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CYCLOTOMIC UNITS AND GREENBERG’S CONJECTURE
FOR REAL QUADRATIC FIELDS
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Dedicated to Professor Hisashi Ogawa on his 70th birthday

ABSTRACT. We give new examples of real quadratic fields k& for which the
Iwasawa invariant Az(k) and p3(k) are both zero by calculating cyclotomic
units of real cyclic number fields of degree 18.

1. INTRODUCTION

Let k be a real quadratic field and p an odd prime number which splits in k. Two
integers n(()r) and ng), which are invariants of k, were defined in [6], and numerical
results of ngl) and ngl) for p = 3 were given in [2]. Using these data, we verified
in [2] Greenberg’s conjecture of the case p = 3 for 2227 k’s, where k = Q(v/m)
and m is a positive square-free integer less than 10000. In this paper, we verify the
conjecture for 34 of the remaining 52 fields k£ in the above range, using néQ) and
n?.

We start with the definitions of ngr) and ngr). Throughout this paper, u denotes
the fundamental unit of a real quadratic field k. Let (p) = pp’ be the prime
decomposition of p in k. Let k. be the rth layer of the cyclotomic Z,-extension of
k, and p,- the unique prime ideal of k. lying over p. Let d, be the order of cl(p,) in
the ideal class group of k., and take a generator o, € k, of pd-. First we define ny
by

Pl (WPt - 1),

and next define n{” and n{” by
™ _ nl n

(1) P || (N sk ()Pt = 1), p"2 = p"2(B(k) : Ni, sk (E(kr)))-
Here, E(K) denotes the unit group of an algebraic number field K. We need the
inequality n((f) < ng) for the uniqueness of ng). Note that ny = ngo). We put
ng = n((JO). Moreover, we denote by A, the p-Sylow subgroup of the ideal class
group of k, and put D, = (cl(p,)) N A,.

From now on, we let p = 3. In order to calculate ngz) and ngQ), we have to obtain
a generator ap of p4> and the group index (E(k) : Ny, x(E(k2))). Since ky is a
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field of degree 18, we need study the structure of F(k3) to get them in a reasonable
amount of computer time.

2. RELATIVE UNITS OF ko

It is difficult to get a system of fundamental units of k3. So we consider the
subgroup Er = {& € E(kz2) | Ni,/q,(€) = £1, Ni, k() = £1} of E(kz), which
we call the relative unit group of k;. Here, Q2 = Q(cos(27/27)) is the second layer
of the Zsz-extension of Q.

Lemma 2.1. The free rank of Er is 8.

Proof. Let € be any element of E(kz). Then
€'"® Ny, /g, (€) " Niy (€)™ € Erg.

Hence, E(k2)18 C ErE(Q2)E(ke) C E(k2). Since Er N E(Q2)E(k) = E(Q), we
see that rank(ER) = rank(F(k2)) — rank(E(Qz)) — rank(E(k)) = 8. d

We fix a generator o of the Galois group G(k2/Q) and put o; = o for a €
E(kg).

Lemma 2.2. For € € Eg, we have s = + (e1€3¢5¢67)(€0€264€6) L.

Proof. Since Ny, /0, (€) = €0e9 = £ 1, we have g9 = £¢g !, Therefore, Ny, /k(€) =
€0€2 - -€16 = = (€0e26466)e8(c1636567)™ = £ 1. From this we have the desired
relation. O

Now, we assume that there exists ¢ € Eg such that Er = (=1, 90, ¥1,..., ©7)
and put
® = o1’ v3pst i st g er .
The following property of @ is important in our computation.

Lemma 2.3. Let ¢ € Er. Then % € EY%, if and only if ¢ = ®° (mod E%) for
some 0 <1 < 8.

Proof. We can write ¢ = £ @7 ... 7" with suitable integers e;. Then, from
Lemma 2.2,
elto — 4 ¢go—ev¢io+el+e7¢;1+ez-ev . <P§5+66_e790$6+2e7~

It is easily seen that { o, ..., ©7 } becomes a basis of Eg/{£ 1} if Er = (—1, ¢,
., 7). Hence, e!*? € E} if and only if eg —e7 =ep+e1+e7 =1+ e2 —e7
- = e + 2e7 = 0 (mod 9). This is equivalent to e = e7, e1 = —2e7, e
3e7, ..., eg = Ter (mod 9). Since e; = —8e7 (mod 9), we have that !+ € E, i
and only if ¢ = ®** (mod E3).

i m

0=

3. CYCLOTOMIC UNITS OF Qg

In this section, we study properties of cyclotomic units of Q5.

First, we treat a more general situation. Let p be an odd prime number and
0 =(pn + Cp_nl for a nonnegative integer n, where (,» denotes a primitive p™th root
of unity. Let K = Q(f) and r = [K : Q]. Then p is fully ramified in K/Q and
2 — 0 a generator of the prime ideal of K lying over p. Therefore, (2 — )" = pe for
some unit ¢ of K. We can write ¢ explicitly in terms of the conjugates of # under
a certain condition.
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Lemma 3.1. Assume that 2 is a primitive root modulo p™ and let o be the generator
of the Galois group G(Q((pn)/Q) such that (J. = an. Putr=p"'(p—1)/2 and

;= 6°". Then
(2—8p)" = pO26%--- 2750

Proof. We put ¢ = (p». Let

f(X) = xP" (-1 +Xp"“1(p—2) 4o XPT 41 = H (X _C2")

1<i<2r

be the minimal polynomial of ¢ over Q. Since 2" = —1 (mod p"), we have 6, = 6.

So we consider the indices i of §; modulo r. Then

1=7-n=J] a+¢)

1<i<2r

_ H C2i—l(c2i—1 +C_2i—l)

1<i<2r

(11 )

0<i<r—1

because ), ;<o 2! = 0 (mod p*). Therefore, 2, = (6o -

over,
p=f(1) = (1-¢*)
0<i<2r—1
= JI a-¢&a-¢*)
0<i<r—-1
= H (2 - 01)
0<i<r—1
Now,

2+8g= (14 QA+

. (9r_2)_2.

_ C_Qr—l(czr—l n C_2r—1)c2r—1 (<_27‘—1 n C2r—1)

:031.

More-

Therefore, 2— Oi =2- (01-2_1 — 2) = (2 - 01’—1)(2 + Oi_l) = (2 - 91'_1)91-2__2 for all 7.

Hence, we have
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for all 4. Substituting ¢ =0, 1, ..., r — 1 in these relations, we have
2—6p=2-00,
2—60;=(2-6p)6%,,
2—0=(2-6)6%, 63,

2—0,_1=(2-00)6%,02---62_5.
Hence, we get
p=(2-00) 627265 - 67 4
=(2—00)" (6061 - Or_s )—(2r—2) 9(2)7"—4 93_3
=(2-060) 052074 02D, O

We apply Lemma 3.1 to the case p =3 and n = 3. Let § = (o7 + C2‘71 and put
© = 0, 0203065063 6567 65.
Then we have the following corollary.
Corollary 3.2. There holds 302 € Q3.
‘We need one more property of ©.
Lemma 3.3. There holds ©'~° € E(Q2)°.

Proof. As we have seen in the proof of Lemma 3.1, 62 = (696, --- 67) 2. There-
fore, 03 = +(6p6; --- 07)"1. Hence, O177 = (6p6? --- 65)(6163 --- 6§)~! =
061 -+ 07058 = £65°. - O

4. COMPUTATIONAL METHOD FOR n) AND n{®)

In this section, we explain how to determine ngz) and n§2) under the condition

Ao = Dy. We can determine néQ) from (1) if we know the group index (E(k) :
Ni,/k(E(kz))). On the other hand, we see that
pT
(k) : Ni,/x(E(kr)))
if Ag = Dy (cf. [2]). Moreover, we obtained the exact value of (E(k) : N, /x(E(k1)))
in [2]. Thus, we divide the situations into four cases. Let d = dy be the order of
cl(p).
1. The case |D1| = |Do| (i.e., Nk, /x(E(k1)) = E(k)?).
(A) If there exists an element o of ko such that pg = (a), then |Dy| = |Dy|.
Hence, N,/ (E(k2)) = E(k)° and n? = ny + 2.
(B) If there exists a unit ¢ of k2 such that Ny, /x(e) = u3, then Ny, /5 (E(k2))
= E(k)3. Hence, | Ds| = 3|Do| and n{® =ny + 1.
2. The case |D;| = 3|Do| (i.e., Nk, /x(E(k1)) = E(K)).
(C) If there exists an element o of kg such that p3? = (), then | Dy| = 3|Dy.
Hence, Ny, k(E(k2)) = E(k)? and n® =ny+1.

|D7‘| = IAOI (E
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(D) If there exists a unit € of ky such that Ny, /x(e) = u, then Ny, /,(E(k2))
= E(k). Hence, |Ds| = 9| Dyp| and ng) = ng.

We search suitable elements of k2 with the methods explained below, assuming
that Er has a Galois generator . We shall explain in the next section how to find
a candidate of ¢. But we may disregard whether Fr has a Galois generator if we
have found the desired elements. Note that we obtain a generator of pg"’ and are
able to determine n(()z) in each case.

Now assume that Er has a Galois generator ¢. Then the following proposition
handles the case (D).

Proposition 4.1. We have Ny, ,(E(k2)) = E(k) if and only if u®* € k3 for some
0<i <8 .

Proof. Assume that there exists ¢ € E(kz) such that Ny, ,(¢) = p. Then n =
e'®77%u"? € ER, where 7 = N, /q,(¢). Since n't = £ (¢2771)°0+%) € E}, we
have 1) = @' (mod E}) for some i from Lemma 2.3. Thus, we see that u?®* € k.
Conversely, if u®* € k3, then there exists up € kg such that uj = u®’. Then
p2 is a unit of ky and Ny, k(p2)® = £p°. Since k is real and 9 is odd, we have

Niysk(p2) = £ o a
The case (A) is handled by the next proposition.

Proposition 4.2. Assume that Ay = Dg. Let d be the order of cl(p) and take a
generator o € k of p®. Then p$ is principal if and only if a@%u'®I € k3 for some
0 <4, j <8 such that j Z0 (mod 3).

Proof. Note that o't = £39. Assume that p¢ is principal and take a generator
B2 € ko of pg. Then (839) = p3¢ = p? = (). Hence, 85 = ae for some ¢ € E(ks).
Since Ag = Dy, the fact that pg is principal implies that Ny, /x(E(k2)) = E(k)°. Put
Ny, /@, (€) = 7 and Ny, /k(€) = £ p with suitable integer i. Thenn =e2r~1p=2% ¢
Eg and o?7p®n € EY. Taking the norm from ky to Qo, we see that 32472 € Q)
and hence 70724 € Q) from Corollary 3.2. Therefore, a?©%%u%n € k). Since
(@©?)+7 = £ 329d(1+9) = @~4(1-9) (mod E(Q,)°), we have (a ©%)1+7 ¢ E(Qy)°
from Lemma 3.3. Therefore, we see that n'*? € EY and n = &% (mod E%) with
suitable j from Lemma 2.3. Therefore, «?02¢;,2:®2%/ € k3, and hence a@%u‘®’ € k
because 2 is prime to 9. Now assume that j =0 (mod 3); then a©%u’ € k3. If we
put 8 = au’, then we see that 8177 € k3 from Lemma 3.3, and hence 317 = 43
for some 7 € k because k is real. Then (p'=9)¢ = (a'~?) = (5179) = () implies
that 3 divides d. Thus, from 83 = £ Ba!*? = £ 3617 = £ (By~1)?, we can write
B = & for some § € k. Then we have p? = (a) = (8) = (6), and hence p?/3 = (§),
which contradicts the fact that d is the order of cl(p). Conversely, if 00 1'®7 = o
with ag € ko, then p3? = p? = (@) = (a2)° and hence pg = (o). O

In the actual calculations, we expand 7 and j in 3-adic forms. Namely, we
first get a; = (@@ ®71)1/3 € ky with 0 < 43 < 2, 1 < j; < 2 and next get
ay = (a1p2®72)Y/3 € ky with 0 < 45,55 < 2. In this manner, we can get a
generator of pd within 15 trials if p¢ is principal.

The cases (B) and (C) are handled by the following propositions. We can prove
these in the same manner as Propositions 4.1 and 4.2. So we omit the proofs.
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Proposition 4.3. We have N, x(E(k2)) D E(k)? if and only if p®* € k3 for some
0 < i < 2. Moreover, if we put i} = p®* with py € ka, then Ny, /q,(t1) = 1,
Niy k(1) = £ 4% and p} 77 € k3.

Proposition 4.4. Assume that Ny, i (E(k1)) = E(k) and Ay = Do. Let d be the
order of cl(p) and take a generator a € k of p?. Let py € ky be the element stated
in Proposition 4.3. Then p3¢ is principal if and only if a@%ui® € k3 for some
0<i,j<2

5. GALOIS GENERATOR OF Egr

In order to find a Galois generator ¢ of Eg, we use Hasse’s cyclotomic unit
defined in [4, p.14]. We recall the definition. Let K be a real abelian number
field of conductor f and H the subgroup of (Z/fZ)* corresponding to K. Then
—1+ fZ € H because K is real. Choose an odd representative from each pair
h, —h € H. Namely, let

_J{1<z<f|lz:0dd,z+ fZEH} if f is odd,
Sl {1<z<f/2|z:0dd,z+ fZeH} if fiseven.

Then, Hasse’s unit is defined to be

¢= 1 -6,
zeX

where (25 denotes a primitive (2f)th root of unity. In general, £ is neither a unit
nor contained in K. But in our case, namely in the case K = ky, we verified
that £ € E(kz2) and moreover that N, x(§) = +1 by a numerical calculation.
Therefore, if we put n = &2 Ny, /q,(£) ™', then n € Er. Now assume that Eg has
a Galois generator . Then 7 can be represented as nmyg = g ¢ - 57 with
suitable integers e;. Applying o seven times on this relation, we have eight relations
between 7; and ;, which we consider the equation of ¢;. We solve this equation
for each pair (eq, €1, ..., e7). If we see ¢ € ky for some (eg, €1, ... , er), then we
consider this ¢ as a candidate of a Galois generator and pursue the calculation with
the algorithms in §4.

6. CAPITULATION PROBLEM

We studied Greenberg’s conjecture mainly in the case Ag = Dy in [2]. When
Aqg # Dy, we consider the conjecture by relating it to a capitulation problem. Let
10,r be the inclusion map from k to k,.

Lemma 6.1. Let k be a real quadratic field and p an odd prime number which
splits in k. Assume that ny =1 and iy, (Ag) C D, for some r > 0. Then A,(k) =

pp(k) = 0.

Proof. Let koo /k be the cyclotomic Zy-extension of k. Let B, be the subgroup of
A, invariant under G(k./k), and B, the subgroup of B, consisting of elements
which contain an ideal invariant under G(koo/k). Then B, = iy .(Ao)D, and

T

. p
|Br| = [Aol (E(k) : Nkr/k(E(kr)))

from genus theory. The assumption 4o ,(A¢) C D, implies B, = D,, and hence
the assumption ns = 1 and (1) yields |D,| = |Ag|. On the other hand, we have
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|Br| = |Ao| for all n > 0 from Lemma 2.2 in [2]. Therefore, B, = D,, for all n > r,
and hence A\, (k) = 0 from Theorem 2 in [3]. O

There are six k’s in Table 1 of [2] such that Ag # Dy and Az(k) is not known,
namely k = Q(y/m) where m=2713, 3739, 5938, 7726, 8017 and 8782. For these
k's, we know that |Ag| = 3, |[Dg| = |D1| = 1 and (E(k) : Ng,/k(E(k1))) = 3.
Hence, |ip,1(Ao)| = 3. So we need consider 4 2(A4p). For Q(+/3739) and Q(+/5938),
we could find a generator of pg, where d is the order of cl(p). Therefore, we have
|D2| =1 and |ig2(Ao)| = 3. For Q(v/7726), we could not find a Galois generator
@ of Er. For the remaining three k’s, we found candidates of ¢, but could not
find a generator of pg. Thus, |D;| seems to be 3 and there is a possibility of
i0,2(Ao) C Ds. The following lemma allows us to verify this possibility. It assumes
again the existence of ¢. But we may disregard it if we found the desired element
as explained in §4.

Lemma 6.2. Assume that |Ag| = 3, |Do| = |D1| =1 and (E(k) : Ni, /k(E(k1))) =
3. Let q be a nonprincipal ideal of k such that g = (B) for some B3 € k. Let
p¢ = (@) with a € k, where d is the order of cl(p). Then ig2(Ag) C D2 if and only
if B30t ®I € kY for some 0 < e <2 and 0 <1, j < 8. Moreover, igs(Ap) = 1
if and only if e = 0.

Proof. Assuine that 49 2(Ao) C D2. Then Bj = D,. Since

o p2 > _
1Bl = Al ) N By = 0=
we have |Bj| = |Dy| = 3, and hence (E(k) : Ny, x(E(k2))) = 9. Since ig,2(Ao) C
D, we see that qp$ is principal in ko for some 0 < e < 2, and hence ¢°p3¢ =
(B%a®) = (7°) for some v € ky. Therefore, 32a°e € k3 for some ¢ € E(k2). We
can see that ¢ = ©°¢4'®/ (mod E(k2)°) for some 0 < i, j < 8 in the same way as
in the proof of Proposition 4.2. Conversely, assume that 3%a°0°¢u'®7 = 4° with
7 € k2. Then ¢°p3¢ = (v)%, and hence q = p, (7). Hence, we have proved the first
assertion. The second is easy. O

For k = Q(v/2713), Q(+/8017) and Q(+/8782), we verified that i 2(Ag) = Dy by
Lemma 6.2. So we see that A\3(k) = 0 by Lemma 6.1 and moreover that |Dg| = 3
and (E(k) : Ni,/k(E(kz))) = 9 by a trivial argument.

7. COMPUTATIONAL TECHNIQUE

In this section, we explain a technique of calculation using a computer. Let
0 = cos(2m/27) and
w:{\/fr_n ifm=23 (mod4),
(1+4y/m)/2 ifm=1 (mod4)
for a positive square-free integer m. Then
(2) {1,6,0% ...,6% w, wh,wb? ... 6 wo®}
forms a Z-basis of the integer ring of ko = Q(60,/m). The coefficients z; € Z of

Hasse’s unit ¢ with respect to this basis are obtained by solving approximately the
linear equations made up from the conjugates of

Zo 4+ 210+ - - + 250% + 2w + Tyowh - - - + T 17w = €.
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Here the conjugates are taken with respect to the generator o of G(ks/Q) such that
67 = cos(4m/27) and \/m’ = —/m, and the approximate value of &; is calculated
from

. staT

(3) & = (=) J] (2sin(

rzeX

)

where 2¢ = |X|, f is the conductor of k; and s is an integer such that s = 2
(mod 27) and x(s) = —1 for the character x of Q(y/m). We first calculate the
logarithm of the absolute value of (3) with a 64-bit floating-point number and
know the necessary precision for this product. Then we proceed with a suitable
precision.

Next we have to represent a conjugate of an integer of ko and a product of
integers of ko in the basis (2). To do so, we have to represent a conjugate of an
integer of Q2 and a product of integers of Qo with respect to {1, 6, 6%, ..., 68 }.
This is easily done by computing

6, 67 - 6 | 6 6 ... gi6
4 6, 05 .. 93 nd = 0? 9}0 NN
6y 635 --- 6§ 69 610 ... g1

where A = (Og)ogingg.

Finally, we have to check whether an integer « of ks represented in (2) is a cube
in ko. This is routine work. Namely, we first calculate the approximate value of
aé/g + a}/‘g +-ot+ a}ég. If this is not an integer, then « is not a cube. If it is close
to a natural integer, we obtain coefficients by solving the linear equations involving
ail /3. If all the coefficients are close to natural integers, then we round them to
integers and get 8 € ks with these integral coefficients. We compare 33 with a. If
3% = a, then « is a cube in k.

8. EXAMPLES

We executed the calculations for 52 k’s stated in §1 with the method in the
preceding sections. We found a candidate of a Galois generator ¢ for 48 k’s. Namely,
we could find the desired element for (A)—(D) and could determine ném and n§2)
for 48 k’s. There are 29 k’s which satisfy Ay = Dy and né2) = 3. For these k’s,
we see that A3(k) = 0 from Theorem 2 in [2]. For k = Q(+1/2149) and Q(+/4081),
we have 3 < n(()2) < n§2), and hence conclude that A3(k) = 0 from Theorem 1 in
[2]. Therefore, together with the three k’s in §6, we obtained 34 k’s which satisfy
Az(k) = 0.

We can determine |Az| in some cases using Lemma 2.3 in [1]. Moreover, we can
apply a similar argument for m = 3739.

We shall summarize our computational results in Table 1. Here, A denotes 3 (k)
and A; denotes the minus part of the As-invariants of k* = k((3). The asterisks
mean that we do not know the value. A 64-bit work station DEC3000/300AXP
with C language did the computations in one day.
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TABLE 1

+
A3

OO0V ¥O ¥ODO % ¥ ¥ ¥OOODO KOO X¥O ¥ ¥O ¥OOOOOOO % ¥OO % ¥ ¥OO ¥OOOOOD %

3

HE N AT AA A A AN N A A AN AN A A NNN AN AN A A A N A AN A A NN N — N

q ) S 5 9
I - H I I

DO XKD ¥ * ***9”9 KDHEODODD X ¥ ¥ X EDXEDNDDADDNDFDAD XD ¥, ¥ X ¥DND XD ¥O % ¥

113131111133111191311133131.|.111”11311391311111111331

HAA AN A A A AN AN AT N AN A A A A A A AN A A A A A A DN A AN A A A DN A AN AN A M ) —

HrEAA AN A A A A AAND AA A AN A A A A A A A A A A A TA A A DA A M) A H O o — 0D

LI IFIOONO ¥ FFIONHOFIIIFTN *xF xFLF OISO ¥ FOFFINODFOM©O

OO INWIDNNH ¥ F LN FONLINIM ¥k XN NHIHONHH ¥xMOFNNOMMN MO

OMOMMONNIHIONNDLNOMNDINNMNMNNNMNONNMMMMNO IO IMMONINOMMMAN MM NN MO MO

DOMMNMNONFHIONNLNDMNNDLMNNMMMOMNONNNMMMNOMMMNOMMMNMNMNM AN MMM MNA MM MO

ANNOANNANANHAONMANNNMNONMANNNNND—HNONNNNNHTNNNNNMONNNN—ANNN N <

no | na | n§Y | nl) | nl? |0 | Dol | 140| | D1 | |A1] | ID2| | |A2] | d0,2(A0) | X

AANAANANANNNHANNANANMNOANNNNNNM—ANANANNNAANNNMANNOANNNN—NNN— N

W0 FODNNNNH - NONHOLF AN ON TN —TOEN—TONALONR AN NNO 10D N0 —i <H
AN =T ONDH AR HODINO~IOHFNONN AN OO~V NOONNOOL NI — OO0 M D
AN~ HN I ONONEE A IO ATANNINONONONF IO A HIO IO O D0

HHANAANANNNONHII IO NN OOOOOOOONSNNI-D-D- 00000000 HD D
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