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QUALITY LOCAL REFINEMENT OF TETRAHEDRAL MESHES 
BASED ON 8-SUBTETRAHEDRON SUBDIVISION 

ANWEI LIU AND BARRY JOE 

ABSTRACT. Let T be a tetrahedral mesh. We present a 3-D local refinement 
algorithm for T which is mainly based on an 8-subtetrahedron subdivision pro- 
cedure, and discuss the quality of refined meshes generated by the algorithm. 
It is proved that any tetrahedron T E T produces a finite number of classes 
of similar tetrahedra, independent of the number of refinement levels. Fur- 
thermore, i7(Ti ) > cr(T), where T E T, c is a positive constant independent 
of T and the number of refinement levels, T7 is any refined tetrahedron of 
T, and i7 is a tetrahedron shape measure. It is also proved that local refine- 
ments on tetrahedra can be smoothly extended to their neighbors to maintain 
a conforming mesh. Experimental results show that the ratio of the number of 
tetrahedra actually refined to the number of tetrahedra chosen for refinement 
is bounded above by a small constant. 

1. INTRODUCTION 

The solution of some types of partial differential equations (PDEs) using the 
finite element method is an adaptive process, which in general consists of mesh 
generation, solution of linear equations, error estimation, and mesh refinement. In 
the mesh refinement step, varying element sizes are used to improve the solution of 
PDEs, and an efficient scheme, local refinement, is adopted to locally refine some 
regions where approximation errors are unacceptable. Also, the adaptive mesh 
refinement technique is needed in the multigrid method, in which the solution of a 
problem is obtained by alternately solving the problem on several levels of coarse 
to fine grids. It is desirable that the adaptive refinement produces refined elements 
of good shape using a fast refining process. These are the goals of our 3-D local 
refinement algorithm (LRA). 

Not many results have been published on the quality of meshes produced by 3-D 
local refinement algorithms (LRAs), although some 2-D quality LRAs are available 
[17, 18, 19, 2, 1, 13] and have proved to be successful in adaptive finite element 
analysis [14]. Some 3-D LRAs are used in practice without theoretical analysis on 
the quality of the refined meshes [16, 20]. In the bisection method of [8], the longest 
edge is always chosen to be bisected and diameter bounds are given for simplices 
of any dimension. However, whether the shapes of subtetrahedra produced by 
repeated longest-edge bisection degrade arbitrarily is still an open problem. In 
[12], we presented an LRA for tetrahedral meshes based on a special bisection 
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procedure, which is the first theoretically guaranteed-quality LRA for tetrahedral 
meshes based on bisection. In this paper, we present a quality LRA based on an 
8-subtetrahedron subdivision procedure, which is an extension of the 2-D LRA in 
[2, 1, 13]. The 8-subtetrahedron subdivision may be preferable to bisection if the 
initial mesh is relatively coarse and needs to be refined quickly (this is also the case 
in the multigrid method, since the grids at two consecutive levels should in general 
be significantly different), because the volume of subtetrahedra in 8-subtetrahedron 
subdivision decreases faster than in bisection. 

We consider a local refinement process that includes two major steps. First, a 
set S of basic elements is chosen from an existing mesh 7 according to numerical 
results and error estimates from previous computations. Next, each element in S 
is refined, and a procedure is needed to keep the final mesh conforming, where a 
conforming mesh is one in which the intersection of any two tetrahedra T1, T2 of 
the mesh is either a common face of T1 and T2, or a common edge, or a common 
vertex, or empty. 

The basic idea in [1] is as follows. Normally, a triangle is regularly refined by 
dividing it into four similar triangles, as illustrated in Figure la. If the triangle 
has an interior angle greater than ir/2, then it is regularly refined into two similar 
triangles, and two geometrically better triangles, as illustrated in Figure lb. At 
the boundary of a refined region, it is necessary to divide a triangle into only two 
triangles, called "green" triangles, by inserting an edge, as illustrated in Figure Ic. 
Refinement into green triangles is done only as a temporary measure; at each step 
of the adaptive process, if the green triangles need to be further refined, then these 
triangles are removed and the parent elements are regularly refined. Obviously, the 
degradation of geometry in this approach is bounded, since the green triangles are 
never further refined. 

Likewise, in 3-D, we want to use a regular refinement called 8-subtetrahedron sub- 
division, which is defined as follows. Suppose each triangular face of a tetrahedron 
T is refined into four similar subtriangles by connecting the midpoints of the edges 
(see Figure la) as shown in Figure 2. Then we obtain four similar subtetrahedra 
at the four corners and an octahedron in the interior. By adding an interior edge, 
called the center edge, t02t13 say, in the middle of the octahedron, T is subdivided 
into eight subtetrahedra. We use SUB8 to denote the 8-subtetrahedron subdivision 
described here. 

t2 t2 

to2 t 2 t2 

tol1 to1 tol1 

(a) (b) (c) 

FIGURE 1. Illustration for 2-D local refinement in PLTMG; ti2 
(ti + t )/2, i < j. (a) Regular refinement; no interior angle is 
greater than ir/2. (b) Regular refinement; one interior angle is 
greater than 7r/2. (c) Irregular refinement 
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FIGURE 2. Illustration for the regular refinement (8- 
subtetrahedron subdivision) SUB8; tij (ti + tj)/21 i < j; 
eight subtetrahedra are Tl (to) o1,J toi to3)j T' (tol, Itl t12 i t13)j 

/ 2 

T1(t02,t12,t2,/23), T?(to3.13J23J3)j T12(to, J13J3o2) 

T (to1, t12,t13,to2), T1(t23, tO2, t12, t13), and T1(t23,to3,to2,t13) 

Given a tetrahedron T, SUB8 can be performed to T and its subtetrahedra 
repeatedly to produce a sequence of meshes. Note that the center edge in SUB8 can 
be any one of the three choices (e.g., to1t23, to2t13, or to3t12). Different strategies 
for choosing center edges will produce substantially different meshes in terms of the 
shape of tetrahedra in refined meshes. In ?2, we describe a refinement procedure, 
i.e., a way of selecting the center edges, such that (a) iteratively applying SUB8 
to any tetrahedron T produces at most three classes of similar tetrahedra, and 
(b) 0.5q(T) < qi(T) < 2q(T), where Ti is any refined tetrahedron of T and q 
is the mean ratio [10], a tetrahedron shape measure. In ?3, we present an LRA 
extensively based on SUB8, and some properties of the algorithm are established. 
In ?4, experimental results are provided. 

2. SUBDIVISION OF A SINGLE TETRAHEDRON 

In this section, we are mainly concerned about the quality or the shape of tetra- 
hedra of meshes produced by repeatedly performing SUB8 to a single tetrahedron 
T without considering the conformity of the refined meshes (which will be dis- 
cussed in the next section). We first give some notation. For any (nondegenerate) 
tetrahedron T(to, t1,t2,t3) with to, t1, t2, t3. as the coordinates of the four ver- 
tices in the form of column vectors in E3, define the 3 x 3 nonsingular matrix 
T = [t1 - to, t2 - to, t3 - to]. Note that the matrix has the same name as the tetra- 
hedron but italic font is used instead of bold font, and T depends on the ordering of 
vertices of T. For any two tetrahedra S(so, sj, S2, S3) and T(to, ti, t2, t3), define the 
3 x 3 matrices M(S, T) = TS1 and A(S, T) = MT(S, T)M(S, T). Note that M 
and A depend on the ordering of tetrahedron vertices, and M is the matrix defining 
the affine transformation from S to T such that t2 = M(S, T)si + b, 0 < i < 3, 
where b = to - M(S, T)so. 
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The tetrahedron shape measure q, defined in [10], is used in analyzing the quality 
of meshes generated by our algorithm. The mean ratio y approaches zero for poorly- 
shaped tetrahedra, and attains its maximum value 1 for the regular tetrahedron. 
In [11], we proved that qj is "equivalent" to two commonly used shape measures, 
minimum solid angle 0min and radius ratio p, in the sense that if q approaches zero 
or reaches its maximum value, so do 0gmin and p. Other properties of 77 and the 
relationship between y and other shape measures can be found in [10, 11]. The. 
following two formulae are given in [10], and will be often used in the remainder of 
this paper: 

(1) qj(T) = 3 VAA2A3/(AI + A2 + A3) = 3 //det(A(R, T))/trace(A(R, T)), 

where Al, A2, and A3 are the eigenvalues of the matrix A(R, T), R is a regular 
tetrahedron with the same volume as T, and 77 is independent of the ordering of 
tetrahedron vertices and of the vertex coordinates of R, and 

(2) 77(T) = 12(3v)2/3/ S 1, 
O<tij<3 

where v is the volume of T and the lij are the lengths of the edges of T. 
As mentioned in the previous section, the center edge in SUB8 is the edge con- 

necting a pair of opposite edges, called the base edges. That is, the center edge is 
the edge joining the midpoints of a pair of base edges. We say that a subtetrahe- 
dron has the same subdivision pattern as its direct parent if its base edges include 
either the center edge or a half of a base edge of its parent, e.g., in Figure 2, if the 
base edges of T1 (toI toI tO2, to3) are toto2 and tolto3, then TI(to, tol) to2, to3) has 
the same subdivision pattern as T(to, t1, t2, t3), since toto2 is a half of the base 
edge tot2 of T. It can be easily verified that if a subtetrahedron has the same sub- 
division pattern as its parent, then its two base edges and center edge are uniquely 
determined. Now we describe a procedure SUBDIV for iteratively applying SUB8 
to T. 

Algorithm SUBDIV. 

(1) Subdivide T = TO into eight subtetrahedra using SUB8 (see Figure 2); the 
center edge can be any of the three choices, i.e., to1t23, to2t13, or to3t12; 
label the eight subtetrahedra by T1, 1 < i < 8, and let TV have the same 
subdivision pattern as T; n := 1. 

(2) Subdivide Ti, 1 < i < 8 n using SUB8, and let its subtetrahedra have the 
same subdivision pattern as To; label the resulting subtetrahedra by T 
1 < i < 8n?1 

(3) n := n + 1; repeat (2) or terminate the subdivision. 

The superscript n in TY denotes the level of subdivision. We assume that each 
subtetrahedron is subdivided to the same level (this constraint will be removed in 
the next section). In order to study the quality of the mesh produced by SUBDIV 
(which is a main procedure in our LRA in the next section), we first describe SUB- 
DIV by another equivalent procedure, which is relatively easy to use in analyzing 
the shape of the refined meshes. To this end, we introduce a canonical tetrahedron 
P called a rhombic tetrahedron [15], shown in Figure 3, which is used in an alter- 
native description of SUBDIV. P has two longer edges of the same length and four 
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P 02 

P1 

FIGURE 3. Rhombic tetrahedron P(po, P1, P2, P3) with IPopi i = 

IP2P31 = |P1P31 = 1POP2I = m, 1POP3| = IP1P21 = 2m/v3; 
Pij = (pi + pj)/2. The coordinates are po(-Vm/V', , 0,0), 
P1 (O.-m/4, O)i P2(0, m/4, iO)i P3(O) OX/2t//), POI(-NX6T/6I 
-N/3-t/6, 0), P02(-V6T/6, v/3m/6, 0), P03(-v/.-t/6, O. Vr6m/n6), 
P12(O, O 0), P13(O, - v'm/6, V6m/6), and P23(0, V3m/6, V6m/6) 

shorter edges of the same length. The most important property of P is given in the 
following lemma, which is proved in [15]. 

Lemma 1. If SUB8 is applied to P with the center edge connecting its longest 
edges POP3 and P1P2, then the eight subtetrahedra P'1(PoPo1,Po2,P03)1 
P(PolPliPl2,P13), P1(Po2,P12,P2,P23), PI(Po3,P13,P23,P3), Pl(PoiPI2, 
P03,P13), P6(P23,Po3,PI2,Pi3), P1(PoIPo3,PI2,Po2), and PI(P23,P12,PO3,Po2) 
are all similar to the original tetrahedron P(po, P1I P2, P3) (see Figure 3). 

When SUB8 is applied to P, the base edges of P are its longest edges (poP3, 
P1P2). With each subtetrahedron having the same subdivision pattern as its parent, 
it is obvious that the base edges of P1, 1 < i < 4, are its longest edges. Since 
IP03P121 = 1PoP31/2 |P1p21/2, the base edges of P, 5 < i < 8, are also its 
longest edges. Therefore, by Lemma 1 and induction, the base edges of any refined 
subtetrahedron of P produced by SUB8 are always its two longest edges. 

Let T be any tetrahedron, and P be the canonical tetrahedron in Figure 3. We 
describe another procedure TRANSUB which uses an affine transformation, and 
prove that SUBDIV and TRANSUB are equivalent. 

Algorithm TRANSUB. 

(1) Transform T to P by an affine transformation y = M- (P, T)x+bo, with the 
constraint that the two base edges of T in step (1) of SUBDIV are transformed 
into the pair of edges with the longest length in P, i.e., PoP3 and P1P2 in 
Figure 3. 

(2) Iteratively subdivide P to some level, with each subtetrahedron having the 
same subdivision pattern as its parent (i.e., the two base edges are the two 
longest edges). 
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(3) Transform all subtetrahedra in P back to subtetrahedra in T using the inverse 
affine transformation y = M(P, T)x + b1. 

Theorem 1. For any tetrahedron T, if each subtetrahedron is refined to the same 
level, SUBDIV and TRANSUB produce the same set of refined tetrahedra. 

Proof. The theorem can be established by using the fact that the midpoint of a line 
segment is transformed into the midpoint of the corresponding line segment under 
an affine transformation. D 

We now use TRANSUB to establish the main properties of meshes produced by 
SUBDIV. 

Theorem 2. There are at most three classes of similar tetrahedra produced by 
SUBDIV in all the refined subtetrahedra of T. 

Proof. We define two tetrahedra to be similar to each other if one can be trans- 
formed into the other by translation, rotation, reflection, and uniform scaling (i.e., 
the scale factors for the three coordinate axes are the same). Let T(totl, t2, t3) 
be a tetrahedron with vertices to, t1, t2, t3. Define 

.F(T(totlt2,t3), k, b) = T'(kto + b, kt1 + b, kt2 +b,kt3 + b), 

where k is a nonzero constant and b is a vector in E3. Then T is similar to 
.F(T, k, b). 

Let T be the tetrahedron shown in Figure 2, and to2t13 be the center edge. Let 
the eight subtetrahedra be labeled T1(to, toi, to2, to3), T1(to1, tI, t12, t13), 

T1(t02JIt2J 2J 23), T1(t03, t 13, t23 , t3), T' (to1, jtI3J t3J t2)j T'(toI, tI2, tI3, t2)I 
T1(t23,to2,t12,t13), and T1(t23,to3,to2,t13). We shall prove that all subtetrahe- 
dra produced by SUBDIV are similar to one of T, T', and T'. 

After one level of subdivision, the subtetrahedra TV, 1 < i < 4 at the four 
corners are similar to T. Among the four interior subtetrahedra, T' and T' are 
similar to T' and T', respectively, since fF(T1(t23,t02,Jt2,Jt3),-1,t0 + t23) = 

T'(to1, tI3, to3, to2) and F(T1(t23, to3, to2, t13), -1, t01+t23) =T'(toi, tI2,Jt3, to2). 
After two levels of subdivision, we need to consider only subtetrahedra of T' and 

T'. For the subdivision of T' (or T'), we can relabel the vertex indices 
of Figure 2 as 0 -- 01, 1 -- 02, 2 -- 03, 3 -- 13 (or 0 -- 01, 1 -- 02, 
2 - 12, 3 - 13). By the above discussion, it suffices to prove that 

T55(to213, t0103, t0102, to113), T56(to2I3, t0203, tJ103, tO0I2), T65(to213, t0102, t0112, 

to113), and T66(to102,to112,to212,to213) are similar to one of T, T', and T', where 
=(tii1 +ti2i3)/2 = (ti0 +t21 +t22 +ti3)/4, 0 < i0,i1,i2,i3 < 3. It is 

straightforward to verify that 

5F(Ts5(to2I3Jto103,to102,to1I3),-2,t13 + 2toIo2) - 6 tI2JI3Jo2)I 

F(Ts6(to213, to203, t0103, to102),-4, t3 + 4to1o2) = T(to, t1, t2, t3), 
6F(T~5(to213,to102,to112,to1I3),-2, t23 + 2to1) = T'(to,, 
6F(T6(to0I2,to1I2,to2i2,to2I3),4, -to - t1- t2) = T(to, tt2, t3). 

Thus, all subtetrahedra at the second level are similar to one of T, T', and T'. 
Consequently, further levels of subdivision do not introduce any more classes of 

similar tetrahedra, so the total number of classes of similar tetrahedra in all refined 
subtetrahedra of T is finite and bounded above by 3. O 

Theorem 2 implies that the shape of subtetrahedra does not deteriorate arbi- 
trarily. Moreover, the following theorem shows that the shape of the subtetrahedra 
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are at least half as good as the shape of the very first tetrahedron T in terms of 
the shape measure ij. 

Theorem 3. For any refined subtetrahedron Tin of T, produced by SUBDIV, 

(3) 0 5,q(T) < (Tin) < 271(T), 
and the lower bound is tight. 

Proof. Let M(P, T) and M(R, P) be the two matrices defining the affine trans- 
formations from P to T and R to P, respectively. Without loss of generality, we 
assume that T, P, and R have the same volume. Using the notation given at the 
beginning of this section, we have 

T = M(P, T)P = M(P, T)M(R, P)R, 

where T, P and R are the matrices derived from T, P and R. From step (3) of 
TRANSUB, the tetrahedron Tin is transformed from Pin using M(P, T), so 

Tin= M(PT)Pin. 

With a suitable ordering of vertices of Pin, one has Pin = aQP, where oa is a positive 
constant and Q is an orthogonal matrix, since Pis similar to P by Lemma 1. So 

TTn=oaM(P, T)QP = aeM(P, T)QM(R, P)R 

= M(P, T)QM(R, P)Rh = M(R ,iV)R 

where Rn is a regular tetrahedron having the same volume as Ti. 
From det(A(R, T)) = det(A(R , T.)) = 1 and (1), we have 

(T) 33/det(A(R,T)) 
Yk - trace(A(R, T)) 

trace((M(P, T)M(R, P))TM(P, T)M(R, P)) ' 

,q(T') 
_3de(( ,Ti) 

Th 
-1 i trace(A(Rn, Tn)) 

(5) 3 

trace((M(P, T)QM(R, p))TM(p, T)QM(R, P)) 

Let IBHIF denote the Frobenius norm of the matrix B [3], i.e., 

fIBIIF= (trace(BTB))l/2. 

By (4) and (5), it follows that 

q(Yin) JIM(P, T)M(R, p) 1 2F (6) y(T) -|M(P, T)QM(R, P)12F 

By the singular value decomposition [3], M(P, T) = Qidiag( A1, A2, A3)Q2, 
where Qi, Q2 are orthogonal matrices and A1, A2, A3 are the eigenvalues of A(P, T) 
( /A1, A2, A3 are the singular values of M(P, T)). It follows that 

(7) fIM(P, T)M(R, P) 1f 2= jjdiag( A1, A2, A3)Q2M(R, P) 11F2 

(8) JjM(P, T)QM(R, P) 11 2= Ildiag( A1, A2, A3)Q2QM(R, P) II. 
Let R(ro, r1, r2,r3) be a regular tetrahedron having the same volume as P with 
coordinates ro = (-va/2, 0, O)T, r1 = (0, -a/2, O)T, r2 = (0, a/2, 0)T, and r3 = 
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(-V'3a/6, 0, V6a/3)T. From the coordinates shown in Figure 3, with ri being trans- 
formed to pi, we have 

- 
2,\F 0 1 

M(RP) = k 0 2v' 0 , 
0 0 3j 

where k3 = V6/72. If U is an orthogonal matrix with elements uij, 1 < i, j < 3, 
we have 

diag(VA1, A2, A3)UM(RP)l11 

= k2(Al[9 + 3(1 - (ull- U13)2)] + A2[9 + 3(1 -(U21 -U23)2)] 

+ A3[9 + 3(1 - (U31 - U33)2)]). 

Since 0 < (x + y)2 < 2 for any x, y satisfying X2 + y2 < 1, we have 

6k2(Al + A2+ A3) < 11diag(VA1, A2, A3)UM(R, P)1f1 < 12k2(A1 + A2 + A3) 

Then combining (6), (7), and (8) yields 

0.5 < (T- ) < 2. 

We now prove that the lower bound cannot be improved. For any e > 0, we define 

tetrahedron T with vertices to = (0, ,gD ( i0 0), tl = (-1, 0, 0), t2 = (1, 0, 0), 

and t3 = (0, 11(5 ) 1). Consider the subtetrahedron TI = (to3, t13, t12, t23), 
where tij is the midpoint of tj and tj. By straightforward computation using (2), 
we find 77(TI)/77(T) = 0.5 +ie. Hence the lower bound is tight. D 

In the subdivision procedure SUBDIV, the center edge added in the interior 
of a tetrahedron is selected by a specific rule. Otherwise, refined subtetrahedra 
with good shape may not be guaranteed. In fact, there is a means of selecting 
center edges such that the shape of some subtetrahedra become arbitrarily poor, 
as described by the following lemma (which is proved in [9]) and theorem. 

Lemma 2. Suppose SUB8 is applied to any tetrahedron T(totlt2,t3). If the 
center edge of T is chosen such that the minimum r-value of the four interior 
subtetrahedra achieves a minimum value among the three possible choices of center 
edges, then there exists a subtetrahedron TI of T such that 71(T1) < 6/7?)(T), and 
the upper bound is tight. 

Theorem 4. There exists a means of selecting the center edges such that after n 
levels of refinement by applying SUB8 to T, 

7q(T7n) < (6/7)nq1(T), 

for some refined subtetrahedron Tin. 

Proof. At each step of refinement, if the center edge is chosen as described in 
Lemma 2, the theorem can be established by repeatedly using Lemma 2. Cl 

In light of the scheme of selecting the center edge in Lemma 2, we can always 
choose the center edge such that the minimum shape measure of the four interior 
subtetrahedra achieves a maximum value, but it seems hard to obtain a finite 
number of classes of similar tetrahedra as in Theorem 2 and constant bounds as in 
Theorem 3. 
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3. LOCAL REFINEMENT OF A CONFORMING MESH 

Similar to the 2-D approach in [1, p. 26], we design a 3-D LRA mainly depending 
on the regular subdivision SUB8 illustrated in Figure 2, since the shape of refined 
tetrahedra produced by repeatedly performing SUB8 to a tetrahedron, by the dis- 
cussion in the last section, are bounded below if each subtetrahedron has the same 
subdivision pattern as its parent. Simply applying SUB8 to a set of subtetrahedra 
of a conforming mesh may produce nonconformity between tetrahedra. Therefore, 
at the boundary of a refined region, other nonregular refinements may be needed 
to ensure a conforming mesh. 

A split point is defined to be the midpoint of an edge whenever the edge needs 
subdivision. In an initial mesh T, suppose a set S of tetrahedra are chosen for 
refinement. A split point is added to each edge of each tetrahedron in S. Also, for 
any face of a tetrahedron not in S that contains two split points, a split point is 
added to the edge that does not have a split point so that there are either one or 
three split points on each face. A face with 3 or 1 split point(s) is subdivided like 
Figure la or ic, respectively; we do not use the subdivision of Figure lb, since this 
will significantly increase the difficulty of keeping a conforming mesh. Under the 
above assumptions, the number of split points for a tetrahedron in the initial mesh 
can be 1, 2 (on a pair of opposite edges), 3 (on the same face), or 6. According to the 
number of split points, the subdivision of a tetrahedron is illustrated in Figures 4a, 
4b, 4c, and Figure 2, respectively. The three nonregular refinements in Figures 4a, 
4b, and 4c are denoted by SUB2, SUB', and SUB2, respectively, and are applied 
to the boundary of a refined region. In the next refinement, if any tetrahedron, 
produced by SUB2, SUB', or SUBS, is chosen for refinement, its parent is always 
refined by SUB8 first. Thus we never need to add a split point on an edge, called 
an irregular edge, which is generated by connecting a vertex to the midpoint of an 
edge of a face in SUB2, SUB', or SUB2, e.g., t3t12 in Figure 4a and t03t12 in Figure 
4b. An irregular face is defined to be one containing an irregular edge, e.g., face 
t1t3t12 in Figure 4a, and may have 0, 1, or 2 split points (for the next refinement). 
A face that is not irregular is called a regular face, and may have 0, 1, or 3 split 
points. 

t3 t3 t3 

to3 

to t2 to t2 
~~~~~~~~to1t Xtl~~2 1t2 1ot2t 

ti ti ti 

(a) SUB2 (b) SUB' (c) SUB2 

FIGURE 4. Illustration for nonregular refinements; tij 
(ti + tj)/2, i < j. (a) Subdivision of a tetrahedron with one 
split point (t12). (b) Subdivision of a tetrahedron with two split 
points (t12, to3) on a pair of opposite edges. (c) Subdivision of a 
tetrahedron with three split points (tol, to2, t12) on the same face 
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We now give a local refinement procedure, QLRS (quality local refinement based 
on subdivision), based on SUB8, SUB2, SUB', and SUB2. A tetrahedron T is 
called a tetrahedron of type S8 if T is either a tetrahedron in the original mesh, or 
produced by SUB8. Similarly, a tetrahedron of type S2, Sj, or S2 means that the 
tetrahedron is produced by SUB2, SUB1, or SUB2, respectively. In the following, 
we assume that whenever SUB8 is applied to a tetrahedron T of the original mesh 
T, the center edge of T is chosen such that the minimum shape value of the four 
interior subtetrahedra (i.e., T1, T1, T1, T1 in Figure 2) of T achieves a maximum 
value in terms of the tetrahedron shape measure q. Using (2), finding such a center 
edge involves only comparisons among the squares of length of the edges of T, since 
the subtetrahedra have identical volumes. For any tetrahedron T, an unsplit edge 
of T is an edge that does not have a split point. 

Algorithm QLRS. 
(1) Set T? := T; m := O. 
(2) Select a set Sm of tetrahedra needing refinement from Tm; for each tetrahe- 

dron T in Sm, if T is a tetrahedron of type S8, mark a split point on each 
unsplit edge of T; otherwise, mark a split point on each unsplit edge of T's 
parent. 

(3) For each tetrahedron T of type S2 in Tm (see Figure 4a), whenever one of 
the edges t3t1, t3t2 (or tot,, tot2) has a split point, mark a split point on 
the other if it does not have a split point; whenever tlt12 (or t2t12) has a 
split point, mark a split point on each unsplit edge of T's parent. For each 
tetrahedron of type S' or S2 in Tm, whenever one of its regular edges has a 
split point, mark a split point on each unsplit edge of T's parent. In addition, 
whenever a regular face in T-m has two split points, mark a split point on the 
unsplit edge of the face; repeat the above process until no more split points 
are needed. 

(4) For any T in Tm with a nonzero number of split points, if T is a tetrahedron 
of type S8, subdivide T using SUB8, SUB2, SUB', or SUB2 according to 
the number of split points on T, and let the subtetrahedra have the same 
subdivision pattern as T; otherwise, remove T's sibling(s), subdivide T's 
parent Tp using SUB8, SUB1, or SUB2 according to the number of split points 
on Tp, and subdivide each subtetrahedron of Tp if necessary using SUB2 or 
SUB2 according to the number of split points on the subtetrahedron; label 
the conforming mesh by Tm+l. 

(5) m :=m + 1; go to (2) if necessary or terminate. 

Note that superscript m of Tm indicates that the mesh Tm is created after m 
levels of refinement on To. In step (3) of QLRS, whenever a split point is added to 
an edge of a tetrahedron T of type S' or S2, the split points are also added to the 
edges of T's parent Tp. This guarantees that a tetrahedron of type S' or S2 will 
never be further refined, i.e., whenever a tetrahedron T of type Sj or S2 needs to 
be refined, Tp is always first refined by the regular refinement. For a tetrahedron 
T of type S2, its parent Tp may be subdivided by SUB', SUBS, or SUB8, and 
no subdivision is needed for subtetrahedra of Tp if Tp is subdivided by SUB' or 
SUB2. Figure 5 illustrates possible split points on subtetrahedra of Tp after SUB8 
is applied to Tp in step (4) of QLRS. 

It is obvious that step (3) of QLRS will terminate in a finite number of steps, 
since in the worst case each edge, which is not an irregular edge, of Tm has a split 
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ti 

FIGURE 5. Illustration for possible split points after SUB8 is ap- 
plied to T's parent Tp(tot1,t2,t3). Case 1: T is a tetrahedron 
of type S2 (see Figure 4a); possible split points are on edges with 
x. Case 2: T is a tetrahedron of type S1 (see Figure 4b); possible 
split points are on edges with x or .. Case 3: T is a tetrahedron 
of type S2 (see Figure 4c); possible split points are on edges with 
x or o 

point. To guarantee the validity of QLRS, we need to prove that step (4) of QLRS 
produces a conforming mesh. 

Theorem 5. If Tm is a conforming mesh, then step (4) of Algorithm QLRS pro- 
duces a conforming mesh Tm+l. 

Proof. Let T be a tetrahedron of type S2, S1, or S2 in Tm, i.e., T's parent Tp 
has the configuration of Figure 4a, 4b, or 4c (we assume that Tp has tetrahedron 
vertices to, t1, t2, and t3). We first prove that if SUB8 is applied to Tp in step 
(4) of QLRS, each face of a subtetrahedron of Tp has 0, 1, or 3 split points. Note 
that among edges of T or T's sibling(s), only edges t1t12, t2t12 of Figure 4a (see 
Case 1 in Figure 5); totO3, t3to3, t1t12, t2t12 of Figure 4b (see Case 2 in Figure 
5); and all 9 edges on face tot1t2 of Figure 4c (see Case 3 in Figure 5) exist in 
subtetrahedra produced by applying SUB8 to Tp. It can be easily verified that 
each face of a subtetrahedron of Tp has 0, 1, or 3 edges of Tf, and no pair of 
opposite edges in a subtetrahedron of Tp are both in Tf. This guarantees that no 
extra split point is needed for subtetrahedra of Tp in order to satisfy that each face 
of a subtetrahedron does not have 2 split points, since only edges of Tf may have 
split points. Therefore, it suffices to apply SUB2 or SUB2 to subtetrahedra of Tp 
in step (4) of QLRS. 

Now we prove that step (4) of QLRS produces a conforming mesh. It is obvious 
that any two tetrahedra cannot intersect in their interior. Therefore it suffices to 
prove that the resulting mesh is conforming on any face. Suppose F is an interior 
face in a conforming mesh T', m > 0. If F is a regular face, it will have the 
configuration of Figure la, ic, or F itself at the end of step (4) of QLRS depending 
on the number of split points on the face, independent of the use of SUB2, SUB'4, 
SUB4, or SUB8 on the tetrahedra sharing F. If F is an irregular face, by step (4) 
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of QLRS, either F does not change (in this case, the conformity is obvious) or the 
parents of the tetrahedra sharing F are first subdivided by SUB8 or SUB2 without 
producing nonconformity on F's direct parent F' i.e., F' is subdivided into the 
configuration of Figure la. Further possible subdivisions on the subfaces of F' can 
be treated just like the case for a regular face, since the subfaces of F are regular. 
Thus Tm+l is conforming. El 

Since we mainly use SUB8 in QLRS, Theorem 6 below gives a property similar 
to that in Theorem 2. A numerical bound on the shape of subtetrahedra produced 
by QLRS in terms of the tetrahedron shape measure rq is given in Theorem 7, which 
needs Lemma 3. 

Theorem 6. For any initial mesh T, there are only a finite number, which depends 
on the number of tetrahedra in T, of classes of similar tetrahedra in all refined 
tetrahedra generated by QLRS. 

Proof. Note that in QLRS, if a tetrahedron is subdivided to n > 1 levels, SUB8 
is applied in the first n - 1 levels of refinement, and each subtetrahedron is set to 
have the same subdivision pattern as its parent. At the nth level of refinement, 
SUB8, SUB2, SUB', or SUB2 is used. The theorem is established by Theorem 2, 
since each class of similar tetrahedra in the first n - 1 levels of refinement produces 
at most four new classes of similar tetrahedra at the last step of refinement. C 

Lemma 3. Let Tk be any subtetrahedron generated by SUB2, SUB4, or SUB4 ap- 
plied to T. Then 

(9) (k - 1nT 

Proof. Let tij denote the midpoint of titj and lij = Ititj 1. For a triangle tAtBtC, 

(10) ItCtAB1 = (2l1C ? 21BC - _B)/42 

and for a tetrahedron with vertices to, t1, t2, t3, 

(11) t03t1212 = (to - tl + t3 - t2)T(to - t1 + t3 -t2)/4 
= (101 + 123 

? 
102 

? 
l13 -03 -12 )/4. 

Case 1: Tk is a subtetrahedron generated by SUB2 (see Figure 4a). By simple 
algebraic manipulation using (10), (2), and the fact that the volume of Tk is half 
the volume of T, it follows that 

(12) r(T1(tot v t122, t3)) 
- 

Eo<i<j<31j> 
71(T) 6l01 ? 612 3 ? 462 3 ? 2l23 ? 2l 122> 

Similarly, we obtain 

(13) Tj(T1(to, t2, t12, t3)) > <1/3TI(T). 

Case 2: Tk is a subtetrahedron generated by SUB' (see Figure 4b). Using (10), 
(11), and (2), we have 

Tj(T1(tojt1,t12,t3)) E O<i<j<3 j (14) 1 x)=03 
1 

71(T) -vv912 1+ 3123 312 + 12 - 12-1l2 
0 13+ 302 ~23 0 1l2 

By the triangle inequality, 

(15) 
12 < 2(123 + 123) < 2(l03 ? 21 2 ? 2l23), 
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(16) 12 < 102 +103 +12 +113 

Note that 9121 = 12 + 5121/2 + 1121/2; if the first two items on the right side of this 

equality are replaced by (15) and (16), respectively, it follows that the denominator 
of the right side of (14) is < llo/2 ? 11113/2 + 11122/2 + 11112/2 ? 5l23 ? 7l03/2. 
Hence 

(17) rj(T1 (to, t1, t12, to3)) 2 /4 

n(T) 
- 11 

Similarly, for the other three subtetrahedra, we obtain the same bound as in (17). 
Case 3: Tk is a subtetrahedron generated by SUBS (see Figure 4c). Using similar 

techniques as above, we obtain 

(18) 7T(T (toIto, Ito2,t3)) - Z8 O i<j?31i. -__ 

038l 
? 

2l13 
? 22~3 ?12- 

since 3103 < 3l- ? 3l02 + 3l13 + 3l23. For the other two subtetrahedra in the corners, 
we obtain the same bound as in (18). For the subtetrahedron in the middle, we 

have 

(19) 
4 = NY4~- 4l 3?4-3?4lU -- 4 

(19) t7(T4 
~T(T)mt2vt2vt) 412 12 

4>+ 122 4 

Combining (12), (13), (17), (18), and (19) yields (9). 

Theorem 7. If T7 is a refined tetrahedron of any tetrahedron T in T, produced 
by QLRS, then 

(20) (T ) > c 7 (T), 

where c = V/411 _ 0.1443 

Proof. If TY is of type S8, then (20) follows from (3). Suppose TY is of type S2, 

Si, or S2, and Tn-1 is the direct parent of To, n > 1. According to QLRS, Tn1 

is produced by repeatedly applying SUB8 to T. By Theorem 3, 

(21) rj(T>1 ) > 0.571(T). 

By Lemma 3, 

(22) T1 (Tt n)> 2X/411 TI(T n-1 

Combining (21) and. (22) yields (20). 

For any tetrahedron T in T', m > 0, we recursively define the subdivision 

level of T, denoted by ?(T), as follows. If T is a tetrahedron of the initial mesh T, 
?(T) = 0; otherwise, ?(T) = ?(Tp)+3, ?(Tp)+2, or ?(Tp)+1 if T is a subtetrahedron 

produced by applying SUB8, SUB' or SUB4, or SUB2 to Tp, respectively. 

Theorem 8. For any interior face shared by two adjacent tetrahedra TL and TR 
in Tm m > 0, generated by QLRS, If(TL) - ?(TR)I < 2, and the upper bound is 

tight. 

Proof. Let F be an interior face shared by two adjacent tetrahedra TL and TR in 

Tm n > 0. We first prove by contradiction that if TL and TR are tetrahedra 

of type S8, ?(TL) = ?(TR). Let ?(TL) = 3p, ?(TR) = 3q < 3p, and 0 < r < q. 
Note that when SUB8 is applied to a tetrahedron, each face of the tetrahedron is 

subdivided. Therefore, for any r, the ancestor TL of TL at level 3p - 3r must have 
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a common face with the ancestor TR of TR at level 3q - 3r. Let r = q. Then TR is 

a tetrahedron in the initial mesh, but TL is a tetrahedron at level 3(p - q). These 
two tetrahedra cannot share a common face, a contradiction. 

Suppose one of the two tetrahedra, TL say, is not a tetrahedron of type S8. If 
TR is a tetrahedron of type S8, then F must be like face tot1t3 (or tot2t3) in Figure 
4a, or a subface of tot1t2 in Figure 4c. In the former case, ?(TR)= f(TL) - 1. In 
the latter case, ?(TR)= f(TL) + 1. 

Now suppose TR is also not a tetrahedron of type S8. First, if F is an irregular 
face, ?(TL) = f(TL) +1 or (TL)+ 2, and ?(TR) = f(TR) +1 or ?(TR)+ 2, where 
TL and Tf are TL and TR'S parents, respectively. So, If(TL)- f(TR) I< 1, since 

(TR)= f (TL) by the discussion in the first paragraph. Next, if F is a regular 
face, the types of TL and TR can be one of the following pairs (S2, S2), (SDS), 
and (S2, S2). For the first two pairs, ?(TL) = f(TR). For the final pair, suppose 
TL is a tetrahedron of type S2, and TR is a tetrahedron of type S2. Then the only 
possible situation is that the parent Tf of TR has a common face with the direct 
grandparent TL of TL. Since ? (TR) (TR)+ 2, ?(TL) = f(TL)+ 3 + 1, and 
f (TR)= f(TL), it follows that ?(TL)= f(TR) + 2. 

Note that if the maximum subdivision level of a tetrahedron in T k is < 3k then 
the maximum subdivision level of a tetrahedron in T k+l is < 3(k + 1), since each 
subtetrahedron of a tetrahedron of type S8 in T k has subdivision level at most 
3k + 3 in T k+l, and each subtetrahedron of the parent of a tetrahedron of type 
S2, Sj, or S2 in Tk has subdivision level at most 3(k - 1) + 3 + 2 in T k+l. So, by 
induction on k, the maximum subdivision level of a tetrahedron in any Tm is not 
greater than 3m, m > 0. 

4. EXPERIMENTAL RESULTS 

In QLRS, the main operation is to determine the number of split points for 
each tetrahedron subject to the condition that each regular face has 0, 1, or 3 split 
points and each irregular face has 0, 1, or 2 split points. When a split point is 
added to an edge e, each regular face incident on e is checked to decide whether 
an extra split point is needed for this face. Therefore, the data structures for 
QLRS should support a fast operation that reports all faces incident on an edge, 
which can be done by recording the adjacent tetrahedron for each interior face of a 
tetrahedron. In addition, determining whether an edge has a split point should also 
be implemented efficiently. To this end, we have designed a set of data structures 
similar to those in [12], in which a hash table and a stack are used to store all edges 
with a split point and all tetrahedra needing subdivision at each step of refinement, 
respectively, and have implemented QLRS in an expected time complexity that is 
linearly related to the number of refined tetrahedra in a refined mesh (see details 
in [9]). 

We report our experimental results for four single tetrahedra (Tables I-IV in [20]) 
and two tetrahedral meshes of polyhedral regions (one is a convex polyhedron, 
Figure la in [5]; the other is a U-shaped region, Figure 10 in [6]). For a single 
tetrahedron, we refine all tetrahedra in the mesh at each step of refinement as in 
[20, 12]. For the two tetrahedral meshes, a fixed point on the object is chosen as 
the center of a sphere; at each step of refinement, we refine any tetrahedron with 
at least one of its vertices in the sphere, and reduce the radius of the sphere by a 
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TABLE 1. Problems 1 to 4 

P1 P2 P3 P4 
77 = 0.8846 _ 7 = 0.8399 77 = 0.2835 77 = 1.0000 

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4.0 2.0 2.0 4.0 0.0 0.0 0.5 0.0 0.0 2V'3 0.0 0.0 
1.0 5.0 0.0 0.0 4.0 0.0 1.5 5.0 2.0 X'3 3.0 0.0 
0.5 0.5 5.0 0.0 0.0 4.0 0.5 0.5 5.0 X'3 1.0 2Vf 

TABLE 2. Experimental results for Problems 1, 2 

Problem I Problem 2 
level NTET 77min 77ave 77 < 0.5 7 > 0.7 NTET 7min 77ave 7 < 0.5 7 > 0.7 

0 1 0.8846 0.8846 0.00 100.00 1 0.8399 0.8399 0.00 100.00 
1 8 0.8664 0.9069 0.00 100.00 8 0.6872 0.7808 0.00 75.00 
2 64 0.8664 0.9124 0.00 100.00 64 0.6872 0.7660 0.00 68.75 
3 512 0.8664 0.9138 0.00 100.00 512 0.6872 0.7623 0.00 67.19 

TABLE 3. Experimental results for Problems 3, 4 

Problem 3 Problem 4 
level NTET 77min 77ave 71 < 0.2 71 > 0.4 NTET 7min 77ave 77 < 0.5 71 > 0.7 

0 1 0.2835 0.2835 0.00 0.00 1 1.0000 1.0000 0.00 100.00 
1 8 0.2756 0.2819 0.00 0.00 8 0.8571 0.9286 0.00 100.00 
2 64 0.2756 0.2815 0.00 0.00 64 0.8571 0.9107 0.00 100.00 
3 512 0.2756 0.2814 0.00 0.00 512 0.8571 0.9062 0.00 100.00 

factor. The quantities used to measure the quality at each level of refinement are the 
number of tetrahedra NTET, the minimum mean ratio ?lmin (over all tetrahedra), 
the average mean ratio lave, and the percentage of tetrahedra whose rq value is 
less/greater than a certain number. The mean ratio rq (0 < q < 1) approaches zero 
or the maximum value for a poorly-shaped or well-shaped tetrahedron, respectively. 
In our experiments, a tetrahedron with rq < 0.3 (or rq > 0.7) is considered poorly 
shaped (or well shaped). The reason for using rq to report our experimental results is 
because our theoretical results are based on it. By the "equivalence" of tetrahedron 
shape measures [11], i.e., copeo < v < clLp, where Mt, v are shape measures and 
co, c1, e0, e1 are positive constants, we can expect (and have observed) similar 
statistical results based on other tetrahedron shape measures, since a larger or 
smaller measure value for a tetrahedron indicates that the tetrahedron is well shaped 
or poorly shaped, respectively. 

The four single tetrahedra are listed in Table 1 in terms of the coordinates of the 
four vertices. P1 and P2 are well-shaped tetrahedra; P3 is a poorly-shaped tetra- 
hedron; P4 is the regular tetrahedron, where VX_ and VX_ are rounded to 16 decimal 
places. For the two polyhedral regions, by using the methods described in [5, 6], the 
convex polyhedron is subdivided into 273 tetrahedra, and has minimum mean ra- 
tio 0.6230 after local transformations are used to obtain an improved-quality mesh 
with respect to radius ratio p; the U-shaped object is subdivided into 466 tetrahedra 
with minimum mean ratio 0.5580 after local transformations are performed. 

Tables 2 to 4 show experimental results based on QLRS. The results seem to 
confirm that ?lmin and wlave converge asymptotically to a fixed value for QLRS, 
and the experimental results are much better than the theoretical estimate of the 
constant c in Theorem 7 (since we do not have a tight bound). 
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TABLE 4. Experimental results for two tetrahedral meshes 

Convex Polyhedron U-shaped Object 
level NTET 77min 77ave 7 < 0.5 77> 0.7 NTET 7min 77ave q < 0.5 r > 0.7 

0 273 0.6230 0.8185 0.00 92.67 466 0.5580 0.7651 0.00 80.47 
1 419 0.4265 0.7790 2.63 80.91 588 0.4373 0.7628 1.19 79.25 
2 843 0.3729 0.7611 5.10 79.12 931 0.3957 0.7514 3.33 74.33 
3 1392 0.3729 0.7616 4.24 78.38 1494 0.3877 0.7430 4.95 73.09 
4 1830 0.3729 0.7611 3.88 77.54 2020 0.3877 0.7378 5.74 72.13 

TABLE 5. Performance on the expansion of refinement 

Convex Polyhedron U-shaped Object 
NTETC 15 38 62 47 24 14 39 64 57 41 
NTETR 38 116 121 100 54 26 76 123 116 87 

NTETR/NTETC 2.53 3.05 1.95 2.13 2.25 1.86 1.95 1.92 2.04 2.12 
NTET 273 419 843 1392 1830 466 588 931 1494 2020 

TABLE 6. Improved-quality meshes for two polyhedral regions 

Convex Polyhedron U-shaped Object 
level NTET 77min 77ave q < 0.5 77> 0.7 NTET 7min 77ave q < 0.5 77> 0.7 

0 271 0.6230 0.8203 0.00 92.62 464 0.5825 0.7664 0.00 80.17 
1 415 0.4297 0.7804 2.41 82.41 586 0.5554 0.7688 0.00 79.86 
2 838 0.4297 0.7735 2.15 81.62 929 0.4458 0.7611 0.75 76.21 
3 1388 0.4297 0.7710 1.51 80.04 1491 0.4348 0.7536 1.27 73.91 
4 1825 0.4297 0.7700 1.15 79.01 2014 0.4159 0.7478 1.84 72.44 

Let NTETC and NTETR denote the number of tetrahedra chosen for refinement 
and the number of tetrahedra actually refined, respectively, at each step of refine- 
ment. The ratio NTETR/NTETC reflects the expansion of refinement at a local 
region. Table 5 lists NTETC, NTETR, NTETR/NTETC, and NTET for the two 
polyhedral regions. At each step of refinement, we choose a small number of tetra- 
hedra around a fixed.point for refinement. It seems that the ratio NTETR/NTETC 
is bounded above by a small constant (i.e., NTETR does not expand rapidly against 
NTETC), which is what we expect for "local" refinement. 

Similar to [12], local transformations [4], which are based on two different tri- 
angulations of certain configurations of five distinct noncoplanar 3-D points (see 
Figure 6), can be applied with respect to some criteria, such as locally improving 
the minimum tetrahedron shape measure value. The algorithms in [4, 7] can be 
used to improve the quality of tetrahedra towards an optimal mesh with respect to 

A7. To keep the properties in Theorems 6 and 7, we only apply local transformations 
to the final refined mesh, i.e., no refinement is applied to meshes improved by local 
transformations. The statistical results for the improved-quality meshes of the two 
polyhedral regions are provided in Table 6. The improvements are not very sig- 
nificant, compared with the improved results in [12]. This may imply that QLRS 
produces tetrahedra of relatively good shape, compared with local refinement based 
on bisection. 
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FIGURE 6. The first type of local transformation replaces the 
2 tetrahedra Aj(ao,aj,a2,a3), A2(ao, a,, a2,a4) in (a) by the 3 
tetrahedra A3(ao, a, a3, a4), A4(ao, a2,a3,a4), A5(a1, a2,a3,a4) 
in (b), or vice versa, where no 4 of the 5 vertices ai are coplanar 
and line segment a3a4 intersects the interior of triangle aoala2. 
The second type of local transformation replaces the 2 tetrahe- 
dra Ci(c0,C1,C2,C3), C2(C0,C1,C2,C4) in (c) by the 2 tetrahe- 
dra C3(CO, C2, C3, C4), C4(Ci, C2, C3, C4) in (d), or vice versa, where 
cOc3c1c4 is a planar convex quadrilateral and vertex c2 is not copla- 
nar with the other 4 vertices 

5. CONCLUDING REMARKS 

We have presented a local refinement algorithm based mainly on an 8-subtetra- 
hedron subdivision, and have shown that the algorithm produces guaranteed-quality 
meshes. Experimental results show that the number of tetrahedra actually refined 
in order to keep a conforming mesh is limited by a small number times the number 
of tetrahedra chosen for refinement, which implies that the algorithm is truly local. 
The quality of refined meshes for various examples show a very consistent and 
satisfactory performance. 

The algorithm presented here is preferable if the mesh in a refined region is 
relatively coarse; otherwise, the one described in [12] based on a bisection procedure 
may be better. It is worth considering the situation that QLRS is applied to some 
parts of a refined region while the algorithm in [12] is used in other parts. A 
critical problem is to ensure a conforming mesh with guaranteed-quality when the 
expansion of refinement from different parts meet each another. 

After submitting this paper, we discovered that Zhang's thesis [21] contains some 
results similar to those in ?2. In particular, [21] contains a longer proof of Theorem 
2 and a version of Theorem 3 with a different shape measure and a nontight lower 
bound. 
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