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NONLINEAR STABILITY OF STATIONARY DISCRETE SHOCKS 
FOR NONCONVEX SCALAR CONSERVATION LAWS 

HAILIANG LIU AND JINGHUA WANG 

ABSTRACT. This paper is to study the asymptotic stability of stationary dis- 
crete shocks for the Lax-Friedrichs scheme approximating nonconvex scalar 
conservation laws, provided that the summations of the initial perturbations 
equal to zero. The result is proved by using a weighted energy method based 
on the nonconvexity. Moreover, the 11 stability is also obtained. The key 
points of our proofs are to choose a suitable weight function. 

1. INTRODUCTION 

We investigate the asymptotic stability of the numerical approximation of the 
following Riemann problem for nonconvex scalar conservation laws: 

(1.1) Ut + Of (u) = u, l(X, 0) = uo(X) ={U 
X 

> .1 

The corresponding shock wave solution is 

(1.2) u(t' x) { u, x-st<0, 
u+', - St >0, 

where the end states u? and related shock speed s satisfy the Rankine-Hugoniot 
condition 

(1.3a) -s(u+- u) + f(u+) - fu) = 0 

and Oleinik's shock condition 

(1.3b) (u+ - u)Q (u+ - U)[f(u) - f(u?) - s(u - u?)] > 0 

for u E (min(u-,u+),max(u-,u+)). It is noted that when s =A f'(u?), then (1.3b) 
implies the Lax shock condition 

(1.3c) f'(u+) < S < f'(u_). 

We approximate (1.1) by the Lax-Friedrichs (LF) scheme 

(1.4) u _u? (fU+) -f(u)i)) = 2(U +1 - 2u + Un 1) 
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where u is an approximation of u(xj, ta), Xj = jAx and t,- = nAt, with Ax 
and At being the spatial and the temporal grid sizes; a is a constant satisfying 
o < oa < 1, and the temporal and spatial grid ratio A = ' satisfies the Courant- 
Friedrichs-Levy (CFL) condition, 

(1.5) A max If' j< a. 

Corresponding to the difference equation (1.4) we have the following viscous con- 
servation law, 

(1.6) Out + f WXz = AuuXX Al > 01 

which has a shock profile solution u = U(x - st) satisfying 

U(z) -- u? as z -* ?oo. 

For convenience, we assume that u+ < u- and s :A f'(u?); then U'(z) < 0 and 
U - u - O(l)exp(-cjzI) as z - ?0oo. Hence, the shock profile of (1.6) has the 
following property: 

(1.7) u(x, t + At) = u(x-s At, t). 

Since the solutions of difference equations are only defined on the grid nodes, (1.7) 
does not always make sense. The standard method to overcome this difficulty is to 
construct a refined grid 

L= {mr + n frq = sA, m, n E Z}, 

or to use the expanded grid with Atq = qAt, where y = P is rational with p and q 
q 

relatively prime (see [29]). 
From now on we focus on the discrete shock profile solution qj of (1.4), i.e., 

(1.8a) A(f(qj+1) - f(gj$i)) = a(qj+l - 20j + qj-1), 

(1.8b) qj -u--+ ? as j -? o, 

which is called a stationary discrete shock. Its existence and properties have been 
proved by Jennings [9] provided (u, u+) satisfies (1.3a)-(1.3b). 

The main theorems are the following 12 and 1' asymptotic stability and 11 bound- 
edness for the discrete shock wave for the L-F scheme (1.4). We have 

Theorem 1.1. Suppose that (1.3a)-(1.3c) and (1.5) (CFL condition) hold. Let qj 
be the stationary discrete shock profile (1.8a) connecting u+ to u-. We assume 

(1.9) q?-9)=O 

and 
00 

(I.1I0) E(I +j2))318? _ 
Oj2 < C, (3 > 1) 

.1=-00 

for some (suitably small) positive constant ci. Then there exists a unique global 
solution, ujn, to the L-F scheme (1.4) with initial data us?, and it satisfies 

(1.11) sup I u-j I -0 as n -oo. 3 
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Theorem 1.2. Under the hypothesis of Theorem 1.1 and the additional assumption 
00 

(1.12) E (1 +j2)3/2u0 - 2 < 00 

j=-Oo 

we have 

(1.13) sup Eu -$ | < oo. 
O<n<oo 

3 

Corollary 1.1. Under the hypothesis of Theorem 1.1 we have IP (p > 1) asymptotic 
stability, 

(1.14) lim E: luck - AdsI = 0. 

Remark 1.1. In the original L-F scheme [14], one has af = 1. However, we do not 
expect asymptotic stability of the discrete shock profiles in this case. In fact, Liu 
and Xin [19] verified that stationary discrete shock profiles of the L-F scheme for 
the scalar equations are not asymptotically stable. Recently, L.A.Ying and T. Zhou 
[29] proved, based on the energy integration method, that the solution on the odd 
grid nodes and on the even grid nodes tends to two discrete shocks, respectively. It 
is interesting to discuss the original L-F scheme for nonconvex f. 

Our stability analysis is strongly motivated by the nonlinear stability of the 
viscous shock profile for viscous conservation laws of the form (1.6). There have 
been extensive studies in the last three decades [7, 11, 17, 26]. Recently, some 
important papers on developing the stability theory for nonconvex equations (see 
[12, 16, 10, 24]) appeared. They showed that a viscous shock profile is nonlinearly 
stable in the sense that a small initial disturbance, under suitable restrictions, will 
die out as time tends to infinity. The methods use the weighted energy method, 
spectral analysis, and semigroups. 

The study of existence and stability of discrete shocks is important in under- 
standing the convergence behavior of numerical shock computations. Jennings [9] 
first investigated the existence and stability of discrete shocks for scalar difference 
equations. But the work is restricted to strictly monotone schemes; that is , if we 
denote the scheme as 

(1.15) us ~~+1 = ~X-vUnrl Uj+t)v 

then the first-order derivatives of G with respect to its arguments must be positive. 
Engquist and Osher proved the stability of first-order monotone schemes in the 
scalar case [6]. Smyrlis [25] proved stability of a scalar stationary discrete shock 
wave for the Lax-Wendroff scheme. For scalar conservation laws, the L-F scheme 
belongs to the class of monotone schemes, which have been well studied, see [13, 23], 
etc. It has been shown by Kuznecov [13] that the best rate of convergence in the 
LP-norm for such schemes with general BV initial data is of order (Ax)1/2. Teng 
and Zhang [28] recently derived optimal Ll-error bounds of O(Ax) for monotone 
difference schemes to an initial value problem for nonconvex scalar conservation 
laws with initial data being a finite number of piecewise constants, subject to the 
initial discontinuities satisfying the entropy conditions. Tadmor [27] studied the 
large-time behavior for the rarefaction waves for some monotone schemes. See also 
[8]. 
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In the case that the far field is a constant state, Chern [2] proved stability of 
the L-F scheme using diffusion waves. Liu and Xin [18] proved that, for the L-F 
scheme, the solutions of Riemann problems are single or multiple shocks; and if the 
summation of the initial perturbations is equal to zero, then the scheme solutions 
are asymptotically stable. They also study the stability of stationary discrete shocks 
in [19]. The existence of discrete shock waves of first-order accurate finite difference 
methods for systems of conservation laws was established by Majda and Ralston 
[20] by means of the center manifold theorem. 

The L-F scheme has been playing important roles both in the theory and nu- 
merical computations of hyperbolic conservation laws. In the 1950s, Oleinik [22] 
studied the existence of global solutions for single conservation laws by this scheme. 
In the 1980s, DiPerna [5] and X.X. Ding, G.Q. Chen and P.Z. Luo [3, 4, 1] also 
used it to prove the existence of weak solutions with large amplitude for some 2 x 2 
systems. The L-F scheme also played an important role in the development of 
difference methods. It is a representative for monotone schemes. For monotone 
schemes, there have been systematic theories (see [9, 15, 21]). 

In this paper we develop the stability theory of discrete shocks for the L-F scheme 
in the case of nonconvex nonlinearities. In ?2, we first state some results on the 
existence and properties of discrete shocks. Then we study the nonlinear stability 
of discrete shocks. We use a weighted energy method. Owing to the nonconvexity 
of f and the discrete errors, our analysis is technically rather involved. Based on 
the same idea, the stability problem of its continuous counterpart has also been 
solved recently (see [16]). 

In ?3, we investigate 11 stability of discrete shocks. In contrast with the convex 
case, because of the nonmonotonicity of f', even the linear stability analysis in the 
11-norm is difficult. We overcome this difficulty by carefully choosing weights. The 
solution can be estimated by using the essential monotonicity of the scheme. This, 
together with the 12-stability analysis, yields the desired result in Theorem 1.2. 

2. THE 12 STABILITY ANALYSIS 

In this section we proceed to prove Theorem 1.1, the nonlinear stability of sta- 
tionary discrete shocks. 

First we notice the fact that a shock profile of (1.4) depends continuously on 
its value at a point (see [9]). From this, the following two lemmas follow; we omit 
proofs. 

Lemma 2.1. Assume (1.3a)-(1.3b) and u+ < u- for s = 0. Then there exists a 
stationary discrete shock profile to (1.4), i. e., (1.8a)-(1.8b) holds. Furthermore, the 
qj satisfy 

(2.1) qj > qj+l for j E Z. 

Lemma 2.2. Let uo (j E Z) be initial values satisfying 

jlug - Vfj I < E, 
jEZ 

where 4fj is a stationary discrete shock profile of the scheme (1.4). Then there must 
exist another shock profile hj such that 

jC(uZ - 0j) = O 
jGz 
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and 

EIuju-qjl <26. 
jCz 

To prove the stability result, we reformulate the problem as follows. Let 0 
be a solution of the L-F scheme (1.4) with initial data uQ. From Lemma 2.2, if 

j (u? - VLj) =A 0, we still can find a discrete shock /j of the scheme (1.8a) such 
that 

,(u9? - 0j) = 0; 
jCz 

thus, the assumption on the initial perturbation, (1.9), does not restrict generality. 
Setting 

(2.2) v7' = E (un'-qk), 
k=-oo 

we have v7 -* 0 as j -* ?oo. Subtracting (1.8a) from (1.4), and summing up the 
resulting expression from -0o to j, we get 

.n+1 An + _ A 
(2.3) ~Vi -v7? (f (Uj+) 

- f (oj+1)) ? .i(f (u) - f cpj)) 

= 2(V7+ -2v7 ? vl). 

Noting that 0 - Oj = v - vjn~i, we have 

(2.4) 

Vj2+1 ? + Af I(on 1)(Vn -vn) + IV(on)(V n) 

+ -F ,$j+ ~vjn~l-van)+ i F(ofjnxi n~v = 0f(v7 -2v7 ?v 1)) 

where 

(2.5a) F(+,u - i) = f(u) - f(q$) - f'(q)(u - $) 

satisfies the estimate 

(2.5b) F($,u - )I < O(1)Iu -_12 

and 0(1) is a positive constant. Using the notations 

Aj = f '(qj) Ojn = F(qj v7n _ Vn 

we may rewrite the equation (2.4) as 

(6vjr+1 -va + AA n n) + Ar _ i) V V -1--L+Ll(V 
1 

VjTLAjI -v 1 

(2.6) 3 3 
2J1J+ iJ2J\3J3' 

- 2_(V+1 -2Vn + V, 1) = ej' 

where 

jn A __(on ++ 0n) 
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Before we derive our basic energy estimate, we first explain why the standard energy 
method does not work in our problem with nonconvex flux f. We take the scalar 
product of equation (2.4) with 2v7, and using summation by parts, we obtain 

(Vn-+1)2 _ Z(Vn)2 + a E(_n, - V7n)2 ? A Z(A2 -Aj+i)(v7) 

(2.7) 
- E, (v +1h - V7n)2 + 2 E venen 

j + j3 

where we have used the identity 

v7(2vj -V+i - _1) = Z(Vn+l -Vv7)2. 
j i 

From (2.7) we see that Aj - Aj+j in general changes its sign because of the noncon- 
vexity of f, and hence the summation of (2.7) does not give any useful estimate. 
That is, the standard energy integration method based on (2.7) does not work in 
our problem. 

In view of the above consideration, to derive an a priori basic 12 estimate of (2.1), 
we introduce a weight function W(u) > 0 belonging to C2[u+, u_]. Setting Wj = 

W(qj), then multiplying (2.6) by 2v7Wj and summing over j , we obtain 

(2.8) 

j j j~jVn 1:2( +- ) W + All: Aj+lj Wj (Vnl -Vj ) + Ad jj Wj (Vj -Vj_ 1)} 

+ a A v7 W (2v - v7+i V1) = 2Z vjWjen. 

We now successively estimate each term Ii (i = 1, 2,3) on the left-hand side 
of (2.8), denoting 

IVj 12 = (Vj) 2Wj. 

We have 

=1 =(Vjn+-)2 _ (Vjn+l _vjn)2 - (vn)2}Wj 

=E jVjn+1 12 _ E jVjn 12 _E I jn+1 - Vjn i2 
i i 3~~~~ 

12 = >{ZAj+ 
WjjnVj+l-A Aj+j 

Wj (V7)2 

+ E Aj Wj (vj)2 - Aj Wj vjnvi} 1 

A{- Ad(Aj+1Wj+1 - AjWj) (V7,)2 

+ Zd Aj+ (Wj - Wj+l)Vj(V+j -Vj )} 
i~~~~~~~~~ 
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I all Vn Wj (Vj, _Vg + 1) - Vjn Wj (Vjn _ n-j)} 13 3 3ZvTvjv -3V+) -_ 7JV1 _ 
Vj) 

aE{ 
W 

[(vj - v+)2 + (V7,)2 _ (vn7+)2] 
i 

? Wj+l [(Vn _ Vj+1)2 + (Vj)-(?)2]} 

= ce{5(v7 -v7+i)2 ~ 2?+T4 ) (2j- 2 )} 

Then 

E IVjn+1 W 12_ VjnI2 +A (Vjn)2 + >,Wj + Wj+1 IVjn _Vnl12 

(2.9) E j 
- Slvi~ _-Vjn 72 Bjn + 2 v7n Wj e 

i 3 3 
where 

Aj = a (Wj - W3+1+Wj)-A(Aj+Wj+l-+Ajj)) 
(2.10) 

Bjn = Av7(Wj-Wj+i)Alj+l(vn-Vjn). 

Next we estimate the terms on the right-hand side of (2.9). We set 

(2.11) ~~~~N(ni) = sup (E IVj,12)1/2 
n<nl j 

and assume that N(nj) is small. Obviously, we have 

(2.12) sup Ivjn ? < N(nri). 
n, 

It follows from equation (2.6) that 

l- v7 = - -Aj+l}(v71- Vj ) 

- ? 2 + 2A}(vj -v 1) + e0. 

Then we have 

(2.13) IV - v7n2 < -{(a - AAj+l)2 v+-1 + (a + AAj)2 v7 _ v712} 

O(1){LVj+_ -Vjn4 + ?Vjn n 

where we have used (2.5b). Consequently, 

(2.14) E W _V| < ((al+ Amax If12+ O(I)N(ni)) x1 vj-Vj W. 

Next, using (2.5b) and (2.12), we get 

(2.15) 2 5 vjnWje"n I < CN(nri) W v7+i-v72. 
j j 
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By the Schwarz inequality we can estimate B7 as follows: 

B < ? Wj + Wj~i|v7H4-v7 Wj+i-WjHAj?iv| 

? e(Wj ? j+1 (Vn 1 - v7)2 ? (AA-+i) -W W nv)2 
(2.16) 

(Wj + Wj+i)(Vjn -jn)2 + A2Aj+1w/(?sll?+ - q(vn)2 

< ?(WVj ? VWj+i)(V - v7)2 ?+ oA2 - _?j (v7)2, 

where q$ is a mean value. We choose the weights 

(2.17) = - - u) 

where 

Q(u) = f (u) - f (uI). 

The specific choice of weights in (2.17) is made to obtain a useful 12 a priori estimate. 
Regarding Aj, we have the following lemma. 

Lemma 2.3. Let Aj be defined in (2.10) and Wj be the weight defined in (2.17). 
Then there exists a positive v such that 

(2.18) A? = vA(qj - +) ) 

provided A is sulitably small. 

We defer the proof of this lm to th end o this section. Assuming Lemma 2.3, 
we obtain the following basic a prior estimate. 

Proposition 2.1. [A prior estimate] Let vAj be a solution of (2.6) for in < n. 
Then there exists a positive constantC independent of nu such thatforallnini 

(2.19) A?i > vA~oj 
- 

O+l j 

provided A and N(ii) are suitably small. 

Proof. By Lemma 2.3, we collect (2.9), (2.14), (2.15) and (2.16) to obtain 

j [A po -m Let + ba li o2) f n < n_ 

(2.20) - [( ? Amax jf')2 ? O(1)N(ri)] E V7+i- 

+ A( j (O0j _-?j+,))Vjnl2 < 0. IV12 
n~~~~nl j~~~~ 

provided A nd N~ni) cr uiabl2mal 

Now, we recall the equation (1.8a) for 2dj, 

(A (f j qa) - f(q$-si)) = E(q(j+1 - 2q$ ? q +j- ), 



NONLINEAR STABILITY OF STATIONARY DISCRETE SHOCKS 1145 

and sum it over j from -oo to j to obtain 

A(f (qj+$ ) - 2f(u?) + f(qj)) = c+j - 0j), 

that is, 

(2.21) (Oj+l - 0j) = A(Qj+l + Qj). 

By the expression of W and the fact f'(u?) = 0, there exists a positive constant C 
such that 

(2.22) C-1 < W3 < C. 

Combining (2.21) and (2.22), we have 

_j+_ 
- Wj 

j/ W(v0j) (qj+i - j)I 

- A WI (q$) (Qj+i + Qj) 2aTV3 
< CA, 

where qj is a mean value and C is a positive constant. Thus we obtain 

(2.23) 

Wj 2 j IV n 
-Vj|2 = l vn 

1 - Vjn2W + Wl Wi I n n2 wj~~~~~~~wj+1~~j+ j+ ~ ,2 

3 j 32j 
i~~~~~ > (I1-CA) 

I Vn~ -VS 12 

Substituting (2.23) into (2.20) yields 

(2.24) 

I In+112 IVn12 + E(Aj - 4A (j _ -oj+i))Ivn 2 
W 

j 
W 4 

+ (a - (ai + Amax If'1j)2 - 2s - O(1)N(ni) - O(1)A) IVn - v2j2 < 0. 

Using (2.18), we have 

coA2 c0A 
(2.25) A3 - c0A (- j+i) > A(v - g - )(-j+i). 

Since Ol < 1 , we can take two suitably small positive constants 6o and A0 such that 
if 6 <6O and A <AO we have 

(2.26) a- (a + Amax If'1)2 -2E-O()N(ni) -O(1)A > 0 

provided N(ni) is suitably small (N(ni) < 6). Then for this fixed EO, choosing A 
to satisfy A < min(Ao, 4vEo), we have 

(2.27) v c0- A>. 
4EO 
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Finally, summing the two sides of (2.24) from 0 to n1 with respect to n , by virtue 
of (2.22), (2.25)- (2.27), we have 

(2.28) E ?v +1 + E - v7l2 
j ?n<nl j 

? 5A (qj -qj+i)(Vn)2 < C5E jvjO2 
n<nl j 3 

and Proposition 2.1 immediately follows. E] 

By (2.6), vjn+l can be expressed in terms of v7 in the explicit scheme; we can 
thus obtain v7 step by step from the beginning at n = 0. Moreover, we can estimate 
the 12-norm of Vjn as follows: 

(2.29) S(Vj7+1)2 < C0(vn)2. 

jo j3 

Combining (2.29) with Proposition 2.1 and a standard continuity argument, we see 
that the following proposition holds. 

Proposition 2.2. Assume that N(O) is suitably small. Then the problem (2.6) has 
a unique global solution v7 satisfying, for any n > 0O 

(2.30) supE vn2 + Iv, -v_7+112 + ?(qj -qj+i)Iv 2 < CN 2(0), 
J jn jn 

where C is a positive constant independent of n and j. 

We now turn to prove our main Theorem 1.1. 

Proof. First we prove that the conditions (1.10) on the initial data imply that N(O) 
is small. Here we give a proof under the condition 

00 

E (1+ j2)'lu - 2 < Cl 
j=-oo 

for any given constant d > 1 and c1 a suitably small constant. Applying the H6lder 
inequality to 

v39 = 5 (uk -qOk), 
k=-oo 

we have 

IV12 < 5 (1?+k2),3uO -qOk12 5 (1 + k2) 

k=-oo k=-oo 

< c1 5 (1 + k2) -. 
k=-oo 
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Therefore, 

Z IV12 ? Cat l (?+k2)-8 
j ~~~j k=-cso 

+ oo x 

< Cl j (1+ i 2)?-dydx 
K 0(1). 

so 
< 12lo~)1, 1 \C 

(2.31) N(O) = (S E v92)1/2 K 0(1)Xc1. 
j 

Thus, the hypothesis in Proposition 2.2 is fulfilled under the condition (1.10). It 
follows from Proposition 2.2 that there exists a unique global solution, u0n, to the 
L-F scheme (1.4) in view of the relation 

U n =X+ n _ n = q$3 
? 

V 
- 

V 1 

which follows from (2.2). Next we study the asymptotic behavior of the solution 
Un to (1.4). It follows from Proposition 2.2 that 

00 

E(E Vjn _ Vn+ 12) < +0<) 

n=1 j 

which implies 

lim5+1 E 7+n12 = 0. 

Using (2.2) again, we have 

(2.32) liml E |n 
_ 

Oj 12 = liM EVjn _ Vg, 112 =0 

which proves 12 stability. Consequently, combining (2.32) and 

(2.33) sup Iurn _ - j 12 < EIun _ -q 12, 
3 3 

we obtain 

(2.34) sup |u - _ 
$31-0 as n -oo, 

which proves Theorem 1.1. D1 

Finally, we turn to the proof of Lemma 2.3. 

Proof of Lemma 2.3. From (2.17) we know that 

(WQ)"(u) = 2, 

so 

(2.35) (WQ)'(0j) - (WQ)'(Oj+i) = 2(oj - oj+,)- 
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FRom the equation of qj, (1.8a), we have 

j~j+j- 2qj + qj-j1 = - f'(+j)(Oj+1-Oj) 
(2.36) 

= AO(l)(qj - qj+i) 

and 

(2.37) Oj - j+1 = O(1)A, 

which follows from (2.21). Here and in what follows we set 

Qj = Q(q), Qj = Q'(qj) = f'(qj) = Aj 

without danger of confusion. Thus, we estimate Aj as follows: 

(2.38) 

Aj = e(Wj - Wj+l+W3-l ) A A(fj+1Wj+i - f'Wj) 

= (-Wj+l ? Wj-W -i) - A(Q/+1Wjti-Qj%) 

= W2-W3+1aO3-O+ + W3-WJgj-Oj-1 - A(Q+iW%+l - QWj) 

= [ Wj-Wftl *__2 - XWj-1-W3 Q+jQj-1 + Q-+1Wj+l-Q1W 

= -A[(wVVj+l ? 2Wj+(+j - Aj+1) ? W6Q(j) (sk - qj+1)2) 

x (Qj+i + 1W1 (sj - Oj+l) + 
. 
(.ki _ qj+1)2) ? Qj~iWj+ 

-(1 ? j"i ($6 -s) ? W"(6yj-) (j-1- 

X (Qj + 2 (j+% - j+1) + Q"&-) (4 3j- - q3j)2) - Q' W ] 

-A[J1 + 2J2 ? 2J3 + O(l)(( - qj+1)2? (+ % _1 - )2)]_ 

Next we estimate Ji (1 = 1, 2, 3), by using (2.35), (2.36) and (2.37), to obtain 

J1= (Wjl+V Qj+Q + Ql+iWj+i) - (WjYQj + Q1%Wj) 

- (WQ)j+1 - (WQ)j 

- 2(oj+1 - sj), 

21= WjV+1QI+1(qj -qXj+l) -Wj'Qjs(j -lqj)I 

= l(Wj'+1Q+ - Wj'Qj)(qj - $j+,) +Wj;Q;(2qj - qj+1 - ) 

- O(1)( - qj+1)2 + AC(q$ - Oj+1) 

- AO()(j - j+$). 



NONLINEAR STABILITY OF STATIONARY DISCRETE SHOCKS 1149 

In a similar way we have 

IJ31 = VWV'lQj+1(qj -qfj+l) -W;'Qj(qj$ -q-j)I 

= I(W'+,Qj+l - Wj31Qj)(qj - qj+1) + Wj"Qj(2qj - 0j+j - 0j-l) 

= O(l)(qj - qj+1)2 + AC(qj - oj+1) 

= AO(1)(0j - 0j+j)j 

where we have used (2.37). Substituting these into Aj, we get 

Ai > A(j - j+)[2 -A0(1) - O(l)(j -j+)] 

> Av(qj - qj+i), 

provided A is suitably small. Combining the above estimates proves Lemma 2.3. D-1 

3. THE 11 STABILITY 

In this section we turn our attention to the 11 stability of stationary discrete 
shocks. As is well known, 11 is the natural norm for stability of shock waves. The 
main idea of achieving an 11 estimate is to exploit the fact that the L-F scheme is 
essentially monotonic and to employ a carefully chosen weight function. 

To obtain the 11 estimate, (1.13), on the solution, u0, to the L-F scheme, we will 
work with Vjn as in ?2. We first rewrite (2.6) as 

Vj2+1 
- IA ni I7n 

-(a + AAj)vj-1 - 2 (a -Aj+ )vj+ 
(3.1)2A 

- (1-(X. + -(Aj+l -Aj))Vjn = e"j 
23 

By the CFL condition (1.5) and ar < 1 we see that the coefficients of the terms 
-vjn1, -vjn+1 and -vjn on the left side of (3.1) are all positive for small A. This 
implies immediately that 

|Vntl I _ 
- 

(Oe + A~j) )|vjn_ I -I O-lj~ |~ (3.2) 3 2 A2 - 

- 

-(1-a + ? (Aj+l - Aj))IvjnI < 1c0II 

which can be rewritten as 

(Vjn+1I -Vj I +A (A+ V( n 1 I -Vjn l) + 2A3C(7I - I-I) 

- ( jv+lI - 21v7j1 + jvjn 11) < 1e0j. 

Summing up (3.3) with respect to j and using summation by parts, we obtain 

(3.4) EZIV+1 _Z Ev7jn I +A E(Aj -Aj+i)Ivjn I< EZ Ie , 
i i j i 

where we have used v7 -* 0 as j -* ?oo. Since Aj - Aj+j in general changes 
sign, owing to the nonconvexity of f, one cannot obtain a useful estimate. In order 
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to overcome this difficulty, we multiply both sides of (3.3) by a weight function 
Wj = W() to obtain 

lvj+W A- v7Wj ? v - v7)Wj ? 2Ay(v7n - Vjil)Wj 

- W 2Wj(Iv7+1 --21v?| + |v^1D) < Wjlej |. 

Summing up (3.5) with respect to j and using summation by parts, we obtain 

S + - 5 |v> ?W + 2SAj+i|v7+i - Iv7D)(Wj + Wj+,) 
(3.6) 

- -E 5vjn(Wj+l - 2Wj + Wjj) < lejIw, 

that is, 

(3.7) IV -5 71 A VnI < le ~, E Inwl lvjn Iw + ,Aj Ij enI 
i i 3 

where we use the notation 

(3.8) Mv7Wj = M'1W, 

(3.9) Aj = oi(Wj + Wj ) - A(Al Wjj 2 2 2 

The key step is to choose a suitable weight function W such that Aj > 0. Comparing 
its form with Aj in ?2, we use the weight defined in (2.17). More precisely, we have 
the following lemma. 

Lemma 3.1. Let Wj be the weight defined in (2.17). Then we can choose A suitably 
small so that 

(3.10) Aj > v, A(qj - qj+1). 

Assuming this lemma for a moment, we have from (3.7) and (3.10) that 

(3.11) S Iv+i -5 I v7 ? + 5(qj - j+i)lvj ? O(A1)ej iw 
j j j 

A simple calculation, using the definition of e0, shows that 

n0lw < "(I0jn+j|w +I |ojnlw) 

< O(1)(Ivn -v7n2 + ?Vn _ -n 12 

which, together with (3.11), implies that, for any n2 E Z+ 

n2 

S IV>2+1w 
- E |VJ?w +A 5(q3 - 

(3.12) 0 
n=O j 

n2 

< 0()E~+1 -j |W- 
n=0 

But Proposition 2.2 shows that the last term on the right-hand side of (3.12) is 
bounded from above by O(1)N2(0). On the other hand, our weights are bounded 
from both above and below by some positive constants. Thus, we have shown: 



NONLINEAR STABILITY OF STATIONARY DISCRETE SHOCKS 1151 

Proposition 3.1. Assume that N(O) is suitably small. Then the problem (3.1) has 
a unique global solution vjn satisfying, for any n > 0, 

(3.13) Upl M, I + E% - 0j+i) v, < C Z(|v? + |vj0 |). 
n 

i j,n 3 

With this proposition, we can prove Theorem 1.2 as follows. 

Proof of Theorem 1.2. First we prove in a similar way as in the proof of Theorem 1.1 
that the condition (1.12) in Theorem 1.2 on the initial data implies that N(O) is 
small. Thus, the hypothesis in Proposition 3.1 is fulfilled under the condition (1.12), 
which implies the global existence of a solution, u/, to the L-F scheme (1.4) because 
of the relation 

Un = O v + Vn -vn 

which follows from (2.2). From Proposition 3.1 and (2.2), we have 

j0 - qj I < 2 jv7I <00, 

j 3 

which yields the desired estimate (1.13). C] 

Finally, we turn to the proof of Lemma 3.1. 

Proof of Lemma 3.1. Using the weight function Wj defined in (2.17), by virtue 
of (2.36) and (2.37), we estimate Aj as follows: 

Ai = a>(VW - wj+'+wj-') - A(Aj wj+'+wj - Awj+wj_' 

= ca(Wj - wj+'+Wj-) 
2 Ik 

-A[A (Wj+1 ? wj/+1 ?q j-Oj+L + W"/((j+i) (j - qj+1)2) 

- Aj (Wj + Wj' ) 2?>- 4(i _?j1-?j)2)] 

= ca(Wj - wj+1 +w-1 )-A(AjWj+l-AjWj) 

- 2[AjWj'+ (Oj- qj+1) + AjWj'(qj - qji)] + O(l)(j$ - j+)2 

= A3 - [(Aj Wj+1 -Aj Wj) (j - j+ 1) 

+AjW(2qj - 0j+1- _$j_,)] + O(1)(j.- qoj+1)2 

= A3 - O(1)A(qj - $j+1). 

With the weight function defined in (2.17) we have Lemma 2.1, which yields 

Ai > A(v - O(1)A)(qj$-q$j+3) 
> Avi ( aj - sj+l) 

for a positive constant vi, provided A is suitably small. C 
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