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A FAMILY OF FIFTH-ORDER RUNGE-KUTTA PAIRS 

S. N. PAPAKOSTAS AND G. PAPAGEORGIOU 

ABSTRACT. The construction of a Runge-Kutta pair of order 5(4) with the 
minimal number of stages requires the solution of a nonlinear system of 25 
order conditions in 27 unknowns. We define a new family of pairs which in- 
cludes pairs using 6 function evaluations per integration step as well as pairs 
which additionally use the first function evaluation from the next step. This 
is achieved by making use of Kutta's simplifying assumption on the original 
system of the order conditions, i.e., that all the internal nodes of a method 
contributing to the estimation of the endpoint solution provide, at these nodes, 
cost-free second-order approximations to the true solution of any differential 
equation. In both cases the solution of the resulting system of nonlinear equa- 
tions is completely classified and described in terms of five free parameters. 
Optimal Runge-Kutta pairs with respect to minimized truncation error co- 
efficients, maximal phase-lag order and various stability characteristics are 
presented. These pairs were selected under the assumption that they are used 
in Local Extrapolation Mode (the propagated solution of a problem is the one 
provided by the fifth-order formula of the pair). Numerical results obtained by 
testing the new pairs over a standard set of test problems suggest a significant 
improvement in efficiency when using a specific pair of the new family with 
minimized truncation error coefficients, instead of some other existing pairs. 

1. INTRODUCTION 

One of the methods of solution of the system of first-order differential equations 

(1) y'=f(x,y), y(O)=yo, x>O, f:RxRm-*Rm 

is an explicit Runge-Kutta (RK) pair characterized by the extended Butcher tableau 

c A 
b 
b 

where bT, bT, c E RS and A E RSXS is strictly lower triangular. The vectors b, b 
characterize two RK methods (usually of adjacent orders p > q) which share the 
same function evaluations (A, c are common to both methods). In the following we 
use letters with hats to denote quantities pertaining to the lower-order method of a 
pair. The methods studied in this article obey the simplifying assumption A e = c, 

T 
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Let xo = 0, x, > 0, yn y(Xn) and K = (kjT IkT ... IkT), ki E Rm for 
i=1(1)s. Wedefine 

F: Rm x RtmS- Rns F(A,K) = (f(Aik)T, f(A2,k2) , ,f(A8,ks) ), 

A = (A1,A 2, ... I As)TI Ai E R. Let I denote the s x s identity matrix, hn = Xn+1-Xn 
and let the fixed point problem in Rms 

(2) Kn = F(Xne+ hnCe 0 Yn + hn (A 0 I)Kn) 

be solved with respect to Kn (in the case of explicit methods) by recursive substi- 
tution. Provided that the solution at Xn is known, the solution of (1) at the next 
point Xn+1 is evaluated from the equation 

(3) y (xn+l) Yn+i = Yn + hn (b 0 I) Kn. 

Equations (2) and (3) describe, for n = 1, 2,..., the algorithm for the application 
of an explicit s-stage RK method to the problem (1). At the same time, an error 
estimation for the qth-order formula of the pair may be obtained from the relation 

e (Xn+l) 'Yn+1 -Prn+l = hn ((bb) ) I Kn. 

A Runge-Kutta method is of order p if and only if 

X (-r) = 0 V-r E Ti, for i =1 (1) p, 

where Ti is the set of rooted trees of order i and 

(4) X('r= 1 (-F) 1) 
ff(r) ( t T)) 

Here, u, Ty are integer-valued functions of r and 4D is a certain composition of A, 
b, c, the skeleton of which depends only on 'r. Relation (4) defines a set of order 
conditions, which are linear in the components of b and nonlinear in the components 
of A, c (see, for example, Hairer, N0rsett and Wanner [9] or Butcher [2]). In the 
following the symbol TW denotes a vector whose elements are all the elements of 
the set X (Ti) in some prescribed (but otherwise arbitrary) order. 

It is known that the minimal number of stages required for the construction of a 
fifth-order RK method and a 5(4) pair is six (see Butcher [1] or Shanks [17] for the 
negative part of this statement and, for example, Fehlberg [8] for the affirmative 
part). A complete characterization of the solution of the 17 order conditions for a 
fifth-order method is given by Cassity [3]. However, the results of his study have 
not found any practical implementation. No analogous study exists for fifth-order 
pairs. All methods and pairs of orders five or higher are constructed according to 
certain types of simplifying assumptions, applied to the original system of order 
conditions. 

The most popular RK pairs currently in use are those constructed by Fehlberg 
[8] (most notably the pair FE4(5)#2 used for example in Matlab) and by Dormand 
and Prince [5] (DP5(4)7M or simply DP5(4)). The latter is undoubtedly better 
when both pairs are applied in local extrapolation mode (see below). The pair of 
Fehlberg belongs to a two-parameter family of pairs. Fehlberg selected the values 
of these free parameters in order to minimize the truncation error coefficients of 
the fourth-order method of the pair. It can be shown that the restriction C5 = 1 
that Fehlberg imposed on the pairs of the family he proposed is not essential, and 
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it seems that the only reason for its use was the simplification of the otherwise 
very laborious, at that time, necessary calculations. After performing extensive 
numerical testing, Shampine in [16] suggested that, from the numerical point of 
view, it is advantageous to propagate the higher-order solution of a pair (Local 
Extrapolation or Higher Order Mode). Later on, Dormand and Prince extended a 
family of fifth-order methods defined by Butcher in [1]. The family they proposed 
uses the first function evaluation from the next step in order to embed a fourth- 
order method to the fifth-order one, at effectively no additional cost. An individual 
pair of their four-parameter family, with minimized truncation error coefficients of 
its fifth-order method, is until now widely regarded as the best fifth-order pair (used 
in local extrapolation mode). 

In general, some norm (usually the Euclidean or the maximum) of the truncation 
error coefficients of that formula of the pair that propagates the numerical solution is 
regarded as a good indication of its numerical performance. Among families of pairs 
of the same order and of the same number of effective function evaluations, usually 
the best pair that can be constructed belongs to the family with the greater number 
of free parameters. The latter number is usually disproportionate to the number of 
simplifying assumptions that were used for the derivation of the respective family. 
This observation is justified among others in [15] and has motivated the study 
presented in this article. 

We intend to construct a family of 5(4) RK pairs under the single simplifying 
assumption (of Kutta [12]) that the function evaluations corresponding to the inter- 
nal stages of a method, which contribute to the estimation of the endpoint solution, 
provide cost-free second-order approximations at these nodes (for any differential 
system, as the one described by (1)). The solution of the resulting simplified system 
of equations with respect to five free parameters is provided and all cases, depend- 
ing on the values of these parameters, are described and characterized completely. 
In our analysis we exclude, after a theoretical justification, those cases that do not 
lead to practically implementable pairs. 

Somnetimes it may be desirable to apply an explicit RK pair to the solution of a 
periodic initial value problem describing free oscillations or free oscillations of low 
frequency with forced oscillations of high frequency superimposed. For problems 
of this type, as is shown in [14], it seems advantageous to use specially constructed 
pairs with a high phase-lag order. For an explanation of the term and the resulting 
order conditions for the case of RK methods, the reader might wish to consult [10] 
or [14]. 

A search has been carried out among the pairs of the newly constructed family, 
in order to find those possessing a fifth-order method with minimized truncation 
error coefficients, maximized phase-lag order or enhanced stability characteristics. 
Our search resulted in the selection of some pairs which were derived employing 
the FSAL device (First Step As Last) and some others that were derived without 
it. Some numerical testing reported in the last section of this paper, employing a 
fifth-order pair with minimized truncation error coefficients, seems to point in favor 
of its reliability and improved efficiency. 

2. THE CONSTRUCTION OF THE NEW PAIRS 

The order conditions that define an explicit RK method of order not exceeding 
four are linear in the elements of A. For higher orders this useful property is lost. 
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One reason for the employment of simplifying assumptions for the solution of these 
order conditions (and an inevitable one according to our opinion) is because in 
this way this strong nonlinearity can be avoided. Moreover, these assumptions are 
chosen in such a way as to inherit an algebraic compatibility with respect to the 
original system of order conditions. This also results in a significant reduction of 
their number. The nonlinearity of the resulting simplified system of order condi- 
tions, in terms of the elements of c, causes no problem as long as the latter remain 
free parameters of the solution. 

In the following we denote by the integer power of a vector, v, the componentwise 
multiplication . We use the customary symbol v(i,j) to denote the vector 

whose elements are the elements of v from index i through j, and v(i+) to denote the 
vector resulting from v by dropping its first i -1 elements. For a set of vectors these 
symbols apply to every vector in the set (it is assumed that the same convention 
applies when applying these symbols to both parts of an equation). We also define 
C = diag (c). 

When we are not interested in the estimation of the values of the truncation error 
coefficients of a method, but only to solve the order conditions for a specific method 
or pair, we may ignore the term 1/v (r) in equations (4) and we may alternatively 
use one of two different formulations that may be used to describe these equations. 
The first formulation is by writing for a specific order, say p, all of them except 
one as a series of orthogonality conditions. In this case it is usually advantageous 
to retain the equation for the bushy tree (that is bcP-1 = 1/p) and express the 
rest as their difference from this equation. A second way to express all or some of 
the equations (4) is by writing 1/i (r) as a nested integral and using certain linear 
combinations of them (as was proposed by Curtis [4]). This is essentially the use of 
a Gauss-type elimination, when the equations resulting from (4) are considered as 
a multilinear system in terms of the elements of A. Henceforth, both for theoretical 
and practical reasons, we shall most frequently use here both of these alternative 
approaches. 

Hypothesis (A). We assume that A, b, b, c characterize a 5(4) RK pair (with 
distinct b, b ) which effectively uses six stages (i.e., b7 = 0), so that C7 = 1 and 
a7i = b, for i = 1 (1) 6 (FSAL device). Consequently, we may conveniently assume 
that if b7 = 0 (non-.FSAL pairs), then c7 = 0 and a7i = 0. 

Simplifying Assumption (B). All the function evaluations corresponding to the 
internal nodes of a RK pair, except of the second, provide at these nodes second- 
order approximations of the theoretical solution of any differential equation as in 
(1). This is equivalent to requiring 

C2\ 
SC - - =0. 

(Ac )2 (3,6) 

If the equations for the bushy trees (see (7b) below) are satisfied, the above 
equation holds for index seven as well, irrespective of whether or not the FSAL 
device is used. 

Remark 1. For a pair satisfying Hypothesis (A), we have b6 . c2 = 0. Otherwise, we 
would be led to an essentially five-stage, fifth-order method, which is impossible. 
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We first give a generalization and the formal statement of a result of major 
importance in the construction of RK methods and pairs, because of its motivation 
for the use of various types of simplifying assumptions during their construction (see 
Curtis [4] and Butcher [2] for an informal presentation in a more narrow context). 
In the following, I represents an identity matrix of suitable dimension. 

Proposition 1. Suppose A, b, c characterize an s-stage RK method for which the 
quadrature order conditions bci - 1 for i = 0 (1) p, p > 3 hold. For nonnegative 
integers k, l such that k + l < p - 3, consider 

Xi ( ( ( 
A + l l) 'i 1) 

fbi = Aci-_ , 

If all Xi, 4'i equal zero except possibly one (say X or b,1), then this one is also 
identically equal to zero provided that bS,-c, =4 0. 

Proof. The proof follows by establishing the relation 

C= (b(ck(Ak I) kl))cl 

= (b(ck (A+ kl)-kl))c 

= b~kAci ? k 1 1 bCk~l cl-k + 1 bc 
k?+1 k?+1 

= ( ~~~c1+1 \ 1 1 k_1_ 1bc 
= bCk Ac' - + ) ? bCkcl+l?+ bO+Icl b 

1?+1j 1?+1 k?+1 k?+1 

= bCk (Aclg[+ )?+(k +l+ ) (l +l) 

1 1 
= _~ c 

?(k+l+2)(k+1) (k+1)(1+1) 

= (bCk)y (AC'- 1- 

= b,~c>/f. D 

Obviously, Proposition 1, in case of a RK pair, is applicable to both of its 
methods. 

Lemma 1 (Simplified System of Equations). Under Hypothesis (A) the original 
system of order conditions for a 5(4) RK pair, satisfying Simplifying Assumption 
(B), is equivalent to the following simplified system: 

Ae = c Hypothesis, 

(5) ((Sc2A 
(5) ,Ac - 

2 ) 0 Simplifying Assumption (B), 
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b2 = 0 

(bA)2 = 0 

(bcA)2 =0 

(6a-f) (bA2)2 = Subsidiary Simplifying Assumptions, 

b2 = 1 

2 

(7a-e) 
1 2 1 13 l 4 1 Quadrature Conditions in 
2 3 4 5 terms of the weights bi, 

(7f-i) be = -1 bc = - be2 _!1 b3 1 Quadrature Conditions in (7-i) be_ =, c- -, bc - =-, 
2 3 4 terms of the weights bi, 

(8a-e) bAc2 3 4 bAc3 4 15 bcAc2 = 3 5 bA2c2 3 4 ' 

bAC2 = 1. 

Equations (7a-e) and (8a-e) is all that remains from the original system of order 
conditions. 

Proof. First we prove the subsidiary simplifying assumption (6a-f). The others 
follow in a similar way. From Simplifying Assumption (B) we have 

bA2 (Ac- )= ? (bA2)2 (-2 )= 

and since c2 =A 0 (see Remark 1), it follows that (bA2)2 = 0. Next we may prove in 
a similar way that the original equations based on the values of 4) (r): b4)14)2Ac, 
b4?1Ac become equivalent to those of b4)j4?2c2, b4)c2 whenever the symbols 4)1, I2 
assume one of the values in {A, C, I}. Finally, we need to show that the original 
order condition b (Ac)2 = 22.5 is equivalent to bC2Ac = 1 , which follows from 
the identity 

b (Ac)2-bC2Ac + 4bc4 =b (Ac- ) 0. 

Lemma 2. Suppose that Hypothesis (A) and Simplifying Assumption (B) hold. 
Let 

v= (A (Ac2 _c) ) 

and for i = 3,4,... ,7, 

Si = {c) C2, C3}(3 i) and Ti=SiU {A (Ac- 2)c } 

Then 

(i) v = 0; 
(ii) The vectors in S7 are linearly independent; 

(iii) The vectors in T7 are linearly independent; 
(iV) If b7 A 0, then b (A + C-I) = 0. 
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Proof. (i) If the assertion were not true, from Simplifying Assumption (B) and 
Remark 1 it would follow that all the nodes after C2 vanish (which, in view of the 
Vandermonde system of order conditions, leads to a contradiction). 

(ii) In case the assertion were not true, for suitable real numbers s, A, ,ul not 
all zero, we would have 

(9) (sc + Ac2 + ,ttc3) (3,7) = O. 

Multiplying this relation from the left by b(3,7), (bC) (3,7) and using (7a-e), we obtain 

(10) 2 _ _4 
_ I _ + - 0. 

Equations (10), together with the last row of (9), n + A + ,ul = 0, lead us to the 
contradiction n = A = ,lt = 0. 

(iii) The proof is based on case (ii). Moreover, it is similar to the latter case if 
one takes into account the conditions (bA)2 = 0, (bCA)2 = 0 of Lemma 1. 

(iv) The second component of the vector b (A + C - I) is, by Lemma 1, zero 
and the first, by Proposition 1, is also zero, provided that the rest are zero as 
well. A direct estimation using some of the original order conditions shows that 
the vectors in 

{b- b,b(A+ C- I)}(3,7) 

are orthogonal to the four linearly independent vectors (from case (iii)) of T7, and 

thus they are linearly dependent. Since (b (A + C -I))7 = 0 and (b-6b) 7 0, the 

assertion is proved. C: 

One of the necessary conditions that a RK pair must satisfy, if it is to be used 
in practical implementations, is the nonvanishing of the (q + 1)st-order truncation 
error coefficients of its lower-order formula. Methods that do not satisfy this con- 
dition are those that fail on quadrature problems (Quadrature Defective Methods), 
as for example, the pairs of Fehlberg of orders six or higher (in Local Extrapolation 
Mode) [7]. In general, we call defective those p (p - 1) pairs for which some of the 
pth-order truncation error coefficients of their lower-order formula vanish. Usually, 
known pairs that exhibit this kind of behavior fall into singular cases of more gen- 
eral families of pairs. We do not intend, however, to fully justify this claim in the 
present article. 

Condition (C). It is assumed that the nodes ci of Hypothesis (A) satisfy the 
restrictions 

ci =4 cj, ci =4 0 for i,j = 3,4,5,6. 

When Condition (C) is violated, the subsequent analysis must be modified, and 
it becomes somewhat lengthy because of the rather large number of singular cases 
that must be considered. The following lemma justifies our decision to disregard, 
in the rest of this article, cases that violate Condition (C). 

Lemma 3. If a RK pair satisfies Hypothesis (A), Simplifying Assumption (B), but 
fails to satisfy Condition (C), then it is Quadrature Defective. 
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Proof. First we note that, irrespective of the value of b7, because of Lemma 2 (iv) 
and the remark made in Hypothesis (A), ((c - c6e) c)i is equal to zero for i = 1, 6, 7. 
Furthermore, according to the hypothesis, there are suitable values j, k such that 
((c- ce) (c - Cke) (c - C6e) c)(3,7) = 0. Next from the relation 

(b-b) (c-cje)(c-Cke)(c-c6e)c==O 

it follows that bc4 = 5, which is a contradiction, and the lemma is proved. 0 

Lemma 4. Under Hypothesis (A), Simphiyfing Assumption (B) and Condition (C) 
the following holds: 

(i) The vectors in S5 are linearly independent; 
(ii) Let u = (A (C - c3I) c)(3,6) and let v be defined as in Lemma 2. If b7 = 0, 

then the vectors in Uk6 = S6 U {U + kv} are linearly dependent for every value 
of k; 

(iii) If b7 = 0, then c4 = 

(iv) If C6 = 1, then b (A + C-I) = 0. 

Proof. (i) The resulting Vandermonde matrix has distinct elements. 
(ii) This case of the lemma follows from the fact that the nonzero vector 

(b-b) is orthogonal to the four vectors of Uk. 
(3,6) 

(iii) Let .F = 2(c2-c3) From case (ii) of the present lemma we see that there 
C2 

exist real numbers s, Alj (not all of them zero) such that 

(11) u1 + v = (rc + Ac2 + /c3)(3,6) . 

A direct calculation, taking into account Simplifying Assumption (B), shows that 
the first two components of (11) are 

(12) 0=sc4? 3 3c+,1c3 
0 = /iC4 + Ac2 + /tc3 

Multiplying successively equation (11) from the left by b(3,6), (bC)(3,6)' we find 

f(f r (x-C3)xdxdx= i+3 A+ 
(13) 1 - 

2 + 4 ? 

f x f (x -C3)xdxdx + 
- 
+ . 

0 0 3 4 5 

Equations (12), (13) must be satisfied simultaneously. A trivial calculation gives 
the required relation expressing C4 in terms of C3 (the singular cases c3 = 2, C4 = 

and C3 = 19?j4, C4 = 2 still satisfy the required relation). 
(iv) Using some of the original order conditions, we find that (b (A+C-I))(3,5) 

is orthogonal to the three linearly independent vectors (from case (i) of the present 
lemma) of S5 and consequently is equal to zero. D 

The following result is based on Lemmas 3 and 4. 
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Corollary 1. An effectively six-stage, nondefective, 5(4) RK pair must satisfy the 
relations 

b7#=0 and b(A+C-I)=0, 

or b7 =0 and C4 = 2 2 2(5C3- 4c3?+1), 

Lemma 5. Assume that C4 = 2(5C2 -C3 +1) The equation bA2c2 = 345is a conse- 

quence of all the other equations in Lemma 1, not including bAc2 = I. Moreover, 
the vectors in U6 are linearly dependent. 

Proof. We shall first prove the second assertion of the lemma. Let u, v, U6 be 

defined as in Lemma 4 (ii), r as in the proof of Lemma 4 (iii), and let 

it = (A(C-c3I)c)(3,5) v= , AAc- 2) 

b = b(3,5) and c= C(3,5). 

The four vectors of Rf3 in the set S5 U {i +? ri3} are linearly dependent, and because 
of Lemma 4 (i) we find that for suitable numbers , A, ,u 

(14) u + qf) = Kc + A + M3. 

We notice that equations (12) are valid in this case as well. Multiplying (14) from 

the left by (b (C - c6I))(3 5)' we find that 

(15) jx j (x -c3) x dx dx-C6 Jj (X-c3) x dx dx 

(1 C6)+ (1C6) (1 C6 = - ? +A - ? + 

Using the assumed expression concerning C4, we may show that the above values 

of s, A, ,ul satisfy both equations (13) as well. From the sequence of relations 

b6(u6?rjv6) = b(u rjv) -b(i+rf) 
1lx 

= JJ (x-C3)xdxdx-(kbc+Ab 2?+tbE3) 

o0 0 

i K A 1 1 2C2 3 3 3) = 2+ + / _? (n(bc-b6c6)+A(bc-b6c6) +/(bc-b6c6)) 

= b6 (sC6 + Ac? + uc 3) 

it follows that (11) is also satisfied for the index value of 6, and consequently the 

vectors in U6 are linearly dependent. 

The first assertion of the lemma concerning equation bA2c2 = may be 
obtained by multiplying (11) from the left by (b (A + C - I))(36). D 

Lemma 6. Let C6 = 1. The equations bA2c2 = , (bA2)2 = 0 are a consequence 
of all the other equations of Lemma 1. 

Proof. The proof is based on Lemma 4 (iv). D1 
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Lemma 7. Let c4 = 2(5C3 ?l). The equations bAc2 = I (bA2) = 0 are a 

consequence of all the other equations in Lemma 1. 

Proof. Using Lemma 5 and multiplying (11) from the left by (b- b) , we may 

easily prove the result concerning the equation bAc2 = 1 3.4. 
For the proof of the second equation we distinguish two cases. If c6 = 1, we use 

Lemma 6. Otherwise, it may be shown that the vectors in {b (A+C - I), b - b} 

are orthogonal to the vectors in S6 and consequently they are linearly dependent. 
Moreover, for some real k we have (b (A + C - = =s (b - (36) . Multiplying 

this relation from the right by (A2) (36)' we easily see that indeed in this case 

(bA2)2 = 0 holds. C: 

We use the results of the analysis in this section (particularly Lemmas 2, 6, 7) 
to present a general algorithm for the construction of effectively six-stage, nonde- 
fective, RK pairs of order 5(4), a full description of which may be found in the 
Appendix. 

Theorem 1. The set of coefficient values in A, b, b, c provided by the algorithm 
in the Appendix determines an effectively six-stage, nondefective 5(4) RK pair. 

The major advantage of the algorithm of the Appendix, over some other similar 
existing ones, is the rather unifying approach it offers in the treatment of the 
problem of solving the relevant system of the order conditions. 

3. THE SELECTION OF NEW PAIRS AND NUMERICAL RESULTS 

The new family of 5(4) pairs we studied in the previous section is mainly char- 
acterized by one more degree of freedom in the selection of its nodes than the other 
known families, which in view of Theorem 1, can be seen to form a proper subfamily 
of ours. Since for nonstiff problems, the dependence of the numerical performance 
of a RK pair on the values of its nodes is crucial, we expect this property of the 
new family to have some beneficial effects on the selection of pairs with enhanced 
accuracy and stability characteristics. 

First a modified Newton minimization algorithm was used in conjunction with 
the algorithm described in the Appendix of this article for the purposes of selecting 
new pairs with minimized sixth-order truncation error coefficients with respect to 
their higher-order methods (i.e., |T (6) 112). It may be shown that this quantity 
does not depend on b6, and this happens both for the six-stage and the seven-stage 
FSAL pairs of the new family. Consequently, for all the new pairs presented here 
it is assumed that, depending on the occasion (i.e., FSAL or non-FSAL pairs), b6 
or b7 is equal to 1/20. The absolute minimum of |T 6)112 for the six-stage pairs is 
attained for the free parameters taking the following values, in the form of rational 
approximations accurate to three significant digits, 

(33 23 77 150 
(c2,c3,c5,c6) = '\133' 81' 94' 17) 

and the resulting pair, designated as NEW5(4), has the defining values included in 
Table 1. In this table are also included the respective values of all the other new 
pairs mentioned in this article, as well as those of some older ones. 
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TABLE 2. Coefficients of NEW5(4)F (exact rationals) 

9 9 
40 40 
21 91 245 
64 1024 1024 
17 2512481 752845 1641520 
18 1928934 137781 321489 
90 167600779485 1480997775 17446962744 4711141359 
91 95414145736 200449886 2621673509 138253149944 
1 502734007 6511090 977303027168 31502187 18516316 

269217270 829521 139196025045 1289063930 1251752535 
1 47641 o 9183428608 8673642 2605848518 4389 

481950 18507820275 2202775 189659475 430 

b 47641 9183428608 8673642 2605848518 4389 
481950 18507820275 2202775 -189659475 430 

L 41590501 o 9282227273728 4486060422 1016614753973 3133053 1 
460262250 0 17674968362625 2103650125 181124798625 821300 20 

The seven-stage FSAL pairs, however, can attain arbitrarily small values of 

IITO6)|12 but with the undesirable side effect of some elements of A, b becoming 
very large. Specifically, in this minimization process both the values of c4, c5 tend 
to become equal to 1. So, we assigned to both of them some two-digit number 
rational close to 1, and we found the values of the other free parameters that 
gave us the pair which minimized the value of ||T(6 112 and an adequate value of 
D., (see the legend to Table 1). The coefficient parameters of the so constructed 
pair NEW5(4)F are given in Table 2. It is remarkable that the value of T|T(6) 112 of 
this pair is almost an order of magnitude less than the respective value of the pair 
DP5(4). 

The behavior of explicit RK pairs on mildly stiff problems and problems that are 
mildly stiff oscillatory is mainly dependent on the form of the stability polynomial 
P, which in turn, for the pairs studied here, is exclusively dependent on the value 
of t6 = bA4c. The latter value is the one that determines the phase-lag order of 
these pairs as well (see [14j). 

Using the algorithm of the Appendix and with the assistance of a symbolic 
algebra manipulation package, we can easily determine 

( 3(5c3 - 2) C3 (5C3 
- 2) - six-stage pairs, 

(16) -2) C43 

(16) 
- 

240 seven-stage FSAL pairs. 

Equation (16) shows that since for the pairs of the new family there is no dependence 
of the value of t6 on that of c2, the maximal phase-lag order that the pairs of the 
new family can attain, is exactly the same as that of those belonging to their 
respective subfamilies studied in [14]. Specifically, a six-stage pair of phase-lag 
order 8(4), with globally minimized truncation error coefficients with respect to its 
fifth-algebraic-order method (NEW5(4)P) may be constructed, using the algorithm 
of the Appendix and the values of the free parameters contained in Table 1. A seven- 
stage FSAL pair of phase-lag order 8(4) with similar properties (NEW5(4)FP) is 
also included in this table. In selecting the values of the parameters of NEW5(4)FP 
we chose not to increase the phase-lag order of the lower-algebraic-order formula 
of the pair, but instead tried to utilize the extra degree of freedom in choosing C4 

so as to decrease further the value of ||T()6112 The numerical experiments in [141 
seem to support our decision. 

Figure 1 is a three-dimensional plot of the radius R of the boundary of the stabil- 
ity region of the higher-order formula of any six-stage, fifth-order pair as a function 
of the angle t and the parameter t6, when (W. t6) C [%7w7] x [-0.0125,0.0083] (the 
latter interval is the range of values that assumes t6 when (C3, c4) G [0, 11 x [0,11 ). 
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FIGURE 1. Graphical representation of R 1, t) 

This plot seems to confirm the observations of Lawson [13]. Specifically, two choices 
Of t6 will attract our interest here. The first is when t6 = 1/1296 (see [5]), the other 
when t6 = 1/1370. The latter value is the one yielding pairs with almost maximal 
Real Stability Interval and one that much restricts the undesirable characteristic 
(already pointed in [13]) of the rough folding of the boundary of the stability region 
near the real axis. Pairs of this type might be suitable for mildly stiff problems 
with their large-modulus eigenvalues along the negative real axis. Figure 2 shows 
the stability region of the pairs based on both of these selections Of t6. Moreover, 
as IP (in)I - 1 = 1-7206t6 ~9, the first of (16) shows that all the non-FSAL pairs of 
the new family have a vanishing Imaginary Stability Interval. 

Various choices of the free parameters which result in pairs with minimized values 
of IT (6) 

12 (for the selections t6 = 1/1296 and t6 = 1/1370) are also presented in 
Table 1. We note that, in the case of the pair NEW5(4)SR, further minimization 
of IT(6)112 might be possible, but this results in rather big values of D,,,. In short, 
all the pairs of Table 1 (except of NEW5(4)F and NEW5(4)SR) may be considered 
as corresponding to their respective global minima of IT (6) 

12 
We tested the general-purpose FSAL pairs NEW5(4)F and DP5(4) on the whole 

set of problems of DETEST (see Hull et al. [11]), in Error Per Step Mode, for toler- 
ances ranging from i to 10-9. Figure 3 represents the graphical interpretation 
of the results obtained, in the form of a semilogarithmic plot of the geometric mean 
of the maximum global errors achieved over all DETEST problems, against the 
respective geometric mean of function evaluations, for the range of the above toler- 
ances. Under this interpretation of the numerical results, each problem of DETEST 
contributes exactly the same as any other in the overall picture. 

In this figure we also included the pair FE5(4). In this way we find that NEW5 (4) 
is better than DP5(4), on this set of test problems, by as much as DP5(4) is better 
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FIGURE 2. Stability regions of six-stage, fifth-order RK pairs when 
t6 1296 -and t6 = 1370 - - - 
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FIGURE 3. Efficiency curves for NEW5(4)F -, DP5(4) --- and 
FE5 (4) - -. 

than FE5 (4). This outcome remains virtually unchanged even if we consider end- 
point errors. We may further verify this global picture by inspecting the respective 
figures for each problem separately, each one of which proved to be of a form sim- 
ilar to that provided in Figure 3. Under a different type of interpretation of the 
numerical results (as suggested by Enright and Pryce [6], in the tabular format as 
standardized in [15]) NEW5(4) is in total 15.8% more efficient than DP5(4) (which 
in turn is more efficient than FE5(4) by about the same amount-17.7%). 
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APPENDIX. ALGORITHM FOR THE CONSTRUCTION OF RUNGE-KUTTA PAIRS 

OF ORDERS 5(4) 

Distinguish two cases: 

(a) b7 7& 0 (FSAL). Choose c2 5 0 and c3, c4, c5 arbitrary but satisfying Condition 
(C). Set c6 = 1. 

(b) b7 = 0. Choose c2 =, 0 and c3, c5, C6 arbitrary but satisfying Condition (C) 
(if c6 = 1 choose c3 + 1/2). Set C4 = C3 

2(5C2-4c,+l)' 

In any case, set b2 = 0, b2 = 0 and 
5c3 (2c4 (3c5 - 2) - 4c5 + 3) - 5c4 (4c5 - 3) + 3 (5c5 - 4) 

b6 = 
= 60c6 (c3 -C6) (C4 - C6) (C5 - C6) 

12b6c6(c4 -c6)(c3 -c6) -2c3(3c4 -2) +4c4-3 
b5=- 12c5 (c3-Cs) (C4-C5) 

6b5c5 (c3 -c) + 6b6c6 (C3 -C6) -3C3 + 2 
b4 =--- 6c4 (C3 -C4) 

2b4c4 + 2b5c5 + 2b6C6 -1 
2c3 

If b7 # 0, compute in any order K1, K2, K3, K4, L1, L2 from 
K1 = 1440b4b5b7c4c5 (c5 - C6) (C4 - C5) (c -C3 (C4 + Cs) + C4c5), 
K2 = 1440b2b7c5 (c5 - C6) (C4 - C5) (C2 - 2C3c5 + C2), 

K3 = 120b5c5 (c5 - c6) (c4 - c5) (C3 - C5) (12b6b7c6 (C3 - C6) - 2C3 + ? 

K4 = (5c3 (4C6 -3) -2 (5C6 - 4)) (12b7 (C4-1) (c3-1)-2c3 (3c4-2)+4c4- 3), 

Li = b5C5 (C4 - C5) (5C3 (4C5 -3) - c3 (20c5 - 5c5 -8) + 2c5 (5c5 -4)), 
L2 = b6C6 (c4 - C6) (5C3 (4c6 -3) - C3 (20C2 - 5C6 -8) + 2C6 (5C6 -4)), 
and substitute in 

b6 (Ki +K2 + K3 + K4) 
b6 = - 12(L1 +L2) 
In any case (continue), 

12b6C6 (c4 - c6) (c3 - c6) + 12b7 (c4 -1) (c3 - 1)-2c3 (3C4-2)+4C4-3 
b5 12c5 (c3 - C5) (C4 - C) 

6b5c5 (c3 -c5) + 6b6c6 (c3 -c6) + 6b7 (c3 -1) -3c3 + 2 
b4=- 

6c4 (C3 - C4) 
2b4c4 + 2b5c5 + 2b6C6 + 2b7-1 

2c3 
2 C3 

a32 = 32 

a32 (b3 (b4b5 (C3 - C4) + b5b4 (C5 - C3)) + b4b5b3 (C4 -C)) 

b4 (b5b6 (c4 - c5) + b6b5 (c6 - C4)) + b5b6b4 (C5 - C6) 

a32b3 (c3 - c4) + a62b6 (C6 - C4) 
a52 = bsc -c- 

b5 (c4 -C5) 
a32b3 + a52b5 + a62b6 

a42= b4 
5c3 (2c4 -1) -Sc4 + 3 

65 60b6C5 (C3 - C) (C4 - Cs)' 
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60a54b5c4 (C4-c5) (c3 -c4) + 5c3 (2C5 -1) -5C5 + 3 
a64 =- 60b6c4 (c3 - c4) (c4 -C5) 

5c3 (4c6 - 3) - 2 (5c6 - 4) 
120b5c4 (c3 - C4) (cs-C6) 

2a42c2 -c4 
a43 = 2c- 

2a52c2 + 2a54c4 -C5 
a53= 2c3 

2a62c2 + 2a64C4 + 2a65C5 -C6 

a63 =- 2c3 

b, =1-b3-b4-b5-b6, b1=1-b3-b4-b5-b6-b7, 
a2l = C2, a3l = C3 - a32, a41 = C4 - a42 - a43, 

a5l = C5-a52-a53-a54, a6l= C6-a62-a63-a64-a65. 
In case (a) set 

a7l = b,, a72 = 0, a73 = b3, a74 = b4, a75 = b5, a76 = b6 
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