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ON A VARIATIONAL APPROXIMATION METHOD FOR A 

CLASS OF ELLIPTIC EIGENVALUE PROBLEMS IN 

COMPOSITE STRUCTURES 

M. VANMAELE AND R. VAN KEER 

ABSTRACT. We consider a second-order elliptic eigenvalue problem on a convex 
polygonal domain, divided in M nonoverlapping subdomains. The conormal 
derivative of the unknown function is continuous on the interfaces, while the 
function itself is discontinuous. We present a general finite element method 
to obtain a numerical solution of the eigenvalue problem, starting from a non- 
standard formally equivalent variational formulation in an abstract setting 
in product Hilbert spaces. We use standard Lagrange finite element spaces 
on the subdomains. Moreover, the bilinear forms are approximated by suit- 
able numerical quadrature formulas. We obtain error estimates for both the 
eigenfunctions and the eigenvalues, allowing for the case of multiple exact 
eigenvalues, by a pure variational method. 

1. INTRODUCTION 

Let Q C JR2 be a bounded convex polygonal domain with boundary aQ. Assume 
that aQ = F1 U r2 U Al, where IF and '2 are open and consist of an integer 
number of sides, IF n F2 = 0 and measlAl = 0. Further, let Q be divided in M 
nonoverlapping, open, convex, polygonal domains Qi C Q, 1 < i < M. We denote 
by XA/i C {1, ... , M} the set of integers a for which measi(aQi n aQ,) > 0. We set 

ri, = aRi n aQR for a E fi, 1 < i < M. We assume that rid n j,p = 0 when 

{icr} #& {j, p}. 

Q1~ Q 
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Then we may write 

M M 
Q = u Qi U I'ri, A2, meas1 A2 = 0. 

i=1 i=1 uEri 
7>i 

Finally, let Jf(Fj) {i : 1 < i < M and measi(FP n a&i) > o}, j 1, 2, and 
F = rj n aQi , i E Af(rj), j = 1, 2. In what follows, when writing P, we will 
sometimes delete the restriction i E J.f(Fj), of course taking IF =0 when i A J/(Fj). 

This paper deals with the eigenvalue problem (EVP) of determining the real 
numbers A and the corresponding functions ui: Qi -i , 1 < i < M, that obey, in 
a weak sense, the differential equation 

2 / u 
(1.1) - S & (+ U a = Au' in Qi, 

together with the following transmission conditions (TCs): 

(1.2) -a'avu' = hu f'(u -iu) on 

VU E Xfi, 

(1.3) a&&3ui = au auu on ]i,, 

as well as with the homogeneous boundary conditions (BCs) 

(1.4) ui = 0 on Fil, 

(1.5) -a&avu' + alu' = 0 on ]F2 

The conormal derivative in (1.5) is given by 
2 u 

a&&3u, = E c4m azBe 
UXm 

with Zje the fth component of the unit outer normal vector v to FP. The conditions 
(1.2)-(1.3) have to be understood similarly, v being the unit normal vector to ri, 
and pointing from Qi to Qu. In this problem aim, ai, hi' and a, 1 < ? m < 2 

E Mi, 1 < i < M, are given space-dependent functions, which are sufficiently 
regular, as specified below. 

In fact, it is precisely (1.2) which makes the present EVP a nonstandard one. In 
the usual transition (eigenvalue or boundary value) problems in composite media 
both the unknown and its conormal derivative are continuous at the interface of two 
subregions, in spite of a discontinuity of the coefficients in the differential equation 
at this internal boundary. Such problems have a well-known variational formulation, 
see e.g. [4, Chapitre VII, Section 2], and their finite element approximation offers 
no special difficulties. The meaning and origin of the TC (1.2) are different than for 
the usual continuity condition. Moreover, (1.2) prevents the variational approach 
for standard transition problems to be applicable. 

We overcome this difficulty by passing to a product space setting of the present 
EVP, allowing us to derive a suitable but nonstandard formally equivalent vari- 
ational formulation in an abstract setting, which explicitly reflects the TC (1.2). 
This variational form of the EVP serves as the starting point for a finite element 
approximation method (FEM), both with and without numerical quadrature, also 
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in a product space setting. Moreover, when suitably identifying the canonical basis 
for the finite element product spaces, the method is found to be attractive from the 
computational point of view too, as the stiffness and mass matrices of the resulting 
algebraic EVPs can be constructed by means of the stiffness and mass matrices 
for one-component problems on the respective domains Qi, 1 < i < M. This 
variational approach to the EVP (1.1)-(1.5) is thought to be new. 

The TC (1.2) arises in a natural way in various practical applications, for in- 
stance in the context of transient heat transfer problems in composite media with 
nonperfect thermal contacts at the internal boundaries, see e.g. [11, Chapters 8], 
[10, Chapter 9] and [7]. Only in very special cases can the exact eigenpairs of the 
EVP (1.1)-(1.5) be obtained; cf. the first two references just quoted. 

The strategy for the paper is as follows. We first show that the present type 
of EVPs indeed fits into the general framework of abstract EVPs for symmetric, 
coercive and bounded bilinear forms in Hilbert spaces. Hence, classical arguments 
imply the existence of exact eigenpairs, obeying some standard properties. By 
the properties of suitably chosen approximation spaces with triangular or, where 
possible, with rectangular elements and by the property of the properly introduced 
Lagrange interpolation and elliptic projection, the convergence and error estimates 
of the consistent mass FEM are similar to those for standard elliptic 2nd-order 
EVPs. Next, to incorporate the effect of a suitable numerical quadrature on the 
approximate eigenpairs, we proceed to some extent similarly as in [1, 15, 14]. Apart 
from the structure of Q and of the corresponding product (approximation) function 
spaces, the main difficulty concerns the line integrals on the interfaces ]i,,, arising 
from the TCs (1.2)-(1.3). 

In the error analysis we allow for the case of multiple exact eigenvalues. 
An outline of the paper is now in order. The precise variational formulation 

of the EVP (1.1)-(1.5), which is crucial for our approach, is stated in ?2, together 
with some preliminary results concerning the function spaces and the bilinear form. 
This allows the EVP to be put in the framework mentioned above. In ?3 we 
first introduce suitable approximation spaces and then the elliptic projector. The 
consistent mass FEM is dealt with in ?4, while the numerical quadrature FEM is 
discussed in detail in ?5. To illustrate the effectiveness of the present approach, we 
consider in ?6 a iD-analogue of the EVP (1.1)-(1.5), the exact eigenpairs of which 
are easily found. Finally, in the Appendix we give a physical example of the origin 
of the TCs (1.2)-(1.3). 

2. VARIATIONAL EIGENVALUE PROBLEM 

2.1. Notations and assumptions. Let H1(Qi) be the usual first-order Sobolev 
space on Qi with norm 11 .111,i, 1 < i < M, and let Vi={w E H1(Qi) : W = 
0 on Fi}. We recall that F' = 0 when measi(Fr1 l aQi) = 0. Then, we introduce 
the product space 

v = {V = (V1 , . .. , VM) : Vi EVi , < i < Ml 

and we identify v E V with a scalar function v Q R I for which vloi = vi on Qi, 
1 < i < M. Similarly, we introduce the product space H = L2(Q1) X ... X L2(QM) 
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with inner product (,.) and associated norm given by 

M 

(2.1) (vw) =Zjv w dx, v = v), IVv,w E H. 

Further, let 

(2.2) Na i( e em ?area +av wi dx, 
M 2 

(2.3) 1(v ) = E j h'(vi - v)(wi - wads, 

(2.4) C(v w) = E3 j clviwads w 
iea(P2) r2 

and 

(2.5) a(v, w) = A(v,w) + 13(v,w) ?C(v, w), Wv, w E V. 

We will also use the product space Hm(Q) = Hm(Qi) x . x Hm(QM), m E N0, 

and its (o both defined 

in the natural way. For m = 1, the product norm is simply denoted by 11 11 
Throughout this paper, the data are assumed to fulfill the hypotheses (H1)-(H2): 

(Hi) (1) aem, a' E Lo,(Qi);aem 
= aie a.e. in Qi, I 

, m = 1 2 1 < i < M; 

(2) hi Of E Loo (]i,o) ; 0 < hi ff = h',i a.e. on ]Pi,f, Ia E A (i, I i <- M; 

(3) ail E Loo (rIN) ; aj 
> 0 : ail>c aeonr, iE (IF2)- 

(H2) (1) The matrices ai = (a m), 1 < i < M, are positive definite, i.e., 
2 

h~a > :V84ER I E alim(X)ggM > aj412 a.e. in Qi I 1 < i < M; 
l',m=l 

(2) :ioO > 0 : a' > alo a.e. in Qi I 1 < i < M . 

These hypotheses ensure the ellipticity of the EVP. 

2.2. Variational formulation. The weak or variational EVP associated with 

(1.1)-(1.5) reads: 

(2.6) Find (A, u) E IR x V, u 7& 0 : a(u, v) = A(u, v), IVv E v, 

where (,.) and a(., ) are defined by (2.1) and (2.5), respectively. 

The integral identity (2.6) is obtained from (1.1)-(1.5) by first dealing with the 

EVP for the pair (A, ui) in the usual way and by next summing up the resulting 

variational equation for i = 1,... , M; we use the symmetry hi'O, = ha'i and the 

notations (2.1)-(2.5). 
The formal equivalence of the classical and the variational EVP may be shown by 

adapting standard arguments to the present product space setting. Particularly, to 
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recover the TC (1.2) from (2.6), we use a well-known density property in L2 (ri,) 
see e.g. [9, Theorem 6.6.3]. 

To put (2.6) into a general framework of abstract variational elliptic EVPs in 
Gilbert spaces (see e.g. [13]), we rely on the following preliminary result, the proof 
of which is evident from the definitions of H, V and a(., ). 

Proposition 2.1. (1) The spaces H and V are Hilbert spaces, V being compactly 
and densely embedded in H. 

(2) The bilinear form a(, : V x V -* R, (2.5), is symmetric, bounded and 
strongly coercive. 

From the classical theory of abstract elliptic EVPs we may now infer: 

Theorem 2.1. (1) The EVP (2.6) has a countable infinite set of eigenvalues, all 
having finite multiplicity and being strictly positive, without finite accumulation 
point. We arrange them as 

O < Al < A2 < ... < AE < oc. 

(Here each eigenvalue occurs as many times as given by its multiplicity.) 
(2) There is a Hilbert basis of H formed by orthonormal eigenfunctions ue, f > 

1. Furthermore, the sequence (At 1/2 ue)e>i forms an orthonormal basis of V with 
respect to a(.,.). 

We will deal with the approximation of the eigenpairs of (2.6). 

3. PRELIMINARY RESULTS 

3.1. Choice of approximation space. We consider a regular family of triangu- 
lations (Thi.) (see e.g. [3]) of each component Qi, 1 < i < M, consisting of either 
triangular or, when Qi is a rectangle, rectangular elements with diameter < hi. 
With a triangulation Thi, we associate Xx,. {v= E Co(Qi): v'jK E P(K), VK E 

Th, I} C H' (Qi), where hi is the mesh parameter, 

P(K) = f Pk(K) if K is triangular, k E N, 
} Qk(K) if K is rectangular, 

and Pk stands for the set of polynomials of degree < k and Qk for the set of 
polynomials of degree < k with respect to each variable. Next, let Vh. = {Vi E 

Xh : vi = 0 on 1j } c Vi. Finally, we consider the product spaces 

Xh = { (V ,... =vM) V E Xh, 1 < i < M} C H1(Q), 
Vh = {V E Xh: Vi = on Fl, 1 < i < M} C V, 

where h = max1<i<M hi is the overall mesh parameter, which we assume is suffi- 
ciently small. 

In what follows, C denotes a generic constant not depending on h (even when it 
is not explicitly stated). 

3.2. Inverse inequality. From now on, we assume that each regular family of 
triangulations (Thi7), 1 < i < M, is 'quasi-uniform' in the sense of [3, (3.2.28)]. 
Then, Theorem 3.2.6 in [3] implies that for m E N0, 

(3.1) IwIm,K < Ch-slwlm-sK, 0 < s < m, Vw E P(K), VK E Tii ,Vhi 
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(3.2) llW lmK?< Ch8sJJWJlm-s W < s < m, Vw E P(K), VK E T ,Vhi 

Further, we assume that the families (Thg.)h, are mutually 'quasi-uniform' too, 
i.e., 

(3.3) iv> , < Vhi, 1<i<M. 

3.3. Density and approximation property. 

Proposition 3.1. (1) The space H2(Q) n V is dense in V. 
(2) The finite element space Oh C V satisfies the approximation property 

inf {IV-Vh + hlv-Vhl~l-(,) < Ch +lllvll-+(Q 
(3.4) Vh~h { -hh- H }?C 1V Hr+l (Q) 

VvEHr+l(Q)OV, 1<r<k. 

Proof. (1) Use the density of H2(Qi) n Vi in Vi, 1 < i < M. 
(2) Apply the approximation property of Vh. in Vi, 1 < i < M; see e.g. [13, 

p. 152] for a triangular mesh and e.g. [1, ?5] for its direct analogue on a rectangular 
mesh. E 

3.4. The elliptic projector. We define the elliptic projector P: V -* 1h by 

a(v-Pvw) =0, VvEV, VwEVh. 

Prom (3.4) one easily gets (cf. [13, Lemme 6.5-1] for a triangular mesh and [1, (6.2)] 
for a rectangular mesh) 

(3.5) v - Pvfl < Chkflv Hk+l(Q), Vv E Hk+l (Q) n V. 

Similarly to [1, Lemma 6.11 (and its extension to triangular meshes) we get: 

Proposition 3.2. Consider regular families of triangulations (Th7g)hi of Qi, 1 < 

i < M, satisfying the 'quasi-uniformity' property (3.3). Then we have 

7 0 1/2 

(3.6) (|iH lE E (Pv) k+lK) ?CQVk+l(Q) vvEf+l(Q)rnoV. 

\ilKETh, 

Remark 3.1. In the case of a triangular mesh on Qi one has llpllk+l,K = PllkKi 
for all p E Pk(K), for all K E Thi. 

4. CONSISTENT MASS FINITE ELEMENT METHOD 

4.1. Variational eigenvalue problem. The consistent mass approximate EVP 
corresponding to (2.6) reads: 

(4.1) Find Ah E R, Uh = (Ua, *uh ) E Vh: a(Uh, V) = Ah(Uh, V), Vv E 1h. 

The eigenpairs, the existence of which is guaranteed by the discrete analogue of 
Theorem 2.1, are denoted by (Aeh, u,h), 1 < < N(h). 

Prom Proposition 3.1 a result analogous to Theorem 6.5-1 in [13] holds, viz. 
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Theorem 4.1. (1) For f = 1, ... , N(h), we have 

(4.2) 0 < Ajh-Ai --0 as h -0. 

(2) Let Ai be a simple exact eigenvalue and ue the corresponding exact eigen- 
function; then 

(4.3) flUe-Ue,hl--+O as h-*O. 

(3) Assume that the exact eigenfunctions uj E Hr+1 (Q), j = 1,... ,I. Then, for 
1< r < k, 

(4.4) Ae,h- At< C(Ae)h 

(4) Moreover, if Ae is a simple exact eigenvalue, then 

(4 5) HuuW-eth|l < C(At)hr. 

Case of a multiple exact eigenvalue Ae. 
The assumption that At is simple was made in (4.3) and (4.5) only. This re- 

striction may be dropped. Thus, let At- < At = A+, = = Ae+L < At+L+1. 

We denote the L + 1 eigenfunctions associated with At, chosen to be orthonor- 
mal in H, by Ue,u+i,... ,lU+L. Further, let (Ae+t,h, u+t,h), t = O,... ,L, be the 
corresponding eigenpairs of (4.1), the eigenfunctions being orthonormal in H. 

Proceeding to some extent analogously as in [5, ?XII.5.4], we readily obtain es- 
timates similar to (4.5) for Ue+t,*(h) - Ue+t,h, 0 < t < L, where Ue+t,*(h) are 
exact eigenfunctions corresponding to Ae and being orthonormal in H. Their de- 
pendence on h is inconvenient for practical implementations. In the next theorem 
we overcome this difficulty. 

Theorem 4.2. Let 1 < r < k. Assume that uj E Hr+l (Q), j = 1,. . ., +L. Then, 
there exist a set (W+t)t=o of fixed exact eigenfunctions corresponding to At that 
are orthonormal in H, a sequence {hj} with hj -0 0 and a number m, 0 < m < k, 
such that 

IlWe+t - Uf+t,h3 11 < C(f)h7, t = O ... , L. 

Proof. One first infers the existence of a set (Ue+t(h) )LK0 of exact eigenfunctions of 
(2.6), corresponding to Ae, such that 

(4.6) |Ue+t(h) - Ut+t,hl < C(t)hk, t = 0, ... , Li 

(4 7) (Ut+t(h), Ut+s(h)) < C(lf)h k t 78 s, t s = O. ... I L. 

The first estimate is shown similarly as in [5, (5.65), p. 909], while the second 
estimate follows from (4.6) and 

(Ut+t (h), Ut+s (h)) = (Ut+t (h) - Ue+t,hi Ue+s,h) + (Ut+t (h), Ut+s (h) - ue+s,h) . 

Next we slightly adapt the arguments in the second part of the proof of [16, Theo- 
rem 3.5] and those in the proof of [16, Theorem 3.7]. E 
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4.2. Algebraic eigenvalue problem. Choosing a basis of the product space 1h, 
we may rewrite (4.1) as an algebraic EVP in the standard way.. We start from a 
usual Lagrange finite element basis ((pi )1<r,<i(hi), I (hi) = dim X, of Xi, 1 < 

i < M. Here we take the underlying triangulations 7h and Th of adjacent domains 
Qi and Q, to share the nodes on the interface Fi,. Then the set (POs)l<s<I(h)i 

I(h) = dim Xh ( M ZM Ii (hi) ), where 

SO = (>s.. Is ')s 

i |J? if the global node s does not belong to Qi, 
S t (Air if the global node s is the node ri in Qi, 

forms a basis of the product space Xh. Deleting the basis functions corresponding 
to the nodes on F1, we get a basis of Vh. 

We emphasize that to a node on an interface Fi,,, figuring both in Thi and Tho, 

two basis functions are assigned. 
As usual, all integrals entering the stiffness and mass matrices of the algebraic 

EVP may be reduced to integrals on a reference element K and its sides. 

Remark 4.1. The approximation method outlined above, from the variational for- 
mulation (2.6) to the choice of the canonical basis Vh just made, is attractive from 
a computational point of view since one may start from existing codes for classical 
EVPs. Indeed, the stiffness and mass matrix of the resulting algebraic EVP show a 
block diagonal structure, the blocks originating from the stiffness and mass matrix 
of a scalar EVP on the respective domains Qi with a homogeneous Neumann BC 
on the parts Fi,,, a E Mi, of the boundary OQi, 1 < i < M. The stiffness matrices 
have to be modified and assembled in a suitable way so as to take properly into 
account the TC (1.2) in the nodes of each interface Fi,,, to be counted once as a 
node of Qi and once as a node of Q,. 

5. NUMERICAL QUADRATURE FINITE ELEMENT METHOD 

5.1. Preliminaries (cf. [3], [6] and [14, ?2.1]). Consider the (affine invertible) 
mapping 

(5.1) 

FK: K (reference element) -+ K: X^ I X = FK(X^) =BK ?+ bK, det BK > , 

with BK E R2"2 and bK E R2x1, K E 7k. 

Next, introduce a quadrature formula on K, 

N(X) 

IKX$f) = S gr (br) ~/@((x`)d'X` Vie EC (K), X =LG, 
r=J 

where bN and gDx > 0, r = 1,...,N(X), are the quadrature nodes and weights, 
respectively, and where X = L and X = G refer to the quadrature formulas having 
degree of precision 2k - 1 and 2k + 1, respectively. The quadrature error is 



ELLIPTIC EIGENVALUE PROBLEMS IN COMPOSITE STRUCTURES 1007 

Putting ~o(x) = O(x) whenever x = FK(X)j), X E K, we define the corresponding 
quadrature formulas on K by 

(5.2) Ix ) = (detBK)IX(@) J(x)dx, X=LG. 

In a similar way we approximate the line integrals on a side &tK of K, using a 
one-dimensional Lobatto (X = L) or Gauss-Legendre (X = G) quadrature formula 

k+1 a 
K Wf = "(9(g) 

X 
'8s)ds Vf E co (at K-), 

r=1 &K 

where the quadrature points gX (characterized by their arc length) correspond to 
the Lobatto or Gauss points in the interval [-1,1], respectively. This quadrature 
formula has precision 2k - 1 or 2k + 1, respectively; see [6, ?2.7]. 

According to (5.1) we put ~o(s) = '(9)I s = FKI t-(S^), ? E&K. The quadrature 
formula on a side &tK of an element K is defined by 

(5.3) 4tx (P) m 
1 

a 

t 
K Ix (^') 

meas ot K &K 

We refer to [6, pp. 398-399], [8, pp. 2.122-2.124] and to [3, pp. 181-184], [5, ?XII 1.5, 
p. 780], [8, pp. 2.100-2.104] for examples of quadrature formulas on a rectangular 
and a triangular element K, respectively. 

5.2. Approximation of the inner product of H. We define the discrete inner 
product of H and the associated norm in Xh by 

M 
(5.4) (v, W)h = S If(viwi), Vh= V(V,V)h VVvW E Xh 

i=l KEch 

Proposition 5:1. The norms I |h, (5.4), and I 1, (2.1), are uniformly equivalent 
on the space Xh, i.e., there exist constants C1, C2 > 0 independent of h such that 

ClIVI ?< V~h < C21V? , VV E Xh. 

Proof. Apply [1, Lemma 3.2] or the analogue for a triangular mesh on a one- 
component domain. E1 

5.3. Approximation of the bilinear form. First, introducing the notations 

Af(Fr ) = {j 1 < j < N(Qi) and ajQi (side of Qi) C Fr}, 

(N(Qi) number of sides of Qi) 

Bj,hi = {K E Th :7 3:tK c ojfli, j E 7V(2), 

K E= {Ke 7h: Ot: Kc Fi,}, EX, 

with t E {1, 2,3, 4} when K is rectangular and t E {1, 2, 3} when K is triangular, 
we have 

j p(s)ds = S S (s)dsL Vp EC(), 
r2 jEjr(r) KEt33,hi 

j p(s)ds = K h p(s)ds, V(p E C?(Vi,) 
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In what follows, we assume that amc e Ca(Qj), Ii,m = 1,2, h%,U E co 

a E Xi and that ai E C0(Fi), 1 < i < M. The discrete analogue of the bilinear 
form a(., ), (2.5), on Xh x Xh is defined by 

(5.5) ah (v, w) = Ah(VW)+3h(VW)+Ch(VW), VVW EXh, 

where 
M 

(5.6) Ah(v,w) = A A,,(V ,w) 
i=l 

M (2 

= S S K~ S cfme0VUOmw + a? v W 
i=l KTfh J 

M 

(5.7) B3h(Vw) = 5 B(VvW i) 

i=l 

M 

' 2 E E atK (hiU (vi - VU)(wi - w)) 
i=1 TCA4E KEC3'S 

(5.8) Ch(v,w) = 5 Ct(vK,w ) - 5 S S I~K(aiv w ) 
iEr(r2) iE~r(r2) jEr(ri) KE13j,h, 

Obviously, ah(,.) retains the symmetry property of a(., .). Further, we obtain: 

Proposition 5.2. The form ah(, ), (5.5), is uniformly bounded and strongly co- 
ercive, i.e., 

(5.9) (1) 3C3 > 0 jah(V,W)| ? C3V ||W||, Vv,w E Xh ,Vh. 
(5.10) (2) 3C4 > 0 ah(V,V) >- C4HVH12, Vv E Vh ,Vh. 

Proof. (1) Proceeding along similar lines as in [3, p. 187], we find (cf. [14, (2.12)]) 

|AIt (v ,w ) +Ci,(v ,w )| < ci ||v 1,Qi 1 1,Qi Vv,w E Xh, 1 <i < M, 

where c' is independent of hi. Hence, 

|Ah(vW) +Ch(vw) < C|v|| ||W||, Vv,w E Xh. 

For X = G the precision of the quadrature formula leads to 
M 

IBh(VW)l < I E E Ihi' Io, r, 5 J v~wP'ds. 
i=1 ,ECJi jpE{iu} r 

For X = L this estimate is seen to hold also by first showing, as in [1, Lemma 3.2], 
that 

3C>0 : ITK(P2)<C p2ds, Vp E Pk(0tK) ,Vh. 
ttK 

Hence, from the trace inequality, 
M 

Bh(V,W)l < CE E E ||Vj111,jIIWPII1, < C|v| ||W||, Vv,w E Xh. 
i=1 u'EcM j'pE{i'0} 
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(2) To prove (5.10), note that [15, (2.8)], or the analogous result for a triangular 
mesh, leads to 

M 

Ah(VV)?ZC |vII Q > mm c I|vII2, VV E Vh, 

-<i<M 

where ci > 0 are constants independent of hi, 1 < i < M. Moreover, use (H1)(2)- 

(3). El 

5.4. Estimate of the total error of quadrature. The approximate inner prod- 
uct (5.4) and bilinear form (5.5) involve the respective errors 

M 

(5.11) E (V, W) - (V,W)(VW)h = EKL(Vi~i) I VVI W E Xh , 

i=K KEfh 

Ex (v, w) a(v, w) -ah(v, w) 

(5.12) =E(V, W) + ES (v, w) + EC (v, w), VV, W E Xh, 

where EA, ES and ECf are given by expressions similar to (5.6), (5.7) and (5.8), 
respectively, in terms of Ex and ExK, the errors of quadrature on an element K 
and on a side of K. 

These last (local) errors are estimated in the following three propositions, the 
proofs of which are similar to those of [1, Theorem 3.5-Corollary 3.6], [2, Lemmas 
3.1-3.2] and [14, Theorems 2.5-2.6-2.7]. In these estimates C is a generic constant 
not depending on K while hK stands for the diameter of K. 

Proposition 5.3. For the quadrature formula (5.2) (X = L) we have 

(5.13) JEL(pq)I < Ch 2k jPjk-sKjqjk-tK, Vpq E P(K), 0 < s, t < k. 

Proposition 5.4. For the quadrature formula (5.2) we have, for 0 < r < k, 

(5.14) EL (dpq)l < Chr jjdjr,CooKjpjriKjqjoK, Vd E Wr??(K), Vpq E Pk(K), 

EKG(dpq)l < Ch +2 IjdjIr+2,oo,K IPjjmin(r+2,k),K 910K, 

(5.15) Vd E Wr+2 (K), Vp,q E P(K). 

For k = 1 we also have 

(5.16) 1 EG (dpq) |< ChK[ld~l|l,o~o,K||P||1l,K |qlo,KI Vd EW1 ?? (K), Vp, q EP(K) . 

When d E W2k (K) we have 

(5.17) |EK(dpq)| < ChK | dj22k,oo,KjjPjjk,Kjjqjjk,K, Vp, q E Pk(K). 

Proposition 5.5. For the quadrature formula (5.3) we have the same estimates as 
(5.14) -(5.17), evidently with K replaced by &At K. 

These estimates for the local errors lead to the estimates of the total quadrature 
errors (5.11) and (5.12). 

Theorem 5.1. For the total error of quadrature EL(., .), (5.11), we have 

(5.18) |EL(v W) I< Ch21V|H_(Q)|WH(i) , Vv,w E Xh. 

Proof. Apply (5.13) with s = t = k - 1 and proceed similarly as in [1, Lemma 
5.1]. E 
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Theorem 5.2. For the total errors of quadrature Ex(., .), (5.12), we have: 
(1) Let clm E Wk+s ?(Q9), ?, m = 1, 2, a' E Wkc(Qj) and hi ffE Wk+so(ri,,), 

E Mi, 1 < i < M. Further, let ai E wk+so(ri), i E Jv(r2). Here, s = I when 
dealing with a rectangular mesh and s = 0 for a triangular mesh. Then 

(5.19) !Ea(vw)! ? Ch||v|| ||w||, Vv,w C Xh. 

(2) When the order of the Sobolev spaces involved in all the regularity conditions 
in (1) is increased by one unit, then 

(5.20) !EG(vw)! < Ch21lv!! ||w||, Vvw E Xh. 

(3) Leta" aa fE Wak?o(Q,), ?,m = 1,2, hi C wakro f e , 1 ? 
i < M, and let ai E Wakoo(ri), i E N(r2), a = 1,2. Then, for the case of a 
triangular mesh, we have 

(5.21) !EL(vw)I ? Chc!|v|| ||w||, Vvw E Xh. 

Proof. (1) Apply (5.15) with r = k - 2 + s, combined with (5.16) when s = 0, 
to the components constituting EA. Use the analogous estimates for the terms 
constituting EGC and invoke the trace inequality as well as (3.2) (possibly combined 
with Remark 3.1). We get 

E (v,w) ?+EcG(vw)! <Ch!!v! ||1w!!, Vv,w E Xh. 

Recalling that hi,' = ha'i and using arguments similar to those for Eg, we find 

M 

Eg3(v w)! < C>hs?s >1 I!h', IIk+soor,, S !!willk,aK(lvi!ooK+?Iv"!o,,aK) 
i=1 7CEAi KEt3i 

M 

< C h, E E !!w!i!1,K (!!v!i!1,K + !Ovf0,atK) 
i=1 aCMi KEi3"hi 

M 

< ChJE E I !w!!,D% (!lvi!!,Qi + I!v'lI1,o,) < Ch!!w!! !!v!! 

i=1 acAi 

Vv, W E Xh, 

where in the penultimate step we noted that 

S IV IOa*09 K S IV oatK' 
KCIBi K'CtSh 

(2) Proceed in a similar way, now taking r = k - + s in (5.15) and its analogue 
for EjK. 

(3) When a = 1 use (5.14) and its analogue for EiK with r = k. When L = 2 
invoke (5.17) and its analogue. 

wW 

Remark 5.1. The estimates (5.18), (5.19)-(5.20) and (5.21) for EL, EG and Ea, 
respectively, are formally the same as those for an EVP in a one-component domain. 
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5.5. Approximate eigenvalue problem with numerical quadrature. The ap- 
proximate eigenvalue problem with numerical quadrature reads: 

(5.22) Find (Aht h) e R X Vh : ah (th,V) = Ah(UhV)h, VVEVh. 

The properties of ah(., *) and (-, )h mentioned in Propositions 5.1 and 5.2 (combined 
with the symmetry of ah(, ')) guarantee the existence of approximate eigenpairs, 
denoted by (At',h Ueh), 1 < t < N(h); all eigenvalues are strictly positive and the 
eigenfunctions are orthogonal with respect to (, N)h 

Remark 5.2. For the stiffness matrix and the mass matrix of the algebraic EVP 
corresponding to (5.22) a similar remark applies as for the consistent mass FEM. 

5.6. Convergence and error estimate of the approximate eigenpairs. The 
approach outlined so far, starting from the variational formulation (2.6) of the orig- 
inal EVP, through its numerical quadrature FE approximation, is formally identical 
to the treatment of a class of elliptic EVPs in one-component domains, considered 
in [14]. In particular, the key results, obtained in the previous section, on the basis 
of Propositions 5.1-5.2, are, mutatis mutandis, similar to those in [14, ?3-4], even 
in the presence of the transmission part B(., ) entering the bilinear form a(., ) on 
account of the jump conditions at the interfaces of the subregions. Therefore, the 
error estimates for the numerical quadrature FE approximate eigenpairs will have 
the same structure as those in the paper just cited, requiring of course suitable 
interpretations of all quantities and conditions involved, according to the setting of 
?2.1 and ?3.1. 

Let Ae be an (L + 1)-fold eigenvalue of (2.6) (0 < L < +oo). By ue, .. ., U+L 

we denote a set of associated eigenfunctions. Let (At+r,h, Ue+r,h), r = O ... , L, be 
the corresponding eigenpairs of (5.22). The exact eigenfunctions may be taken to 
be orthonormal in H, while the approximate eigenfunctions may be taken to be 
orthonormal with respect to (., -)h. 

Theorem 5.3. (1) Assume that the coefficients aimM a&, ai and hiU' satisfy the 
conditions underlying the estimate (5.19). Then, we have for both X = L and 
X=G 

At+r,h -Ae as h -O, r = O.... ,L. 

(2) Assume that the coefficients a'm, a& , ai and hi'c satisfy the regularity condi- 
tions underlying the estimate (5.20) or (5.21) (with r = 2) [when using X = L for 
a triangular mesh]. Moreover, assume that the exact eigenfunctions ul,... ,U+L 

belong to Hk+1 (Q). Then, we have for both X = L and X = G 

IAe+r,h- eI? < C(f)h2, r = 0O ... ,L. 

Case of a simple exact eigenvalue Ae and X = G. 

Theorem 5.4. (1) Let a'm E Wk+lk?(Q,), X, m = 1, 2, a' E Wko(Qi) and hi f E 
W k + 1,o(ri, 7) Y7 E X i, 1 < i < M. Further, let ai E wk+loo(rF), i c fi(r2). 

Assume that ue E Hk+ (Q). Then, for k > 2, we have 

Jut - ',hI < C(t)hk1. 
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(2) Let acm, ac E W2ko (Q,), i,m = 1,2, hiU' E W2k (Fi,o), o' E Af_ 1 < i < 

M, and let al e W2k~oo(F2), i eE P1(F2). Assume that uf E fk+1(Q). Then, for 
k > 2, we have 

A -Afhl <? C(t)h2k-l, 

|Uf - Uf,hll < C(t)h 

Case of a multiple exact eigenvalue Ae and X = G. 

Theorem 5.5. (1) Retain the same conditions on the data as in Theorem5.4(1). 
Assume that uf,... , Uf+L E Hk+1 (Q). Then, for k > 2, there exist a set (W L~r)f=o 
of fixed exact eigenfunctions corresponding to the (L + 1)-fold exact eigenvalue Af 
and being orthonormal in H, a sequence {hj } with hj -* 0 and a number m, 
0 < m < k-1, such that 

lWe+r- f+rhj I < C(f)hT I r = 0, ... , L. 

(2) Retain the same conditions on the data as in Theorem 5.4(2). Assume that 

Uf *,... ,Ue+L E Hk+l (Q). Then, for k > 2, we have 

|Af-Af+?rhl < C(O)h2k-I r = O.... ,L. 

(3) Under the same assumptions as in (2), there exist a set (We+r)L4o of fixed 
exact eigenfunctions corresponding to the (L+ 1)-fold exact eigenvalue Af and being 
orthonormal in H, a sequence thi} with hj -+ 0 and a number m, 0 < m < k - 1, 
such that 

|| u+-frh | < C(t)h 
M r = O. . .. I L. 

Less useful estimates may be obtained for m = k - 1 and for all h, for a set 
(Ue+,* (h))L 0 of exact eigenfunctions depending, however, on h. 

Remark 5.4. In Theorems 5.4-5.5 the rates of convergence are only suboptimal. 
This suboptimality can be regarded as a limitation of the purely variational method 
which we have outlined. In fact, by extending the arguments from [14], we can 
improve these rates of convergence by one unit, but at the cost of a supplementary 
assumption, viz. 

the boundary value problem associated with the bilinear form a( .), 

(2.5), is 'regular' in the sense of [3, p. 138], i.e., the solution operator 
T: H -+ V defined by 

a(Tf,v) = (f,v), Vf E HI Vv E V, 

is a bounded linear operator from H into H2(Q) H2(Q1) x x 
H2 (QM). 

This type of assumption is well known in finite element error analysis, but for the 
present EVP no set of sufficient conditions for the data of (1.1)-(1.5) can be given 
guaranteeing the validity of this assumption. 

Case of a triangular mesh and X = L. 
When using a less accurate numerical quadrature formula to approximate the 

bilinear form, viz. when we take X = L in (5.5)-(5.8), the same rate of convergence 
for the approximate eigenpairs may be recovered. However, for the error estimate 
of the eigenfunctions in the H-norm this requires the same regularity conditions as 
in Theorem 5.4(2). 
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6. NUMERICAL EXAMPLE 

The effectiveness of the variational formulation of the multi-component EVP and 
its (consistent mass and numerical quadrature) FE approximation is tested for a 
ID model problem, the eigenpairs of which can be evaluated exactly (at least in 
principle). 

For a domain with two components (0, 1) and (1,2), we consider the following 
EVP: 

Find A E R and the functions u1: [0,1] -* >R and u2: [1, 2] -* >R obeying 
the differential equations 

-(Ul)// = Au1 in (0,1), 

-2(U2)"1 = AU2 in (1,2), 

TABLE 6.1 

{ Relative error in % 
N1 N2 CM FEM LM FEM CM | LM 

Eigenvalue 1: 'exact' eigenvalue is 0.6099903 
40 40 0.6100017 0.6099685 1.87E-3 -3.57E-3 
80 80 0.6099932 0.6099849 4.68E-4 -8.93E-4 
160 160 0.6099910 0.6099890 1.17E-4 -2.23E-4 
320 320 0.6099905 0.6099900 2.92E-5 -5.57E-5 
640 640 0.6099904 0.6099902 7.29E-6 -1.38E-5 
1280 1280 0.6099903 0.6099903 1.88E-6 -3.31E-6 

Eigenvalue 2: 'exact' eigenvalue is 6.489800 
40 40 6.491761 6.488773 3.02E-2 -1.58E-2 
80 80 6.490290 6.489543 7.56E-3 -3.96E-3 
160 160 6.489922 6.489736 1.89E-3 -9.89E-4 
320 320 6.489830 6.489784 4.72E-4 -2.47E-4 
640 640 6.489807 6.489796 1.18E-4 -6.18E-4 
1280 1280 6.489802 6.489799 2.95E-5 I-1.54E-5 

Eigenvalue 3: 'exact' eigenvalue is 20.88131 
40 40 20.89752 20.86457 7.76E-2 -8.02E-2 
80 80 20.88537 20.87713 1.94E-2 -2.OOE-2 
160 160 20.88233 20.88027 4.85E-3 -5.01E-3 
320 320 20.88157 20.88105 1.21E-3 -1.25E-3 
640 640 20.88138 20.88125 3.03E-4 -3.13E-4 
1280 1280 20.88133 20.88130 7.58E-5 -7.83E-5 

Eigenvalue 4: 'exact' eigenvalue is 32.93464 
40 40 32.98054 32.90339 1.39E-1 -9.49E-2 
80 80 32.94611 32.92683 3.48E-2 -2.37E-2 
160 160 32.93751 32.93269 8.70E-3 -5.93E-3 
320 320 32.93536 32.93415 2.18E-3 -1.48E-3 
640 640 32.93482 32.93452 5.44E-4 -3.71E-4 
1280 1280 32.93469 32.93461 1.36E-4 -9.26E-5 
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as well as the transmission conditions 

_(U1)/ = 5(u1_U2) atx=1, 

(Ul)' = 2(u2)' at x = 1, 

and the boundary conditions 

u1(o) = (u2)'(2) = 0. 

The eigenvalue equation for 1a = V'X is easily found to be 

A ~ 1 _ 

(6.1) - +tan - X cot = 0. 

For the finite element discretization, we consider linear shape functions on a 
uniform mesh with N elements in each of the components; hence h = 1/N. We 
compare the first four eigenvalues, obtained from (6.1), with the numerical eigen- 
values, obtained with respectively a consistent mass (CM) FEM and a lumped mass 
(LM) FEM. The results are given in Table 6.1. They confirm the theoretical order 
of convergence, namely O(h2), see (4.4) (r = 1) and Theorem 5.3(2). For the first 
eigenvalue the results are also depicted in Figures 6.1-6.2. In Figure 6.2 we note 
that the relative (percent) deviation R of the approximate eigenvalue to the exact 
one (i.e., R = (Aapp - Aex)/Aex * 100%) obeys 

log JR1 C + log h2 = C -2 log N (C constant independent of h), 

in accordance with the theoretical order of convergence just mentioned. 

0.610005 - 

0.609995 
s ~~~~~~~exact 

0.609985 

0.609975 LM 

eigenvalue = 0.6099903 

0.609965 l l l 
40 80 160 320 640 1280 

number of elements 

FIGURE 6.1. CM and LM eigenvalues 
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0.01 eigenvalue = 0.6099903 

LM 
103 CM 1 

10-' 

0 

10 100 1000 104 

number of elements 

FIGURE 6.2. Rate of convergence 

APPENDIX: ON THE TCs (1.2)-(1.3) 

A simple 1D situation leading to TCs of the type (1.2)-(1.3) is shown in Fig- 
ure A.1 below, cf. [12, Chapter 6]. A cavity (room) is enclosed between two walls 
at respective temperatures u1 and u 2 with thermal conductivities k0 and k2, re- 
spectively. As usual, the walls are assumed to conduct heat in one direction only, 
orthogonal to the parallel surfaces, and the air in the cavity, with zero heat capac- 
ity cp, is taken to be at temperature T throughout. At the surfaces x = xl and 
x = x2 heat is transferred by convection to the air in the cavity and by radiation 
(linearized here for simplicity) to the opposite wall, i.e., 

a1 
(A. 1) - a1 a =l = H1 n (u1 =x1 - T) + H1 (2u1 lx=J - 2 

au2 
(A.2) kax X=2 = HC2 (Ut2 - T) + H 21 (u21 _ 1x - 

where Hcon, Hc2on are the convective heat transfer coefficients at the two surfaces, 
1 2 21 while Hrad = Hrad is the coefficient of linearized radiative heat transfer between the 

two surfaces of the cavity (tacitly assumed to be of the same material, otherwise 

rad 7' HrJad). If the cavity is neither heated nor ventilated, the heat balance inside 
the cavity reads 

(A.3) Hcn ( lx=xl - T) + HC0o (u2 |XX2- T) = 0. 

'Eliminating' the cavity, i.e., substituting in (A.1)-(A.2) the expression for T 
obtained from (A.3), we get 

au1 au2 
(A.4) -k1 

au 
I~~X=Xj = h1'2 (u 1 x~x1 2I=2 

- 
uI= (A.4) ~~ax axX=2 



1016 M. VANMAELE AND R. VAN KEER 

where 

hlv = H2ad ? H1 H+ 2 con con 

Then, shifting the second wall to the left so as to be adjacent to the first one, we 
are left with a two-component problem in Q = Q1 U Q2 U rl,2, with TCs of the type 
(1.2)-(1.3) at the interface r1,2; see (A.4). 

Q 1 Q2 

wall cavity wall 

I Cp =0 k2 i 

Ul T u2 

0 X1 X2 X 

FIGURE A. 1. Schematic representation of a cavity structure 
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