Al < 1 < (x, u) <2, V(X,u) E Q6, Q6Q x [a-6,b+6]. 

This small 6 will provide the "breathing room" to accommodate the errors in the 
numerical operation for the iterates to stay within the range of monotone iteration. 

Lemma 4.1. Let Un+l be iterated according to (3.43) and let uoo be the limit as 
in (3.48). Denote en = -Uoo -Un. Then we have 

(4.14) lie n+11||L2(Q) < oan+l Jle? ||L2 (Q) , n = 0, 1, 2,. . .. 

where 

(4.15) 0 < at-A+ X < 1. 
A+?Al 1 
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Proof. Since u,, and uIb+i satisfy, respectively, (2.6) (with Bu _ u) and (3.43), we 
obtain by subtraction 

(4.16 (A - A\)e n+1 (x) = Fix (x, uc (x)) - F (x, Un (x))) x Q 
en+l(x) = 0, x G AQ. 

Multiplying the above by -end1, integrating by parts and using A1llen+l 12 < 

jlVe n+112, we get 

(4.17) lie n+1 11 < 1 1 FX (' U.o) - F,(, Uln)l A + A, lA~~ A.u)l 

where all the norms without subscripts are L2(Q). Let 

(4.18) MA- sup [A F(xu)] 
(x, U) zQL 

Then 

(4.19) 0 < M,\ < A - 7 

(Actually, oY can be taken to be -yj here.) We get 

(4.20) 

llFA(, 

Uoo) - 

F(,Un)= -[A 

-)F( n) (U. -n) 

< MX|luo - un|jj 

Substituting (4.20) into (4.17), we obtain 

llen+1 I I M lie ll < aAllen 1 a,= A 'Yi < 1 
- +A1 A+Aj 

Hence (4.14) follows. L 

Lemma 4.2. Let in+j and Un+1 be defined as in (4.11) and (4.12) for n - 

0,1, 2,.... Let (h +', defined on aQ, be the (unique) solution of the BIE 

(4.21) (S (n+1) (X) = g(x) + VArF(xun(X)), x E PQ. 

Then there exists at,s > 0, depending only on s and t, such that 

(4.22) ll'ri;n~l _ n - 11 H8H(&Q) < Cht s It(h 11HtQ9Q), 

where m<e-1,-(+1) <s<t<X, s<im, -e<-2 <m and-mK<- <t. 

Proof. Since SA\ satisfies (4.7), according to Hsiao and Wendland [10], the order 
of SA is 2a = -1, i.e., ae --. Invoking [10, Corollary 2.1], we obtain the 
conclusion. L 
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Lemma 4.3. Let N = 2 or 3, and let 

(4.23) o (N fo, if N= 2, 
(4.23) ?o(N) ={~ an arbitrarily small positive number, if N = 3. 

Then for e > 2 and m > 1, there exist positive constants KEO(N) and K such that 

(4.24) 

||h+ - nh+ IHHO(N)Q(a) ? K?N(N)h ?() [IIUooIIH2(Q) + MAcnCIleo11L2(Q) 

+ ||FA (.u F) - (., Un) IIL2 (Q)], 

(4.25) 

IIr4n+1 - cr+ln ?13 Kh 2 [IUooI nQ +A2A~H2Q r~ (h +IIH 2 ( jQ) < 1[II O H2 (Q) + M,\a loe | e| L2 (Q) 

+ |FA(.,u~) 1 -L2(Q) 
Vnr=0,1,2,... ,O<h<ho. 

Proof. We have from (4.22) and property (4.7) of SA, 

(4.26) 

hlrnh - h IHEO(N)(aQ) ? C 2,Eo(N)h C1 3 H-(9Q) 

< 
(C1" o(()C)h 

O 3Q) + IIVA,rFA(,un)I_ 1 Q) (by (4.21)) 

K 2 [H2 (HQ) + CoIF( (,u)|IL2(Q)] (by (4.4)) 

K (C1 HO~ff)Q9~h2 ( [IIgII Q) + CO((FA(., Un) -FA(.,un)HL2(Q) 

+ jIFA (.,u n) -F (., Uoo) IIL2 (Q) + IIF,(, Uoo) IIL2 (Q)] 

< (C1Eo(N)C1 )h2-o(N) [CIIUooIH2(Q) + CoM,\AIIe?|IL2(Q) 

+CO IIF Fu) + C0||x(, uh)F( Un) IIL2(Q)]j 

where in the last inequality we have utilized the properties that u00 satisfies (2.6), 
the trace theorem, (4.14) and (4.20). Therefore, (4.24) has been established. From 
(4.22), we have 

hn+1 _-(n+1|IH3(Q) -< C 13h 2 l+ H 2 (IQ) h h H_ 2 

~2' 2 CH 
2 

j(a1H 
< C1 3h2. 21 IIA(h+ IIH3 (Q) 

The rest is the same as in (4.26). O 

Remark 4.4. Lemma 4.3 remains valid even if eo (N) = 0 when N = 3, where the 
constant KE0(N) remains bounded as Eo(N) I 0. But in the discussions henceforth 

we will only utilize the part when Eo(N) is positive yet nonvanishingly small. O 

From (4.21), we now define 

(4.27) 

W n+1 () =S(hn+')(x) -(V,\F(, Ua)) (X), X G Q n = 0,1,2,. . , < h < ho. 

It is readily seen that Wn+l satisfies 

(4.28) h on 
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Lemma 4.5. Let N = 2 or 3. Let Co? f(Q) be the Holder space of continuous 
functions with exponent /, 0 < / < 1, on Q. Then for eo(N) satisfying (4.23), and 
for / sufficiently small, we have a positive constant K,0(N) such that 

(4.29) 

llq WhHCO,3 (n) <K' h(N) h (N) [AHu|1H2(Q) + Mx eHL2(Q) 

+ |F( ( un ) IIL2(Q)] 

for n = 0, 1,2... 0 < h < ho, where K'o(3) may grow unbounded as Eo(3) 1, 0 

when N = 3. 

Proof. We use the Sobolev imbedding theorem (cf. [6, Theorem 2.1.3], e.g.) 

N 
(4.30) Ilf lco,(n) <C Of IHs(Q), for 0 < =s - 2 <1, 

to get 

(4.31) HU n+- n+W ttCO/O(Q) < CO IIUh+ -Wn +N 

where 

(4.32) /3 = Eo(3) f N3. 

Note that cEO I oo as Eo(3) I 0. Continuing from the right-hand side of (4.31), we 

have 

HIU -WhIICO (Q) ?CgO IISA(?7h+ - _h)IIH3+6O(N)(Q) (by (4.12) and (4.27)) 

< C?0 CEo(N) 1h -?h I IHHo(N) (by (4.6)). 

The rest of the proof follows from Lemma 4.3. 

Lemma 4.6. Let N = 2 or 3. Then there exists a constant K > 0 such that 

(433) ||Wh + - Un+1 t co?(Q) < K||F,u( ) - F(, un)ttL2(Q) 

Vnr=0,1,2,... ,0<h<ho, where0</3<1/2. 

Proof. From (3.45), (4.27), (4.30) and (4.32), we get 

11W - Un+1 UCOn() <c+wj+ Ufl?1H IIH2(Q) (for 0 < 3 < 2, by (4.30)) 

? c[|Sx(721h -Pbn+l)flH2(Q) + t|VA(FA(,Un) -FX( ,Un))||H2(Q)] 

? c[C2C_11SA j1 -H n+) 11 H(Q) 

+ IIVA (FA (un) -FA( ,uAn)) IIH2(Q)] (by (4.6), (4.7)) 

? c[CeO(N)Ceo(N) IIVA,r(FA(,Un) - FA(., Un))3H: (OQ) 

+ ||Vx(Fx(.,u~) -Fx(,ubn))IIH2(Q)] 

? c'llFx(.,uh )-FX(., Un)IIL2(Q) (by (4.2) and (4.4)).E 

Similar to Lemmas 4.5 and 4.6, we give the parallel estimates in the L2 (Q) norms 

in Lemma 4.7. 
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Lemma 4.7. We have 

(4.34) 
|1uh Wh I L2(Q) ? Kh2[|oH2(Q) + MAI|e?|L2(Q) 

? IIFA(* ,un) -FAX(.,Un) IL2(Q)], for some K > 0, 

(4.35) 

Wh Un+1||L2(Q) < | Uhn) -A nlL(j 

Vn = 0,1,2,3, ... ,0 < h < ho. 

Proof. FRom (4.12) and (4.27), 

|u11 - Wh1 |L2(Q) = | nSA(1+l -( l) 1 L2 (Q) 

< 03 rIjn+1 -(n+ H1(3) (by (4.6)). 

The rest follows from (4.32). 
To show (4.35), we use that un+j and Wn+1 satisfy, respectively, (3.43) and 

(4.28). Subtracting (4.28) from (3.43) and estimating as in (4.16) and (4.17), we 
obtain (4.35). g 

Corollary 4.8. (i) Let N = 2 or 3. Then for eo(N) satisfying (4.23) and for ,B > 0 
sufficiently small, with /3 being related to Eo(N) through (4.32), we have a constant 

K/O(N) > 0 such that 

(4.36) 

U+ -Un+i1CO16(a) < K(o)h2 ( (N)[IIUooIH2(Q) ? nMAa e L2(2)] 

+ [2N+ K'O(N)h ?(N)] nFA(,uh) -FA(. Un) I I L2(Q), 

Vn = 0,1, 2, . 0 < h < ho, where K,0(N) may grow unbounded as ?o (3) 1 0. 
(ii) There exists a constant K > 0 such that 

(4.37) 

-Un+ llL2(Q2) < Kh[ UI H2 () MAanA IIe0 IL2 ()] ( 2 + Kh2) 

*IIF~i vh -Fi( Un) I IL2 (Q)) 
Vn = 0,1,2, ... ,0 <h < ho. 

Proof. The inequality (4.36) follows from an application of the triangle inequality 
to (4.29) and (4.33), while (4.37) follows likewise from (4.34) and (4.35). D 

Theorem 4.9. Let N = 2 or 3 and let Eo(N) be given by (4.23) and /3 > 0 be 
sufficiently small, with /3 being related to go (N) through (4.32). Then there exist 
ho: 0 < h< ho and p\: 0 < p\ < 1, independent of h and n, such that 

(4.38) 

IUh -Un+1 II CO (-Q) <KEo()h2?(N)[ U H2(Q) ? PA) he0 IIL2(Q)]I 

(4.39) 
un+1 Un+1IIL2(Q)<Kh2[I I UoII2(Q) + pn+1 0|e? ] Uh U4U0H()?/) e 
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and 

(4.40) a-8 < uh+ (x)<b?+, Vn=0,1,2, ..., 0 < h < ho, 

where K/(N) and K are constants independent of h and n. 

Proof. Since 0 < aA < 1, we can choose ho > 0 so small that 

(4.41) 0<aA?+KMAh <pA<1, 

(4.42) [KS0(N)h0 (QA?K60(N)MhA (2 K ) J2] 

[lJu0o IIH2(Q) + MA |! e IIL2(Q)] < 6, 

for some pA: 0 < PA < 1. By induction, we may assume 

u'(x) E [a -6, b +6], Vx E Q. k = 0,1,12, ... In, 0< h <ho. 

Hence, similar to (4.18)-(4.20), we have 

(4.43) 

JIF(, ,u')-F(, VUk)IIL2(Q) < 
MAIuk - UkIL2(Q)) k =0,1,2,. .. ,n, 0 < h < ho. 

Using (4.41) and (4.43) in (4.37), we obtain 

(4.44) 

I| 
n+1 

_Un+1||L2(Q) 

< Kh2[ IuI0H2(Q) ? MACe IIL2(Q)] 
2 +- M2rCIn-i 0 n-i + p,AKh [IIUooIIH2(Q) ? MAQ |e L2(Q)] ? PAIUhn - U1I L2(Q)} 

2(1 + PUO H2~2 < KhMh j ? PA+,, + p ?n)AlVUA? eLH2(() 

+ KMA h2( + pAan- +,, + P Xag + pn) Ile0lL(i 

where in the last inequality, we have used uo = uo = u. Since aA < 1, we derive 

(4.45) 

|U + Un+1 IIL2((Q) < KA UI IH2(Q) + MAIJeJI|L2(Q)], 

Vn = 0, 1, 2,.. ., O<h<ho. 

By applying (4.43) and (4.45) to (4.36), we then obtain 

(4.46) 

J1uh+ Un+l co'/3(u) < KEO(N)h2 
l 

[IlUoolIH2(Q) + MAI eJ|L2(Q)], 

Vn = 0, 1, 2, .. ., 0<h<ho, 
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where 

- -i~~~~~~~~~~~~ -e6(N) (K 3No N 

(4.47) KEo(N) = K'O(N) + (a,\ ? K' (N)MAho 0) I - ) h+ 

Thus, (4.40) is obtained from (4.42), (4.46), (4.47) and the induction hypothesis. 
To get (4.39), we note that oa, < p\ from (4.41). Then, instead of (4.45), we 

obtain from (4.44) 

(4.48) 
(K N2/n+1 

l l n+1 _-Un+ l|L2(Q) < h2 ? | I|H2(Q)+ KM, ( PA ) 2 0leo IIL2(Q)v h H2I(- 2A P1-P- a ,( 

? (K~~ h2Ju 1 cOH2(Q~) ? (A) p1h 2 Ie IIL(Q 

Vn=0,1,2,..., O<h<ho, 

where we used (4.41). Thus, (4.39) follows from (4.48) by setting K = 

max{f ', K }. 

Finally, by using (4.40), (4.41) and then (4.48), we obtain (4.38) from (4.36). 
The proof is complete. D 

The inequality (4.40) is important because it guarantees that each numerical 
iterate un(x) does not fall out of the range of validity, Q x [a - 6, b + 8], of the 
monotone iteration, and for the applicability of (4.18)-(4.20). It also partially 
explains why we need an assumption like [H]. 

Theorem 4.10. Let {fSh 0 0 < h < ho} be a family of (a, m)-systems on &Q with 
? > 2 and m > 1, and let N = 2 or 3. Assume [H], so that there exists a small 
number 6 > 0 for which (4.13) holds. Then there exist constants K1 > 0, K2 > 0, 

and an ho: 0 < ho < ho, such that for any r: 0 < r < 2, we have 

(4.49) ||Uh - U0 II Hr(Q) < K1h2lr I U H2((Q) + K2pn |e? || L2(Q) 

and 
a-8<un(x) <b+?, 

for all n = 0,1.,2,. ..,h: 0 < h < ho, where eo = ucO- Uand 0 < p< 1. 
Therefore, un converges to uco as n tends to oc and h tends to 0. 

Proof. Similar to the procedures in (4.26), by using (4.39) and (4.43), we have 

(4.5.0) 
In1(n+1 C18hS /n+1 

1 
' hIIHs(0&) 

< 
Sh 11-s H2 n+ 

? (C2,8C2)h2s[C Iu00J H2(Q2) ?COMAQA Jle L2(l 
+ o |F (, + )-M, ,Un)||L(Q] 

? (C ,s8C2)h2s[CI |U o|H2(2) Co MaAnI eI L2(1 ) 

+ CoMKh2( U FAH2(Qn) +p I e L2(Q2)] 

<?Clhs[ [IuO2IIH2(Q) +p I||eIeL2(])], 
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where -(e + 1) < s < 1/2. From here we then have, cf. the proof of Lemma 4.7, 

(4.51) 
~n+1 n+l Hn+O)=JSQ~1 - J+1)f n(+ s~i~1 -hls& 

h+-th + +3(2 IIS ' W )I11I8+ S < CS I I ?7h+1_ II () 
< C2h1 [fIuooIIH2(Q) + pIXIe0I1L2(Q)] (by (4.50)). 

Let r = s + 3 in (4.51). Then 

(4.52) -un+1 w- j1 IHr(c?) < C2h2 r[UOO|IIH2 (0) + Pnjle0f|L2(Q)], 

where- + 2 < r < 2. 

For 0 < r < 2, we have 

(4.53) 
fw~h -Un+l+HHr(Q) < flWh -Un+1l H2(Q) 

<ZoIF(u)-FA(., Un) II L2 (Q) (by (2.13) and (4.28)) 

< CoMA |u~hn - Un|IL2(Q) (by (4.43)) 

< (CoMAK)h2 u[IIUc>o IH2(Q) + pn I IeI1L2(Q)l (by (4.39)). 

Combining (4.52) and (4.53), we obtain 

(4.54) 

HUK+1 -Un+1|IHr(Q) < C3h2 r[flUof IH2(Q) + Pn efL2(e)1, 0 < r < 2 

Vn = 0,1,2, ... ,0 < h < ho. 

Also, 

(4.55) 
||Un1 - UooI|Hr-(Q) < ||Un+ 1 - UcoI|H2 (Q) 

< CXIIFX(.,Uh) - FA( ,uc)lIL2 (0) (by (4.16)) 

< CQXMXlUn| - Uoo|L2(Q) 

? CAMx~cx ll IIL2 (Q) (by (4.14)). 

Then, upon noting ax < pA, we see that (4.49) follows from (4.54) and (4.55). O 

Let /uz be the limit of the simple-layer densities {ftun}' given in Corollary 3.3. 
We give the error estimate qnh -_1I in the following theorem. 

Theorem 4.11. Let N = 2 or 3. Let {Sh 0 < h < ho} be a family of (C,m)- 
systems with ? > 2 and m > 1. Then for s: - 3 < S < 2 there are constants 

K, > 0 and K2 > 0 such that 

(4.56) ||rLh - ,IOOHHS(&Q) < Kjh2 S18uOOHH2(Q) + K2pIeIIL2(Q) 
4n5 = 6n 1) n 12...I h: < h < h. 
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Proof. First, from (4.21) and (3.47), we have that for s < 1/2, 

(4.57) 
IIah IUnhIHs(&Q) = IISA [VA,r(F(, uh) -FV(.,un))]IIHs(OQ) 

< Csl |V~r[Fa(, h )- U( n)]IIH 23(aQ) 

(for any s E R, by (4.7)) 

? KIIUn - U IL2(Q) (by (4.2) and (4.43)) 

? K'h 2[IIUcoIIH2(Q) + PAIle IIL2(Q)], from (4.39). 

Also, from (4.50), 
(4.58) 

Jrnh - +h IIHs(OQ) < K h2 [IIu||IIH2(Q) ?p IJeI L2(Q)], -(E+ 1) < s < 2 

Similarly, from (3.47), (3.48), and the proofs of (4.57) and Lemma 4.1, we have 

(4.59) <u - btIIHs(a9) ? K"'f/nIle0IIL2(Q) for s < 
I 

From (4.57)-(4.59) and the triangle inequality, (4.56) follows. E 

In our proofs above, for the St, (&Q)-systems we have used, because of the need 
of the inverse inequality we require that lal < m (cf. the proof of Lemma 4.2 for 
a), a =-2' leading to m > 1. Thus piecewise constant boundary element spaces 
Sh'0 (Q) are excluded. However, this restriction may be relaxed for N = 2 if we 
use Sd, the space of smoothest splines of degree d with respect to a quasi-uniform 
mesh on &Q, which is a smooth Jordan curve in JR2 In this case the approximation 
property (4.8) holds for all s < t < d + 1, s < d +2 and the inverse property (4.9) 
holds for s < t < d + 2 [12]. By [14, Corollary 4], in (4.24) we now have 

(4.60) 

llrn+l - (hn+1 IIHS(,Q) < Chts 11(:;n+1|H(Q - (d + 2) < s < t < d + 1, iih h~(~)Cih IlHt(OQ)-d? <st ?1 

212 s~d+2't>-d ) 
d?0. 

Therefore, all of the lemmas and theorems after Lemma 4.2 in this section remain 
valid for these Sd systems with a quasiuniform mesh on &Q when N = 2. In 
particular, we state the following. 

Theorem 4.12. Let N = 2 and let {Sh I 0 < h < ho} be a family of Shd spaces 
of smoothest splines of degree d (E Z+) with respect to a quasiuniform mesh on 
&Q. Under otherwise the same assumptions as in Theorems 4.10 and 4.11, we have 
Ki > 0 i 1,2,3,4, and ho: 0 < ho < ho,0 < pit < 1, such that 

HUn -U |IIH2() ? Kjh2 U H2(Q) + K2Pn jje?IIL2(Q), 

Inh -2UIHs(&o) ? K3h2 llu||H2(Q) + K4pJ eII 0L2(Q) 

(K3 and K4 depend on s), 

Vr: O<r<2, n=0,1,2, .. ., h: O<h<ho; s: -(d+2)<s<1/2. D 
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Remark 4.13. The error estimates obtained in Theorems 4.10-4.12 are all of the 
separable form 

KihVIluuIIH2(Q) 
+ K2pJ 'eIIL2(j), -y > 0. 

It is obvious that these estimates are asymptotically tight. E 

Remark 4.14. Error estimates of Iun-uO Hr(s) with respect to higher-order 
Sobolev space norms Hr (Q), with r > 2, and for space dimension N > 3, are 
possible if we make an assumption like 
(4.61) 

IIF,\ ( vlt)-F ,2)Hm('2) ?M M)U1U21 Hm((Q), m >1, Vu1,u2 E Hm(Q), 

for some sufficiently small M\, to supersede (4.20). But (4.61) appears unnatural, 
and leads to cumbersome notation. So we do not go into this. E 

5. HIGHER THAN OPTIMAL-ORDER ERROR ESTIMATES 

FOR NONLINEARITIES THAT ARE SEPARABLE 

A special feature of boundary elements for nonlinear PDEs is that for an im- 
portant class of nonlinearities, one can obtain higher than "optimal order" error 
estimates with respect to the h-parameter. Let us assume that F(x, u) in (1.1) is 
separable, of the form 

(5.1) F(x, u) = ao (x) f (u) + fo (x), 

where ao, fo E C' (Q), and f E C' (R), and that g(x)- 0 on &Q. 

Lemma 5.1. Let {Sh I 0 < h < ho} be Stm(&Q)-systems with ? > 2 and m > 1 
when N = 2 or 3, or be Sh-systems of smoothest splines of degree d with quasi- 
uniform mesh when N = 2. Then there are ho: 0 < ho < ho, pie: 0 < pie < 1, and 
constants K1 > 0, K2 > 0 such that 
(5.2) 

n+1 
11n H 0\ llnh (h H3/2(&Q) ? Klh+[IIUIIH2(Q) e L ? Vu: 0< + <1, 

for all 0 < h < ho, n = 0,1, 2,.. ., provided that F(x, u) is of the form (5.1), and 
g 0 O. In particular, K2 = 0 if ao (x) and fo (x) in (5.1) are constant functions. 

Proof. We first recall the Sloboditskii norm 0u + u ulL2 (A), where 

U12 JJ u(x)_u(y)12 

QxQ 

for 0 < a < 1. It is known that the Sloboditskii norm is equivalent to the Sobolev 
space norm - IIH. , From (5.1), we have, for a-6 < u(x) < b?+, x E Q, 

IF(x, u(x)) - FA(y, u(y))I 
= A[u(x) - u(y)] - [ao(x) - ao(y)]f(u(x)) - ao(y)[f(u(x)) - f(u(y))] 

+ [fo(x) - fo(y)]I, 
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from which it follows that 

(5.3) 
IF(., u)I. < Alul, + Ilf IC[a-5,b+6] laol + ?laollco(-)llf' ICO[a-5,b+6]5U + ?Ifola 

-Cljuj? + C2, 0 < C< 1. 

Because of (4.48), we can get 

(5.4) IFV'-, Uh) -F,\(-,Uoo) I IL2 (Q) < M,\ lU'- UCo lL2 (Q). 

Similarly as in the proof of Lemma 4.5, we obtain 

h -h II H-3/2(&Q) ? C32h ((+1j II ) 

? C4h2+ XF (,un) H(X) (because g = 0 in (4.21)) 

<?C4h2+oT [IFAQ,( Un) IC . FA(, u,)-FA(,u) |L2(Q) + IIFA(.,U0) IL2(Q)] 

? C4h + [Ci uj CT?2 ? MA Uh -U.0 L2(Q) + C5I|UooIH2(Q)] 

(by (5.3) and (5.4)) 

? C4h 2+[C6(lUh - U0oIH(Q) + C7I|UooI0H2(Q)) + C2] 

? C8h2+a [ IU)0 IIH2(Q) + Pn |le? ||L2(Q) + C9] (by Theorem 4.10).E 

Now, the following is obvious. 

Theorem 5.2. Assume the same conditions as in Lemma 5.1. Then there are 
three constants Ci > 0, i = 1, 2,3, such that 

||Uh -U II Hr(Q) <CiPn Ile? |L2(Q) + C2hU2-r+o(|IU00 IH2(Q) + C3) 

Vh: 0<h<ho, n=0,1,2, ... I 0<u<1, 0<r<2. 

In particular, C3 = 0 if ao(x) is a constant function and fo(x) 0 in (5.1). E 

6. NEUMANN AND ROBIN BOUNDARY CONDITIONS 

The treatments in ?4 and ?5 deal with the Dirichlet boundary condition. We 
now consider the case when the boundary condition is 

(6.1) 
a 

u(X) + a(x)u(x) = g(x), x e &Q, 

where a (x) > 0, a e 0C0(&Q). The condition (6.1) corresponds to a Neumann or a 
Robin boundary value problem depending on whether a(x) is or is not identically 
equal to zero. 

For (6.1), we formulate a corresponding assumption similar to [H]. Let A' be the 
smallest eigenvalue of the operator (- A, [2- + c()] 1.). Then A' = 0 if a(x)- 0 
and A' > O if a (x) > 0 but a (x) t 0. We assume: 

[H]' There exist constants -y' and y2 such that 

-Al < y < F(x, u) K , [a hl 



BOUNDARY ELEMENT MONOTONE ITERATION SCHEME 969 

Similar to (4.13), we now have that for a sufficiently small 6 > 0, there exist 7' and 
72 such that 

(6.2) -Al<%?Y1 < V(x, u) e Q x [a- , b + ? ]. 

Let A > 0 be chosen sufficiently large such that 

FOF F(xu 
(6.3) Ml sup A u) >0. 

Then 

(6.4) 0 < M' < A-el 

Lemma 6.1. Let the assumptions in Theorem 2.2 and (6.1)-(6.4) hold. Let Un+1 

be iterated according to 

(6.5) { (A - A)Un+lW() = FA(x,un(x)), x E Q. (5) a 
XUn+ u (x) + ?a(X)un+ (x) = g(x), x E &Q, g E C??(OQ), 

and let u,0 be the limit as in (2.16). Denote en = U -un. Then we have 

lien+1 IL2(Q) < atn+l Ile' 11L2(Q), n =0.1, 2,... 

where 
A - 

0<ac 1 <1. '\ A ? All 

Proof. Refer to the proof of Lemma 4.1. Instead of (4.16), we now have 

(A - A)en+1 (x) = Fx (x, uco (x)) -FA (x,Un (X)), X E 

en+1(x) + a(x)en+l(x) = 0, x E &Q. 

Multiplying the above by -en+1 and integrating by parts, we get 

J anen+l 2d + rj Ve n+ 12dx + A lj en+ 12dx 
AQQQ 

? IIFx(, uo) -FA(-, un) IIL2(Q) Ilel L2(e )n 

But 

[JcaIv12da + J1,vv2dx] 

VEH1(Q) 1IVI2L2(Q) = 

Thus, 

(A + A')Ile n L1 ? 
IIFA(',UO) 

- FA(., un)IIL2(I)ILe +1IIL2(Q). 

The rest of the arguments are the same as in the proof of Lemma 4.1. D 
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Proceeding as in ?4, we now note where the places are that need to be adjusted 
to accommodate the boundary condition (6.1). The iterate ut+1 (.) satisfying (6.5) 
is still represented as in (3.8), but qn,+ is determined from the BIE 

(6.6) 

BAnu,+1 (x) = 
-7n+l (W) +] [a E(x- y;A) + (x)E(x-y; A)] qn+(Y)duy 

2 anx~~~~ 
= g(x) +ca(x)(Vx,rF(.,un))(x) ?a(VAFG X un))(x) x E aQ 

instead of (3.47). Note that 13A is a strongly elliptic pseudodifferential operator of 
order 0 (= 2ca according to the notation in [10]) with principal symbol 2 such that 2 

(6.7) Bx: HS(&Q) H'aQQ) isomorphically, Vs E IR. 

Therefore, (6.6) is uniquely solvable. 
The Galerkin boundary element method for (6.5) is almost the same as in (4.10)- 

(4.12), except that (4.11) is replaced by 
(ii)' For each n = 0, 1, 2, . ,and h: 0 < h < ho, find qi+ 1 E Sh such that 

KAr7 S?n1 q h) L2 (aQ) = (* X h)L2 (&Q) Vqlh E ShX 

where * denotes the sum in the last equality of (6.6), but with un taking the place 
of Uh. 

Next, we let (hj+1 be the unique solutions of the BIE 

(BA(h )(x) = g(x) + oax()(VA,rF(.,un))(x) + a(V\F( Un))(X), x E aQ 

(instead of (4.21)) 

from which we define Wn+1(x) just as in (4.27). 
It is now routine to check that beginning from (4.21) in Lemma 4.2 and ending 

at (4.60), all the estimates remain valid. Indeed, we obtain the same results under 
a less restrictive assumption on St M(aQ)-here we only require that > ? 1 (and 
m > 0) because 2ac, the order of BA\, is zero. Thus the requirement that lol < m 
made in [10, Corollary 2.1] and [14, Corollary 3] is now automatically satisfied with 
m > 0. 

7. NUMERICAL EXAMPLES 

The theory developed so far was molded by computations of concrete examples of 
semilinear PDEs. In the following, we will present several such examples featuring 
various situations, with numerical solutions illustrated by computer graphics. 

The steps that we take are indicated by a flowchart next. For definiteness, we 
only consider the Dirichlet boundary condition for Q _ D1, the unit open disk in 
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FLOW-CHART 

1. Initialize: Take an initial guess wo(x), x E Q. 
Set j = 0. Select A > 0 to satisfy (2.9). 

2. Compute the volume potential 

VA,j(X) JE(x - y)[Awj(y) - F(y, wj(y))]dy, X Q 

3. Solve the unknown simple-layer density rqj+1 (.) from the boundary 
integral equation 

JE(x-Y)ruji+l (y)dcy = g(x) - E(x -) [Aw3j (y)-F (- wj (y)) ] dy, 
OQ 

x E 9Q. 

4. Compute the solution 

wj+i(x) = J E(x - y)rj+1 (y)dov + JE(x -) [Awj (y) - F(y, wj (y))]dy, 
aQ _Q 
x E Q. 

5. If flwj+1 -wfl L2(Q) < E, exit. Output and stop. 
6. Else j := j + 1; 

continue. 

R2. The boundary value problem is of the form 

(7 1) | Au(x) - F(x,u(x)) = 0, x E D1, 
(7) u(x)= g(x), x E aD1. 

Note that at Steps 2 and 4 of the flowchart, the volume potential VI\,j(x) and 
the iterate wj+1 (x) are computed by quadratures of high accuracy with 864 Gauss 
points placed on the unit disk. The Gauss points are selected by using the Cartesian 
Gauss rule for the polar coordinate variables (r, 0): dividing the unit disk into 
4r x 240 elements and using 3r x 30 Gauss points in each element. The key step is 
the solution of the boundary integral equation for the simple-layer density qj+l in 
Step 3. In our numerical work, 7j+1 is solved by point collocation using piecewise 
constant boundary elements (i.e., Sj' (aQ)-systems) with uniform mesh on aQ, 
where aQ is divided into 64 equal pieces of arc (i.e., h = 27r/64). Here collocation is 
taken as a measure of convenience, because the Galerkin boundary element method 
as stated in (4.10) and (4.12) involve significantly more programming work. It 
is also for this reason that in this section we have not attempted to confirm the 
error estimates given in ?5 and ?6 experimentally. We nevertheless hope that the 
examples furnished here will serve as useful benchmarks for researchers doing similar 
work, and that in the future we will also be able to derive and numerically verify 
error estimates for the boundary element point-collocation scheme. 

In all our numerical computations, E = 10-4 has been used as the relative L2 
error in solutions to terminate the iteration, see Flow-chart Step 5. 

We first test the accuracy of our computer program this way. Choose a known 
(smooth) function y(x), x E Q, and for a somewhat arbitrary function F, where F 
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is nonlinear in u, we compute the solution of 

fAu(x) - F(x, u(x)) = 0, x E Q, 
lu(x) = y(x), x E &Q, 

where 
F(x,u(x)) = F(u(x)) + [Ay(x) - F(y(x))], x E Q. 

Obviously, y(x) is an exact solution of the (artificially set example) above. We then 
use y(x) as a benchmark to test whether we can numerically recover u(x) = y(x). 
The computer results are affirmative: the output data have shown high accuracy. 

In the following, we provide numerical examples which do not have exact so- 
lutions available. The accompanying theoretical discussions are to a large extent 
motivated by visualization of the numerical results. 

Example 7.1. Multiple solutions two stable solutions bounding an unstable one. 
Consider 

(7.2) r iAu(x)--yu(x)[u(x)-a] [u(x)-1] =0, x ED, 
(7j u(x) = 0, x E OD, 

where -y > 0, 0 < a < 1/2. It is easy to see that u(x) = vi(x) -0 is a solution. 
One can further establish that vi(x) -0 is stable. This solution is of less interest 
because it is trivial. 

Substituting ui(x) _1 for u into (7.2), we also easily verify that ii(x) is a super- 
solution. (Actually, u(x) C for any C > 1 will do.) 

FIGURE 7.1. A bell-shaped stable positive boundary element numerical 
solution u(x) satisfying Au - u(u - ) (u - 1) = 0 and the zero Dirichlet 
boundary condition for Example 7.1. 
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In (7.2), we have 

(7.3) F(x, u) F(u) = yu(u - a) (u -1), 

(9F = y[(u - a)(u -1) + u(u -1) + u(u - a)] 

= ?[3U2 - 2(a + 1)u + a]. 
In our computation, we choose 

-y = 100, a = , yielding max - = 75, u E [0,1]. 

Thus, if we choose U(x) _ 1, A = 75.69, then (3.10) is satisfied. 
The monotone scheme beginning from uo(x) = ii(x) 1 takes 30 iterations, 

yielding a bell-shaped function u, (x) as shown in Fig. 7.1. According to Theo- 
rem 2.2, this is a stable solution. Since uOO(x) 0 0 _ v(x) = v,,(x), we know 
from Theorem 2.2 that there is at least one unstable solution of (7.2), called a 
"spike-layer" solution, sandwiched between v,, and u,,. 

Generally, it is known that for (7.2), the following are true: 
(i) Any solution u of (7.2) must satisfy 0 < u(x) < 1; 

(ii) For -y > 0 sufficiently small, (7.2) has the trivial solution as its only solution; 
(iii) The spike-layer solution exists only when -y > 0 is large. 

Meanwhile, the antimonotone convergence of the simple-layer densities, guaran- 
teed by Theorem 3.1, is reflected in Fig. 7.2. LI 

-1 

-20 _ 

-40 \ X X l 

-50 s . 'I.,:, ,#,. X , ^ 

;80 'XI 0i\1I Ai ' 

-110 

-120 

0 .785 1.57 2.36 3.14 3.93 4.71 5.5 6.28 

FIGURE 7.2. The antimonotone convergence of the simple-layer densi- 
ties for Example 7.1. While the solutions u'(x) decrease monotonically 
on the unit disk, the simple-layer densities rq (x) increase monotonically 

I,^{1 
I 

. 
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Example 7.2. A monotone dissipative operator equation. 
Consider 

(7 49 f A8(X) - 43(X) = yX12, X = (XI, X2) E Di, -y > 0, 
(7.4) u(x) = 0, x E aD1. 

The nonlinear operator KV on the left-hand side of the PDE in (7.1) is known to be 
a monotone dissipative operator as it satisfies 

(J/UI -AJ/z2,UI -U2)L2 (Di) = ((Au, --4u3) - (ZU2 -4U3), U -U2) 

= I -[A(-2) - 4(u 3- U3)](U1 - U2)dX 
D1~~~~~ 

= - J[IV(UI - U2)12 + 4(U3 - U3)(UI - U2)]dx < 0, 

for UI,1 U2 E H2 (DI). FRom the theory of monotone dissipative operators it is 
straightforward ([11], e.g.) to establish that (7.4) has a unique solution u E 
COO (D1). 

From the way (7.4) is given, we can further prove that the solution satisfies 
u(x) < 0, x E D1. Assume the contrary. Then by the usual maximum principle 
[13] G {x E D1 u u(x) > 0} is nonempty. Thus, on G, u satisfies 

A t(X) = 4u3(X) + yX12 > 0, X E G. 
{ u(x) > 0, x E G, 

u(x)=0, xEOG. 

But for u satisfying LAu > 0 on G and u = 0 on OG, the maximum principle implies 
that u(x) < 0 on G, a contradiction. 

For (7.4), we have F(x, u) = 4u3 +yx 2. For D1, it is known that A1, the smallest 
eigenvalue of -/ corresponding to the homogeneous Dirichlet condition, is (cf. [7, 
p. 188], e.g.) 

A1 (2.4048)2 t 5.783063. 

Therefore, 

(7.5) OF = 12u2 > 0 > -A1 -5.783063. 
(Ou - 

We may take iU(x) 0 as a supersolution, and v(x) -C, C > 0, as a subsolution, 
if C is chosen such that 4C3 - Yx 2 > 0, Vx E D1. 

Because of (7.5), we easily see that [H] and (4.15) are satisfied for 'j < 0 if 11 
is small. 

In our numerical computations, we choose -y = 10 and A = 4. The computation 
takes 8 iterations to converge. The numerical solution is plotted in Fig. 7.3. The 
reader can easily see that the solution u(x) is nonpositive. O 

Note that Theorem 5.2 applies to Examples 7.1 and 7.2. 
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in, 

01 

1 1 ~ ~~~~.5 U 

FIGURE 7.3. Boundary element numerical solution of Au - 4u3 _Ox2 
subject to the zero Dirichlet boundary condition, Example 7.2. 

Example 7.3. A nonlinear PDE of nonmonotone type whose existence or nonex- 
istence of stable solutions of one sign depends on the size of forcing. 

Consider 

(7.6) {f tu(x) + 4u3(x) = -yx2, x E D, -y > ? 

tu(x) = 0, X E OD1. 

Suppose we are interested in finding nonpositive solutions 

(7.7) u(x) < 0 on D1. 

This condition is now appended to (7.6). Later on, we will be able to remove 
(7.7) provided that -y > 0 is sufficiently small, and that proper supersolutions and 
subsolutions are chosen; see (iii) below. 

We now show the following. 
(i) The system (7.6) and (7.7) has no solution if -y is large. 
Let q1 be the first eigenfunction of -A satisfying 

AqiO, + A1q1 = 0 on D1 (A1 5.783063), 
(7.8) q$1(x) > 0 on D1, 

+1 laD1 = 0. 

Here, X1l(x) > 0 because we know that q1 is of one sign on D1 (cf. [6, ?3.1], e.g.). 
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From (7.6)-(7.8), we get 

ID xl2q(x)dx = [Au() + 4u3(x)] q1(x)dx 

= ID [Alu(x~ol (x) + 4u3(x)]ql (x)dx 

= ID1 u(x)ql(x)[4u2 (X) - AI]dx 

= ID1,, u(x)cil(x)[4u2(X) - \i]dx 

+ u(x)qI (x) [42 (X)-AI]dx, 
D1,2 

where 

DI,= {x E DI |- /2 < u(x) < 0}, DI,2 = {x E DI I u(x) <- A/2}. 

Hence, 

(7.9) 0 < JD x20i (x)dx < I u(x)bl(x)[4u2(x) - Ai]dx. 

On D1,1, we have Ai/2 > -u(x), and A1 > A1 -4u2(x). Using the above in (7.9), 
we obtain 

2 ID11 Ai~ (x)Aldx?> J xi (x)dx, 

(7.10) 
<~~2 f1,1 7$i(x)dx 

IAl f D1 
ki(x)dx 2f& X2q1 (x)dx 2fD X201 (x)dx 

Thus, if - > 0 is chosen large enough to violate (7.10), the system (7.6) and (7.7) 
will not have a solution. 

(ii) If the system (7.6) and (7.7) has a solution for -y = -Yi > 0, then for all 
y: < Ky < yI, the system (7.6) and (7.7) also has a solution. 

Let R be the solution corresponding to -yI: 

(Ai(x) + 4ii3(X) = _y1X2x E D1, 

(7.11) ii(x) <0 onDI, 
I ii(x) = 0 on aD1. 

Consider u, satisfying 

A Z8(x) + 4U3(X) = YX2, x E D1, 0 < y < yi, 
(7.12) u(x) < 0 on DI, 

u(x) = 0 on aD1. 
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Thus, it is easy to check that U(x)= 0 is a supersolution for (7.12). We also 
claim that v(x) = ia(x) is a subsolution, since 

ALD(x) + 4v3(x) - _ [Ai(x) + 4i83(x) - ylX2] + ( _71-_)2 

= (tY-ty~2 > o on DI, 

and v(x) = ii(x) = 0 on aD1. By Theorem 2.3, a solution u(x) of (7.12) exists, 
satisfying ii(x) < u(x) < 0 on D1. -? 

(iii) The system (7.6) and (7.7) possesses a stable solution ii1: ih(x) < 0 as well 
as a second solution tT2: U2 (x) < t1 (x), x E Q, if ay > 0 is sufficiently small. 

We already know that R(x) 0_ is a supersolution of (7.6) and (7.7). We now 
construct a subsolution. Let w(x) satisfy the Lane-Emden equation 

Aw(x) + 4w3(x) 0, on Di, 
(7.13) w (x) > 0, on DI, 

t w(x)=0, on aD1. 

It is known (cf. [12], e.g.) that (7.14) has a unique solution (that is, also radially 
symmetric and monotonically decreasing in jxJ). Thus, we write w(x) -w(r), 
r = Jxj, x E D1. Define 

(7.14) w,(x) = cw(car), 0 < c < 1. 

Then it is routine to verify that wc,(x) satisfies 

Aw,(x) + 4w3 (x)- 0 Wa(x) > e > 0, for g = aw(a) and x e D1. 

Let 

(7.15) v(x) = -,w(x), 1 > /3 > 0, for some fixed ,B. 

Then 
Av(X) + 4V3(x) - = -OAw, (x) - 43'3w (x) -_ YX2 

-4/3w() - 4/3'w'(x) - -yX 2 

= 43(1- _32)w (x) -_X2 

> 4!(1 _302)63 _ 2 > 0, 

if -y > 0 is sufficiently small. Also, 

v(x) = --/W(x) - -/aw(c) < -/Oa, if x c &D1. 

Thus v(x) is a subsolution, if -y > 0 is sufficiently small. Hence the system (7.6) 
and (7.7) admit a stable solution for -y > 0 sufficiently small. Call this solution fti. 
From (ii), we further see that iii T 0 uniformly as -y I 0. 

To establish the existence of the second solution U2 < 1TI (on Q), we use a 
variational approach. For ease of discussion, set z = -u in (7.6) and (7.7), giving 

(Az(x) + 4Z3(X) + X12 =0, on D1, 
(7.16) z(x) > 0, on D1, 

z(x)=0, on aD1. 
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Note that z1 =-zij is a solution of (7.16). Setting w = z - zi in (7.16), we obtain 

(7.17){ Aw~x) + [ l2zzi(x)]w~x 1z ]2 (X) + 4w'(x) =- 0, x cD1 
W( ){x) = O.x0D x e 

aDl. 

We now look for a solution of (7.17) that further satisfies 

(7.18) w(x) > O, x E D1. 

When -y > 0 is sufficiently small, flZ1JlLO(Q) is small. Thus l12zl2fILOO(Q) < Al 
(cf. (7.8) for Al) is satisfied for small ay > 0. Then an application of the usual 
Mountain-Pass Lemma [3, 12] yields a classical solution w of (7.17) and (7.18). 
Hence, ii2 -(Zl + W) < iil < 0 on Q is a second solution. 

For (7.6), we have 

3 2 O9F2 F(x, u) =-4u3 + yx, ,u =-12u2. 

Although the subsolution as given in (7.14) and (7.15) is not known explicitly, it 
can be verified that the conditions [H] and (4.15) are satisfied if A > 0. 

In our numerical experiments, we have chosen y = 10 and A = 4. The numerical 
iterates converge after 16 iterations. The graph of the numerical solution ii, can 
be found in Fig. 7.4. D 

0. -15 

.5 ? X1 

FIGURE 7.4. Boundary element numerical solution of Au + 4u3 = lOx2 
subject to the zero Dirichlet boundary condition, Example 7.3. 
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Example 7.4. A nonlinear PDE of nonnonotone type with a unique stable non- 
positive solution. 

Consider 

(7 19) f Au(x) + 4U2(X) = -yx2, x E D1, -y > 0, 
l u(x) 0, x E &D1. 

It is easy to see that tU(x) 0 0 is a supersolution, and v(x) -- -C, C > 0, is 
a subsolution if C is chosen such that 4C2 _ -yx2 > 0, VX1: 1xiI < 1. Thus, by 
Theorem 2.2, there exists a stable solution u(x) such that -C < u(x) < 0, Vx E D1. 
We now show that nonpositive solutions of (7.19) are unique. Suppose u(1) and U(2) 
both are nonpositive and satisfy (7.19). We may assume that 

(7.20) u(1)(x) ? u(2)(x) Vx E D1, u(1) 0 U(2) 

Otherwise, by Theorem 2.2 and Remark 2.4(a), ;v(x) = min{u(1)(x),u(2)(x)}, x C 
D1, is a subsolution of (7.19) and monotone iteration with v(x) as the initial state 
will yield a limit solution uO (x) such that u(1)(x) ?> u,(x), Vx E D1, (1) u". 
From (7.19) and (7.20), we have 

o= j [U(2)- (1)& I ]dJJ [u(2)Au(1)-u(1)Au(2)]dX 0 
D 

u n an 
da 

-_ IJ, [u(2) (4u(1)2 - 'yx2) - UM1) (4u(2)2 _ yxl2)]dx 
D1~~~~~ 

= [4u(1)u(2) (u(1) _ U(2)) + YX2 (U(1) _ U(2))]dX < 0, 

a contradiction. O 

Thus, in contrast to Example 7.3, the size of -y here does not affect the existence 
or nonexistence of the unique stable nonpositive solution. (Nevertheless, we do not 
rule out that some other stable solutions not of one sign may still exist.) 

For (7.19), we have 

(7.21) 
F(x,u) 

=-4U 
+2,yx 

=-8u. 

Note that we need only consider u < 0. Here, to ensure that [H] and (4.15) are 
satisfied, we need only use A = 0. 

In our numerical computation, we choose -y = 10 in (7.19) and use A = 4. The 
numerical solutions converge after 9 iterations. The limiting solution is plotted in 
Fig. 7.5. 

Although the PDEs in Examples 7.2, 7.3 and 7.4 seem to have vastly differ- 
ent nonlinearities in a qualitative sense, we nevertheless notice that the solution 
graphics in Figs. 7.3, 7.4 and 7.5 seem to display similar profiles. L 

Example 7.5. A nonlinear PDE of nonmonotone type, whose stable solutions, not 
of one sign, may be obtained through symmetry. 

Consider 

f Au (x) + 4U34u3(x)-=x3, x E D1, -y > 0, 
(7.22) u1x) 0,nD 
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FIGURE 7.5. Boundary element numerical solution of A\u ? 4u2 - 10x~ 
subject to the zero Dirichlet boundary condition, Example 7.4. 

Here the forcing term ayX3 changes sign as x moves from D1,_ into Di,+: 

Di,_-{x E Di|X1<0?}, Di,?-{x E DjIX1>0?} 

Note that, if u(x) is a solution of (7.22), then so is -u(-xl,x2), i.e., u is an- 
tisymimetric with respect to the x2-axis, and thus we deduce that u(x) = 0, 
x E D1,_ m Di,?. So we need only consider the boundary value problem 

(7.23) { 
Afti(x) ? 4il3(x) = tyl3 x E 1+ 

because on D1,_ we simply have U(Xi, U2) = -ii(-xi, x2) for x E D1,_. The nonlin- 
ear boundary value problem (7.23) is similar to the one considered in (7.6) because 
the forcing terms ayX3 and ayx~ are all nonnegative on each domain. So essentially 
all the arguments in parts (i)-(iii) of Example 7.3 apply. The only concern one 
might have for (7.23) may be that AD, is not a C?curve. Nevertheless, AD1,+ is 
Lipschitz continuous. With suitable modifications, the arguments still go through 
and there will be no problems. 

In our numerical computations, we again choose a- =10 in (7.22) and use A = 4. 
The numerical solutions converge after 13 iterations, using uO (x)--0. The graphics 
is given in Fig. 7.6. The reader will find that the solution changes sign across the 
x2-axis. 0 
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WI t I 

500 

FIGURE 7.6. Boundary element numerical solution of LAu + 4u3 = lOx3 
subject to the zero Dirichlet boundary condition, Example 7.5. 

Remark 7.6. How restrictive is the working assumption [H] made in ?4? From Ex- 
amples 7.1-7.5, we see that for the monotone equation (7.4) in Example 7.2, [H] 
is always satisfied. The BVP (7.4) also has the least trouble with existence and 
uniqueness. For the BVP in Example 7.1, when ty is sufficiently small, condition 
[H] holds. However, [H] fails when -y is large, because the system (7.1) has multiple 
solutions that can be separated only by nonconstant sup- and subsolutions. So it 
appears that an alternative assumption to [H] is required. Nevertheless, computa- 
tionally we are still able to obtain convergent numerical solutions. 

For Examples 7.3 and 7.4, even though the existence/nonexistence and unique- 
ness/multiplicity of solutions are harder to determine, condition [H] can still largely 
be confirmed. In any case, regardless of whether [H] can be confirmed a priori or 
a posteriori, numerical solutions can always be generated by the computer and 
motivate us to establish further theoretical properties of solutions as given in this 
section. This is an indication of the usefulness of the development of a combination 
of theory (i.e., monotone iterations) and numerical methods (i.e., BEM). D2 

REFERENCES 

1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 
1965. MR 34:8607 

2. H. Amann, Supersolution, monotone iteration and stability, J. Diff. Eq. 21 (1976), 367-377. 
MR 53:11226 

3. A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and ap- 
plications, J. Funct. Anal. 14 (1973), 349-381. MR 51:6412 



982 YUANHUA DENG, GOONG CHEN, WEI-MING NI, AND JIANXIN ZHOU 

4. I. Babuska and A.K. Aziz, The Mathematical Foundations of the Finite Element Method with 
Applications to Partial Differential Equations, Academic Press, New York, 1972. MR 54:9111 

5. C.A. Brebbia and S. Walker, Boundary Element Techniques in Engineering, Newnes- 
Butterworths, London, 1980. 

6. G. Chen and J. Zhou, Boundary Element Methods, Academic Press, London, 1992. MR 
93e:65143 

7. G. Chen and J. Zhou, Vibration and Damping in Distributed Systems, Vol. II: WKB and 
Wave Methods, Visualization and Experimentation CRC Press, Boca Raton, Florida, 1993. 

8. Y. Deng, Boundary element methods for nonlinear partial differential equations,, Ph.D. dis- 
sertation, Math. Dept., Texas A&M Univ., College Station, Texas, August 1994. 

9. G. Fichera, Proc. of Symposium on Partial Differential Equations and Continuum Mechanics 
( R.E. Langer, ed.), 55-80, Univ. of Wisconsin Press, Madison, Wisconsin, 1961. MR 27:6016 

10. G.C. Hsiao and W.L. Wendland, The Aubin-Nitsche lemma for integral equations, J. Integral 
Eq. 3 (1981), 299-315. MR 83j:45019 

11. J.L. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, 
Dunod, Paris, 1969. MR 41:4326 

12. W.M. Ni, Lecture Notes published by Institute of Mathematics, National Tsing Hua Univ., 
Hsinchu, Taiwan, Rep. of China, May, 1987. 

13. M. Protter and H. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1967. MR 36:2935 

14. K. Ruotsalainen and J. Saranen, On the convergence of the Galerkin method for nonsmooth 
solutions of integral equations, Num. Math. 54 (1988), 295-302. MR 90a:65281 

15. K. Ruotsalainen and W.L. Wendland, On the boundary element method for a nonlinear bound- 
ary value problem, Boundary Elements IX (C.A. Brebbia, ed.), Springer-Verlag, New York, 
1987, pp. 385-393. MR 90e:65161 

16. M. Sakakihara, An iterative boundary integral equation method for mildly nonlinear elliptic 
partial differential equations, Boundary Elements VII (C.A. Brebbia and G. Maier, ed.), vol.. 
II, Springer-Verlag, Berlin-Heidelberg, 1985, pp. 13.49-13.58. CMP 20:14 

17. D. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics, vol. . 
309, Springer-Verlag, New York, 1973. MR 57:3569 

(Y. Deng, G. Chen, and J. Zhou) DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, 

COLLEGE STATION, TEXAS 77843 
E-mail address: ydeng cs.tamu.edu 
E-mail address: gchenImath. tamu. edu 
E-mail address: j zhou~math. tamu. edu 

(W.-M. Ni) SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 

55455 


