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CYCLOTOMIC UNITS AND GREENBERG'S CONJECTURE 
FOR REAL QUADRATIC FIELDS 

TAKASHI FUKUDA 

Dedicated to Professor Hisashi Ogawa on his 70th birthday 

ABSTRACT. We give new examples of real quadratic fields k for which the 
Iwasawa invariant A3(k) and /13(k) are both zero by calculating cyclotomic 
units of real cyclic number fields of degree 18. 

1. INTRODUCTION 

Let k be a real quadratic field and p an odd prime number which splits in k. Two 
integers nrr) and nr)[, which are invariants of k, were defined in [6], and numerical 
results of n41) and n41) for p = 3 were given in [2]. Using these data, we verified 
in [2] Greenberg's conjecture of the case p = 3 for 2227 k's, where k = Q(V++) 
and m is a positive square-free integer less than 10000. In this paper, we verify the 
conjecture for 34 of the remaining 52 fields k in the above range, using n(2) and 

n (2)~~~~~~~~~~~~~~~n 
(2) 

We start with the definitions of n4r) and nrr). Throughout this paper, fL denotes 
the fundamental unit of a real quadratic field k. Let (p) = pp' be the prime 
decomposition of p in k. Let kr be the rth layer of the cyclotomic Zp-extension of 
k, and p. the unique prime ideal of kr lying over p. Let dr be the order of cl(pr) in 
the ideal class group of kr, and take a generator a.r E kr of pd-. First we define n2 
by 

p/n2 (,tP-l - 1), 

and next define n0r) and n4r) by 

(1) P/nr) II (Nk /k( r)P-1 - 1), pn) -p2 2(E(k) Nkr/k(E(kr))). 

Here, E(K) denotes the unit group of an algebraic number field K. We need the 
inequality nor) < n~r) for the uniqueness of n4r). Note that n2 = nrj). We put 
no = n4o). Moreover, we denote by Ar the p-Sylow subgroup of the ideal class 
group of kr and put Dr = (cl(pr)) n Ar. 

From now on, we let p = 3. In order to calculate n42) and n(2), we have to obtain 
a generator cE2 of P d2 and the group index (E(k) Nk2/k(E(k2))) Since k2 is a 
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field of degree 18, we need study the structure of E(k2) to get them in a reasonable 
amount of computer time. 

2. RELATIVE UNITS OF k2 

It is difficult to get a system of fundamental units of k2. So we consider the 
subgroup ER = {? E E(k2) I Nk2/?Q2() = ?1, Nk2 , (k) = ?1} of E(k2), which 
we call the relative unit group of k2. Here, Q2 = Q(cos(2Xr/27)) is the second layer 
of the Z3-extension of Q. 
Lemma 2.1. The free rank of ER is 8. 

Proof. Let ? be any element of E(k2). Then 

?8 Nk2/22(?)9Nk2/k (E)2 E ER. 

Hence, E(k2)18 C ERE(Q2)E(k2) C E(k2). Since ER n E(Q2)E(k) = E(Q), we 
see that rank(ER) = rank(E(k2)) - rank(E(Q2)) - rank(E(k)) = 8. ElI 

We fix a generator o- of the Galois group G(k2/Q) and put ai = ac for a E 
E(k2). 

Lemma 2.2. For ? E ER, we have ?8 = ? (616365E7)(*0o264E6)6> 

Proof. Since Nk2/Q2(6) = 6069 = I1, we have El - ?eo Therefore, Nk2/k(6) = 

6062 616 = ?(6O026466)658(E1365E7) = ?1. From this we have the desired 
relation. O 

Now, we assume that there exists ,p E ER such that ER = (-1, (PO, I1,.. , P7) 
and put 

~ 2 3 -4 5 -6 7 -s 
-000 0 (P3= (p4(p5- (P6 W7- 

The following property of 4D is important in our computation. 

Lemma 2.3. Let e E ER. Then 1+ c E ER if and only if E _V (mod E4) for 

some 0 < i < 8. 

Proof. We can write E6 = e~O' ... 
A7 with suitable integers ei. Then, from 

Lemma 2.2, 

61+c = + eO-e7 eo+el+e7 el+e2-e7 ...e5+e6-e7 e6+2e7 

It is easily seen that { (po, .*. , (p7 } becomes a basis of ER/{? 1} if ER = (1, o0, 
(P7). Hence, l+ ' ER if and only if eo - e7 eo + el + e7 _ ei + e2 - e7 

-e6 + 2e7 0 (mod 9). This is equivalent to eO e7, el -2e7, e2 

3e7, ..., e6 7e7 (mod 9). Since e7 -8e7 (mod 9), we have that 1+0 EE if 

and only if E _ e7 (mod E). Li 

3. CYCLOTOMIC UNITS OF Q2 

In this section, we study properties of cyclotomic units of Q2. 

First, we treat a more general situation. Let p be an odd prime number and 
O = (p + n for a nonnegative integer n, where pn denotes a primitive pnth root 

of unity. Let K = Q(O) and r = [K: Q]. Then p is fully ramified in K/Q and 
2 -0 a generator of the prime ideal of K lying over p. Therefore, (2 - 0)T = pE for 

some unit E of K. We can write E explicitly in terms of the conjugates of 0 under 

a certain condition. 
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Lemma 3.1. Assume that 2 is a primitive root modulo pn and let o- be the generator 
of the Galois group G(Q(4;pn)/Q) such that (pn = ,pn Put r = pfll(p- 1)72 and 
02 0 . Then 

(2 0) =p0o2 04 . .. 02(r-1) 

Proof. We put ( = p. Let 

f (X) = Xp (p-1) + Xp '(p- 2) +X+ + 1 = 7 

1<i<2r 

be the minimal polynomial of ( over Q. Since 2r _-1 (mod pn), we have 0r 00. 
So we consider the indices i of 0i modulo r. Then 

lf (-I)= 
1 

(1 + () 
1<i<2r 

= 7 (2- 1 ((2i- + (-2i- 

1<i<2r 

= ( IIfl 
O<i<r-1 

because Z1<i<2r 2i- 1 0 (mod pn) . Therefore, 021 (-oi r2)2. More- 
over, 

P =f(1)= J (1-i) 
O<i<2r-1 

= ]7J (1_4~2)(1 Q2z) 

0<i<r-1 

= IIJ (2 -0). 
O<i<r-1 

Now, 

-2r1 (.2r-1 + (_2r (2 r1 
((2r-1 + (2 ) 

= 02 

Therefore, 2-0i =2 -(02 1-2) = (2- Oi-)(2 + Oi-1) = (2- i_1)0_2 for all i. 
Hence, we have 

2-0i = (2- i1 )02 

= (2-Oi-2 )03 0i2 

= (2-Oi-3) 0i4 0i3 0i2 
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for all i. Substituting i = 0, 1, ... , r - 1 in these relations, we have 

2 - So 2 - So I 

2-00 = (2-0?_0, 10 

2-02= (2-00)0 10o, 

2O-r-1i= (2 00)02 0 r-30 

Hence, we get 

p = (2 _ 00 )r 02r0-2 2r-4 ... o2 

(2 0 )r (0 0 0 )-(2r-2) 02r-4 .. 2 = (2 - 0o )r (Oo 01 ... Or-2 )(r2)0~r r- 03 

= (2 - 00 )r 0-2 0-4 ... 0-2(r-1) E] 

We apply Lemma 3.1 to the case p = 3 and n = 3. Let 0 = 427 + 1 and put 

e = 03 04 05 06 07 08 

Then we have the following corollary. 

Corollary 3.2. There holds 362 E Q(. 

We need one more property of E. 

Lemma 3.3. There holds E1-5 E E(Q2)9. 

Proof. As we have seen in the proof of Lemma 3.1, 02 = (0o 01 * 07). There- 
fore, 08 i ?(0 0. 07)-. Hence, 61-5 = 7 = 

0001...07088=?0S9. D 

4. COMPUTATIONAL METHOD FOR n ) AND n(2) 0 2 

In this section, we explain how to determine n 2) and n(2) under the condition 

AO = Do. We can determine nr2) from (1) if we know the group index (E(k) 
Nk2/k(E(k2))). On the other hand, we see that 

Drl = Ao l (E(k) Nkr/k(E(kr))) 

if Ao = Do (cf. [2]). Moreover, we obtained the exact value of (E(k) Nk, /k(E(kl))) 
in [2]. Thus, we divide the situations into four cases. Let d = do be the order of 
cl(p). 

1. The case |D1| = |Do! (i.e., Nk1/k(E(k1)) = E(k)3). 
(A) If there exists an element ae of k2 such that pd = (aE), then ID21 = IDol. 

Hence, Nk2/k(E(k2)) = E(k)9 and n(2) = n2 + 2. 

(B) If there exists a unit ? of 2 such that Nk2/k(6) = tu3, then Nk2/k(E(k2)) 
= E(k)3. Hence, ID21 = 3!Dol and n 2) = n2 + 1. 

2. The case ID11 = 3!Dol (i.e., Nk,/k(E(k1)) = E(k)). 
(C) If there exists an element ae of k2 such that p3d = (aE), then ID21 = 3lDo . 

Hence, Nk2/k(E(k2)) = E(k)3 and n(2) = n2 + 1. 
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(D) If there exists a unit ? of k2 such that Nk2/k(e) = u, then Nk2/k(E(k2)) 

= E(k). Hence, ID21 = 9jDoI and n2) = 12 

We search suitable elements of k2 with the methods explained below, assuming 
that ER has a Galois generator W. We shall explain in the next section how to find 
a candidate of Wo. But we may disregard whether ER has a Galois generator if we 
have found the desired elements. Note that we obtain a generator of p d2 and are 
able to determine n(2) in each case. 

Now assume that ER has a Galois generator W. Then the following proposition 
handles the case (D). 

Proposition 4.1. We have Nk2/k(E(k2)) = E(k) if and only if /rn E k9 for some 
o < i < 8. 

Proof. Assume that there exists ? E E(k2) such that Nk2/k(E) = pt. Then 7 = 
18 9T9 2 E ER, where T = Nk2/Q2(?). Since l 

=-i (E2T 1)9(1+?) E ER' we 

have 1 _i' (mod E9) for some i from Lemma 2.3. Thus, we see that ft2'V E k2. 
Conversely, if ,uV E k9, then there exists ft2 E k2 such that [t9 = ft'. Then 
/2 is a unit of k2 and Nk2/k(A2)9 = ?A9. Since k is real and 9 is odd, we have 
Nk2/k(A2) = ?f. 

The case (A) is handled by the next proposition. 

Proposition 4.2. Assume that Ao = Do. Let d be the order of cl(p) and take a 
generator a c k of pd. Then pd is principal if and only if aedqti'j E k9 for some 
0 < i, j < 8 such that j O (mod 3). 

Proof. Note that a+ - ? 3d, Assume that pd is principal and take a generator 
32 E k2 of pJd. Then (/29) = p9d = pd = (cE). Hence, /29 = ac for some E C E (k2). 
Since Ao = Do, the fact that pd is principal implies that Nk2/k(E(k2)) = E(k)9. Put 

Nk2 /Q2 (?) = -r and Nk2/k () = ? A 9i with suitable integer i. Then 17 = e2 T_1A-2i E 
ER and oa2T/f2ir7 C EE. Taking the norm from k2 to Q2, we see that 32dT2 C Q9 
and hence TE2d E Q9 from Corollary 3.2. Therefore, a2E82dft2iq7 E k9. Since 

(a ed)l+ - 3dEd(1?+o) = E-d(l-a) (mod E(Q2)9), we have (a d) 1+ E E(Q2) 
from Lemma 3.3. Therefore, we see that qj+'C EE and 77 _= 2j (mod ER) with 

suitable j from Lemma 2.3. Therefore, a 282d 2i32j E k9 and hence ad fiVj k9 
because 2 is prime to 9. Now assume that j 0 (mod 3); then Caedfi C kE3. If we 
put j3 = asi, then we see that 01' E k 3 from Lemma 3.3, and hence 31-O7 = _y3 

for some -y E k because k is real. Then (pl-o1)d = (alrT) = (/31-c) = (-y)3 implies 
that 3 divides d. Thus, from /33d = ? /3aJ+' = ? 331+? = (i3-y1)3, we can write 
/3 = 63 for some 6 E k. Then we have pd = (a) = (/) = (6)3, and hence pd/3 = (6), 
which contradicts the fact that d is the order of cl(p). Conversely, if aOEdpi4ij = a9 
with a2 E k2, then p 9d = d = (a) = (ca2)9 and hence pjd = (a2) D 

In the actual calculations, we expand i and j in 3-adic forms. Namely, we 
first get ai = (ae<dtuil'jV)l/3 E k2 with 0 < ii < 2, 1 < ji < 2 and next get 

a2 = (autii2,j2)l/3 C k2 with 0 < i2, j2 < 2. In this manner, we can get a 
generator of p d within 15 trials if p d is principal. 

The cases (B) and (C) are handled by the following propositions. We can prove 
these in the same manner as Propositions 4.1 and 4.2. So we omit the proofs. 
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Proposition 4.3. We have Nk,2/k(E(k2)) D E(k)3 if and only if ,u42I E k3 for some 
o < i < 2. Moreover, if we put t3 = [tupi with pu E k2, then Nk2/Q2(Gu) ? 1, 
Nk2/k(,u1) = ?ut and A 2+ ' E k3. 

Proposition 4.4. Assume that Nk1/k(E(kl)) = E(k) and AO = Do. Let d be the 
order of cl(p) and take a generator a E k of pd. Let 1,1 E k2 be the element stated 
in Proposition 4.3. Then 1~d is principal if and only if ae~du14i E k3 for some 
0<i j <2. 

5. GALOIS GENERATOR OF ER 

In order to find a Galois generator W of ER, we use Hasse's cyclotomic unit 
defined in [4, p.14]. We recall the definition. Let K be a real abelian number 
field of conductor f and H the subgroup of (Z/fZ)X corresponding to K. Then 
-1 + f 7 E H because K is real. Choose an odd representative from each pair 
h, -h E H. Namely, let 

X f {1<x<f Ix:odd,x+fZEH} if f is odd, 
{ 1 < x < f/2 1 x: odd, x + fcH E H} if f is even. 

Then, Hasse's unit is defined to be 

xCX 

where (2f denotes a primitive (2f)th root of unity. In general, ( is neither a unit 
nor contained in K. But in our case, namely in the case K = k2, we verified 
that ( c E (k2) and moreover that Nk2/k(0) = ? 1 by a numerical calculation. 
Therefore, if we put 71 = 42 Nk2/?Q2 (0,)-1, then 71 E ER. Now assume that ER has 
a Galois generator W. Then 71 can be represented as 70o = ? WO "1 ... p7 with 
suitable integers ei. Applying o- seven times on this relation, we have eight relations 
between 7r- and pi, which we consider the equation of Wi. We solve this equation 
for each pair (eo, el, ..., e7). If we see p E k2 for some (eo, e1, ..., e7), then we 
consider this fo as a candidate of a Galois generator and pursue the calculation with 
the algorithms in ?4. 

6. CAPITULATION PROBLEM 

We studied Greenberg's conjecture mainly in the case Ao - Do in [2]. When 
Ao =4 Do, we consider the conjecture by relating it to a capitulation problem. Let 
i0,r be the inclusion map from k to kr. 

Lemma 6.1. Let k be a real quadratic field and p an odd prime number which 
splits in k. Assume that n2 = 1 and iOr(AO) C Dr for some r > 0. Then Ap(k) = 

Ap (k) = 0. 

Proof. Let ko,/k be the cyclotomic hp-extension of k. Let Br be the subgroup of 
Ar invariant under G(ko,/k), and B4 the subgroup of Br consisting of elements 
which contain an ideal invariant under G(ko,/k). Then Br - io,r(AO)Dr and 

= iA0 (E(k): Nk /k(E(kr))) 

from genus theory. The assumption iO,r(AO) C Dr implies Br = Dr, and hence 
the assumption n2 =1 and (1) yields JDr, = JAo0. On the other hand, we have 
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!Bh = Aol for all n > 0 from Lemma 2.2 in [2]. Therefore, Bn = Dn for all n > r, 
and hence Ap (k) = 0 from Theorem 2 in [3]. 0 

There are six k's in Table 1 of [2] such that Ao =4 Do and A3 (k) is not known, 
namely k = Q(Q2jii) where m=2713, 3739, 5938, 7726, 8017 and 8782. For these 
k's, we know that JAol = 3, |Dol = |D11 = 1 and (E(k) NK1/k(E(kl))) = 3. 
Hence, Iio,i(Ao)I = 3. So we need consider io,2(Ao). For Q( 3739) and Q(5938A), 
we could find a generator of pj, where d is the order of cl(p). Therefore, we have 
ID21 = 1 and !io,2(Ao)l = 3. For Q( 7726), we could not find a Galois generator 
sp of ER. For the remaining three k's, we found candidates of A0, but could not 
find a generator of pj. Thus, ID21 seems to be 3 and there is a possibility of 
io,2(Ao) c D2. The following lemma allows us to verify this possibility. It assumes 
again the existence of Ap. But we may disregard it if we found the desired element 
as explained in ?4. 

Lemma 6.2. Assume that JAol = 3, IDol = IDI = 1 and (E(k): Nk1/k(E(kl))) = 

3. Let q be a nonprincipal ideal of k such that q3 = (i3) for some 3 E k. Let 
pd = (ca) with ca E k, where d is the order of cl(p). Then io,2(Ao) C D2 if and only 
if/3Caeeed i'J E k9 for some 0 < e < 2 and 0 < i, j < 8. Moreover, io,2(Ao) = 1 
if and only if e = 0. 

Proof. Assume that io,2(Ao) c D2. Then Bj D2. Since 

p2 

2= Aol (E(k) : Nk2/k(E(k2))) ? 

we have IB'j = ID21 = 3, and hence (E(k): Nk2/k(E(k2))) = 9 Since io,2(Ao) c 
D2, we see that qp2 is principal in k2 for some 0 < e < 2, and hence q9p9e - 

(/33ae) = (-y9) for some Py E k2. Therefore, 33acee E k9 for some ? E E(k2). We 
can see that ? e)edui'i (mod E(k2)9) for some 0 < i, j < 8 in the same way as 
in the proof of Proposition 4.2. Conversely, assume that /33ceE)edttipj = y9 with 
-y E k2. Then q9 9e (iy)9, and hence q = pQ-e(y). Hence, we have proved the first 
assertion. The second is easy. D 

For k = 2713), Q( 8017) and Q( 8782), we verified that io,2(Ao) = D2 by 
Lemma 6.2. So we see that A3(k) = 0 by Lemma 6.1 and moreover that ID21 3 
and (E(k): Nk2/k(E(k2))) = 9 by a trivial argument. 

7. COMPUTATIONAL TECHNIQUE 

In this section, we explain a technique of calculation using a computer. Let 
0 = cos(27r/27) and 

fmI if m = 2, 3 (mod 4), 

(1 + m)/2 if m = I (mod 4) 

for a positive square-free integer m. Then 

(2) { i0 02, I ..., 08, WI 0 w02, .. .,w08} 

forms a 2-basis of the integer ring of k2 = Q(0, in). The coefficients xi E Z of 
Hasse's unit ( with respect to this basis are obtained by solving approximately the 
linear equations made up from the conjugates of 

Xo + X10 + * * + X808 + X9w + X0wO* + X17w08 = 
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Here the conjugates are taken with respect to the generator u of G(k2/Q) such that 
0 cos(4wr/27) and Vm -=-m, and the approximate value of (i is calculated 
from 

(3) (-1)7 J7 (2sin(S F)), 
xXx 

where 2f =X , f is the conductor of k2 and s is an integer such that s 2 
(mod 27) and x(s) = -1 for the character X of Q(/in). We first calculate the 
logarithm of the absolute value of (3) with a 64-bit floating-point number and 
know the necessary precision for this product. Then we proceed with a suitable 
precision. 

Next we have to represent a conjugate of an integer of k2 and a product of 
integers of k2 in the basis (2). To do so, we have to represent a conjugate of an 
integer of Q2 and a product of integers of Q2 with respect to { 1, 0, 02, , 08 }. 

This is easily done by computing 

( 01 
0o2 ... o8 09 010 ... 016 

A-' 
02 

2 2 
and A-' 

! 1 1 

09 02 . 08 09 0 ... 016 J 
where A = (1)O<i'j<8 - 

Finally, we have to check whether an integer a of k2 represented in (2) is a cube 
in k2. This is routine work. Namely, we first calculate the approximate value of 

ao/3 + /3 + +al . If this is not an integer, then a is not a cube. If it is close 
to a natural integer, we obtain coefficients by solving the linear equations involving 

1/3 
ai . If all the coefficients are close to natural integers, then we round them to 
integers and get /3 G k2 with these integral coefficients. We compare /33 with a. If 
33 -a, then a is a cube in k2. 

8. EXAMPLES 

We executed the calculations for 52 k's stated in ?1 with the method in the 
preceding sections. We found a candidate of a Galois generator p for 48 k's. Namely, 
we could find the desired element for (A)-(D) and could determine n42) and n(2) 

for 48 k's. There are 29 k's which satisfy Ao = Do and n42) = 3. For these k's, 
we see that A3(k) 0 0 from Theorem 2 in [2]. For k = Q(v2149) and Q(v4081), 
we have 3 < n(2) < n(2), and hence conclude that A3(k) 0 0 from Theorem 1 in 
[2]. Therefore, together with the three k's in ?6, we obtained 34 k's which satisfy 
A3(k) = 0. 

We can determine JA2 j in some cases using Lemma 2.3 in [1]. Moreover, we can 
apply a similar argument for m = 3739. 

We shall summarize our computational results in Table 1. Here, A+ denotes A3(k) 
and A- denotes the minus part of the A3-invariants of k* = k((3). The asterisks 
mean that we do not know the value. A 64-bit work station DEC3000/300AXP 
with C language did the computations in one day. 
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TABLE 1 

m o n2 (1) n(1) (2) (2) IDO1 lAol ID1 lAi I1D21 IA21 |iO,2 (Ao) | A31 

295 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
397 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
727 2 3 3 3 3 4 1 1 3 9 3 * 2 0 
745 2 2 3 3 3 4 1 1 1 3 1 9 1 0 

1714 2 2 3 3 3 4 3 3 3 9 3 * 4 0 
1738 2 2 3 3 4 4 1 1 1 3 1 9 1 * 
2029 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
2059 3 3 4 4 5 5 1 1 1 3 1 9 1 * 
2149 4 4 5 5 5 6 1 1 1 3 1 9 1 0 
2713 1 1 2 2 3 3 1 3 1 9 3 * =D2 1 0 
2794 2 3 3 3 3 3 1 1 3 9 9 * 2 0 
2917 3 3 4 4 4 5 3 3 3 9 3 * 3 * 
3469 2 2 3 3 * * 1 1 1 9 * * 2 * 
3490 2 2 3 3 4 4 1 1 1 3 1 9 1 * 
3739 2 2 3 3 4 4 1 3 1 9 1 27 #D2 1 * 
4081 3 3 4 4 4 5 1 1 1 3 1 9 1 0 
4279 3 3 3 3 3 3 3 3 9 27 27 * 2 0 
4654 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
4741 2 3 3 3 3 3 1 1 3 9 9 * 3 0 
4789 2 2 3 3 4 4 1 1 1 3 1 9 1 * 
5185 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
5530 2 2 3 3 3 4 1 1 1 9 1 * 2 0 
5533 2 3 3 3 4 4 1 1 3 9 3 * 2 * 
5611 3 3 3 3 3 4 1 1 3 9 3 * 3 0 
5938 1 1 2 2 3 3 1 3 1 9 1 * #D2 1 * 
5971 2 3 3 3 * * 1 1 3 27 * * 3 * 

6169 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
6187 2 2 3 3 * * 1 1 1 9 * * 3 * 
6202 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
6271 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
6286 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
6559 2 4 3 4 3 5 9 9 27 81 27 * 2 0 
6871 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
6934 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
7006 3 3 3 4 3 4 3 3 3 9 3 * 3 0 
7309 2 2 3 3 4 4 1 1 1 3 1 9 1 * 
7321 2 2 3 3 4 4 1 1 1 3 1 9 1 * 
7429 2 3 3 3 3 3 1 1 3 9 9 * 2 0 
7465 3 3 3 4 3 5 9 9 9 27 9 * 2 0 
7582 2 2 3 3 4 4 1 1 1 3 1 9 1 * 
7642 2 3 3 3 4 4 1 1 3 9 3 * 2 * 
7726 2 2 2 3 * * 1 3 1 81 * * 3 * 

7957 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
8017 1 1 2 2 3 3 1 3 1 9 3 * = D2 1 0 
8101 2 2 3 3 4 4 1 1 1 3 1 9 1 * 
8155 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
8569 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
8782 1 1 2 2 3 3 1 3 1 9 3 * = D2 1 0 
9058 2 2 3 3 3 4 1 1 1 3 1 9 1 0 
9634 3 4 3 5 3 6 3 3 3 9 3 * 2 0 
9691 2 3 3 3 3 3 1 1 3 9 9 * 2 0 
9814 4 4 5 5 6 6 1 1 1 3 1 9 1 * 
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