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BALANCING DOMAIN DECOMPOSITION FOR PROBLEMS 
WITH LARGE JUMPS IN COEFFICIENTS 

JAN MANDEL AND MARIAN BREZINA 

ABSTRACT. The Balancing Domain Decomposition algorithm uses in each it- 
eration solution of local problems on the subdomains coupled with a coarse 
problem that is used to propagate the error globally and to guarantee that the 
possibly singular local problems are consistent. The abstract theory introduced 
recently by the first-named author is used to develop condition number bounds 
for conforming linear elements in two and three dimensions. The bounds are 
independent of arbitrary coefficient jumps between subdomains and of the 
number of subdomains, and grow only as the squared logarithm of the mesh 
size h. Computational experiments for two- and three-dimensional problems 
confirm the theory. 

1. INTRODUCTION 

Domain decomposition methods for solving elliptic boundary value problems 
have received much attention in the last few years. The main reason for the pop- 
ularity of these methods is undoubtedly the need to take advantage of parallel 
computers, but many domain decomposition methods are efficient solvers in a clas- 
sical uniprocessor environment as well. This paper is concerned with a domain 
decomposition preconditioner for linear, conforming finite elements for the elliptic 
equation -V- (uVu) = f with the coefficients or changing between the subdomains 
by orders of magnitude. 

The main component of the domain decomposition algorithms of the type studied 
here is an approximate solver based on the solution of local independent subprob- 
lems on subdomains and a global coarse problem with one or a few unknowns for 
each subdomain to effect a global exchange of information between the subdomain 
solution. The composed approximate solver is then used as a preconditioner in the 
conjugate gradients method. It is well known that the absence of a coarse problem 
results in deterioration of convergence of the iterations with increasing number of 
subdomains [11, 14]. 

The Balancing Domain Decomposition (BDD) was introduced by Mandel [20] by 
adding a coarse problem to an earlier method of De Roeck and Le Tallec [11], known 
as the Neumann-Neumann method, based in turn on earlier work for the case of two 
subdomains [2] and on a closely related method of Glowinski and Wheeler for mixed 
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problems [17]. The development of BDD was motivated by very good performance 
of the Neumann-Neumann preconditioner for real-world problems with strongly dis- 
continuous coefficients for a small number of subdomains [11]. Algorithms similar 
to BDD but different in important aspects and convergence results also independent 
of coefficient jumps between subdomains were recently obtained by Dryja and Wid- 
lund [16], and by Sarkis [23]. For application of the BDD method to mixed finite 
elements and computational results on a parallel computer, see Cowsar, Mandel, 
and Wheeler [9]. For extensions of BDD to plate bending and performance results 
on a shared-memory parallel machine, see Le Tallec, Mandel, and Vidrascu [19]. 

In this paper, we extend the abstract theory from [20] by an elementary argument 
showing that the convergence of the BDD method is bounded independently on 
coefficient jumps of arbitrary size between subdomains. We obtain new bounds on 
convergence from the abstract theory by unifying the fundamental inequalities of the 
Domain Decomposition theory by Dryja and Widlund [12, 13, 26, 27] and Bramble, 
Pasciak, and Schatz [3, 5], and complementing them with some new results in the 
2D case. In the 3D, we only need to use the inequalities from [5]. We show that the 
condition number after preconditioning is bounded by C(1 + log2(H/h)), where H 
is the characteristic subdomain size and h is the characteristic element size, both 
in 2D and 3D. In the 3D case, such a bound was already given in [20] based on a 
different estimate from [11]. The theory is confirmed by computational experiments. 
Further numerical results, available in the technical report [21], demonstrate that 
the method behaves very well even in the case of general discontinuities of the 
coefficients and irregular subdomain shapes in 2D and in many cases in 3D as well. 

The paper is organized as follows: ?2 introduces the BDD algorithm. Abstract 
bounds on the condition number are given in ?3, relying only on algebraic argu- 
ments. The assumptions of these bounds are verified for finite element discretiza- 
tions in ?4. Finally, ?5 contains numerical results. 

2. FORMULATION OF THE PROBLEM AND ALGORITHMS 

We will recall the notation and formulation of the algorithm, following [20]. 
Consider a system of linear algebraic equations 

(1) Ax = f, 

with the m x m, symmetric positive definite matrix A arising from a finite ele- 
ment discretization of a linear, elliptic, self-adjoint boundary value problem on a 
domain Q. We assume the domain Q to be split into nonoverlapping subdomains 
Q1,--- ,Qk, each of which is the union of some of the elements. Let Ai be the 
local stiffness matrix corresponding to subdomain Qi, xi be the vector of degrees 
of freedom corresponding to all elements in Qi, and let Ni denote the matrix with 
entries 0 or 1 mapping the degrees of freedom xi into global degrees of freedom, i.e., 
xi = NTx. Then the stiffness matrix A is obtained by the standard subassembly 
process, 

k 

A= ZNiAiNT. 
i=l 

Each xi is split into degrees of freedom xi that correspond to DQi, called interface 
degrees of freedom, and the remaining interior degrees of freedom xi . The degrees of 
freedom on DQ nQi are assigned to the interiors. The subdomain stiffness matrices 
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and the 0-1 matrices Ni are then split accordingly: 

Xi=(.) Ai= (T A ' Ni =(Ni~fi 

Assume the subdomain matrices Ai to be symmetric and positive semidefinite and 
the submatrices Ai nonsingular. Without loss of generality, let the interface degrees 
of freedom be numbered first and the interior degrees of freedom second in the global 
numbering. Let 

k 

IF= U 0Qi, 

i=1 

Vi be the space of the interface degrees of freedom for the subdomain Qi and 
V denote the space of all degrees of freedom on F, in a global numbering. After 
elimination of the interior degrees of freedom, the problem (1) reduces to a problem 
posed on the interface space V, 

(2) Su = g, 

where S is the Schur complement 
k 

(3) S= NiSNif, Si = Ai - BiA Bi. 
i=l1 

The local Schur complements Si are symmetric positive semidefinite and S is pos- 
itive definite. Interpreting matrices as mappings, we have 

(4) S: V - V, Si: Vi Vi, Ni: V ) -V. 

Throughout this paper, we denote (u, v) = uTv and, for symmetric positive semi- 
definite B, (U, V)B = (Bu, v) and IJUHIB = ((u,U)B)1/2 . The notation u I v means 

(u,lv) = 0. 
Much of the benefit of domain decomposition is obtained already by solving the 

reduced problem (2) by conjugate gradients with simple preconditioners such as 
an approximation to the diagonal of S, cf. [6, 7, 18]. Evaluation of the action of 
Si can be implemented by solving a Dirichlet problem on Qi. The BDD method 
is based on the Neumann-Neumann preconditioner [11, 10], which requires the 
solution of a Neumann problem on every subdomain Qi (named so in contrast to 
the Neumann-Dirichlet preconditioner, which requires solving Neumann problems 
on some subdomains and uses the original Dirichlet problem on others). 

An important design choice for the Neumann-Neumann preconditioner is the 
selection of weight matrices Di that form a decomposition of unity on the interface 
space V, 

k 

(5) ZNiDiN[ =I. 
i=l 

A straightforward choice for Di is a diagonal matrix with the diagonal elements 
being the reciprocal of the number of subdomains the degree of freedom is associated 
with. A better choice, which also guarantees a convergence bound independent of 
coefficient jumps between subdomains, is given in Theorem 3.3 below. For other 
possibilities, see [11] and ?5 below. 

The following algorithm defines a linear operator MN N for use as a precondi- 
tioner. 
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Algorithm 2.1 (Neumann-Neumann preconditioner, [11]). Given r E V, compute 
z = MN Nr as follows. Distribute r to subdomains, 

ri = Di Ni r 

solve the local problems 

(6) Siui = ri 

on the subdomains, and average the results by 

k 

z= NiDiu. El 
i=1 

Since the matrices Si are typically singular, De Roeck and Le Tallec [11] used 
a pseudoinverse obtained by replacing zero pivots in the Gaussian decomposition 
by positive values. 

The BDD method adds a coarse problem as follows. Let ni = dim Vi, 0 < mi < 
ni, and Zi be ni x mi matrices of full column rank such that 

(7) KerSi C RangeZi, i=1,... ,k, 

and let W C V be defined by 

k 

W=f{v IE VI = ZNiDiui, ui E Range Zi} 

The space W will play the role of a coarse space just as in variational multigrid 
methods [22]. We say that s E V is balanced if 

(8) ZfZD[Nf;s = 0O i = 1,.. ., k. 

The process of replacing r by a balanced s = r Sw, w E W, will be called 
balancing. We are now ready to define the action r |-* z = M-1u of the BDD 
preconditioner. 

Algorithm 2.2 (BDD preconditioner, [20]). Given r E V, compute M-1r as fol- 
lows. Balance the original residual by solving the auxiliary problem for unknown 
vectors Ai E IRmi 

k 

(9) ZiTDiTNiT (r-S NjDjZjAj) = O i = 1,.. ., k, 
j=1 

and set 
k 

(10) s = r-SZNjDjZj A, si = DTNfTs, i =1 ... ,k. 
j=1 

Find any solution ui for each of the local problems 

(11) Siui = Si, i = 1, ... ,k, 

balance the residual by solving the auxiliary problem for jtli E Rm, 
k 

(12) ZiTDTT(r - Sr NjDj (uj + Zjj=O. i = 1, . .., k, 
j=l 
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and average the result on the interfaces according to 
k 

(13) z = NiDi(ui + Zi[i). D 
i=1 

If some mi = 0, then Zi as well as the block unknowns jti and Ai are void and the 
ith block equation is taken out of (9) and (12). The presence of the coarse problem 
now guarantees that the possibly singular local problems (11) are consistent, and 
the result of the algorithm does not depend on the choice of the solutions of (11), 
see [20]. 

In practice, the residual of the initial approximation should be balanced first as 
in (12); then the first balancing step (9) in every iteration can be omitted since the 
residual r received from the conjugate gradients algorithm is already balanced. 

3. ALGEBRAIC THEORY 

In this section, we give bounds on the condition number, relying on algebraic ar- 
guments only. These results apply to arbitrary linear systems of the form described 
in the preceding section. Their assumptions will be verified in the following section 
for systems obtained from a particular variant of the Finite Element Method. 

The following theorem was proved in [20, Theorem 3.2] in the case when Range Z2 
= Ker Si, but the same proof applies here. 

Theorem 3.1. Algorithm 2.2 returns z = M-1r, where M is symmetric positive 
definite and cond (M, S) = Amax (M- 1 S)/Amin (M- 1 S) < C, where 

o = sup { N j N? DiuJSi I i E Vi, uiI Ker Si, SiuiI Range Zi}- 

To motivate the bound given in Theorem 3.1, we need the concepts of glob and 
glob projection, defined as follows. 

Definition 3.2. Any vertex, edge, and, in the 3D case, face, of F will be called a 
glob. A glob is understood to be relatively open; for example, an edge does not 
contain its endpoints. We will also identify a glob with the set of the degrees of 
freedom associated with it. The set of all globs will be denoted by 9. For a glob 
G E 9, define the glob projection as follows: for a vector u E V, EGU E V is 

the vector that has the same values as u for all degrees of freedom in G, and all 
other degrees of freedom of EGU are zero. The glob projection in terms of the local 
degrees of freedom is EGi = NjTEGNi: Vi ? V. C] 

Note that any two distinct globs from 9 are disjoint, and F = U> DQi = 

UGcg G. The mappings EG, EGS correspond to zero-one matrices and satisfy 

(14) >EG= I, NfNiZEui E3=E EI, 
Gcg Gcg 

and 

(15) G C OQi n OQj <E k E3i z O. G c DQi <8=' E : ?0. 

We are now ready for an abstract bound in the case when the matrices Si are scaled 
by arbitrary positive numbers cai, which corresponds to coefficient discontinuities 
of arbitrary size between the subdomains. The theorem is formulated and proved 
in terms of properties of matrices only. 
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Theorem 3.3. Let ai > 0, i = 1,... k, t > 1/2, and Ej, Ni, Si, and Zi sat- 
isfy (3), (14), and (7). Define Di as the diagonal matrices 

(16) Di = 5 d(i, G)Eb3, d(i, G) = 7 

G:EG740 S i 
j:Ej #0 

and assume that there exists a number R so that for all i, j = 1,... , k and all G, 

(17) -2<j1i < -RIlui lS 

for all ui such that ui I Ker Si, Siui I Range Zi. Then the weight matrices Di 
form a decomposition of unity (5), and the preconditioner defined by Algorithm 2.2 
satisfies 

(18) cond (M, S) < K2L2R, 

where K = maxi I j j NTfi 7 }1, and L maxij I{G I EGj :#0}I1. 

Proof. The property (5) follows from the definition (16) and from (14), 
k k 

SNTDiN2i=5 5 d(i,G)EG= EEG=I . 
i=l i=1 G:EG*,0 GEg 

Let j be fixed. Since there are at most K nonzero terms in the sum jkl fJTfJDiui, 
it follows by the triangle inequality and the Cauchy inequality that 

k k 2 k 

1S1 RfNiDiuiHls. ? ( j H NiDTuills.) < KE, H11NiDiuiH ., 
i= 1i i l 

and 
k k k 

(19) 1 E NfTNDiui112 < K2 5 max |NJ'TNRDuui 112H 
j=l i=1 i=1 

If Eli : 0, the coefficient d(i, G) from (16) satisfies d(i, G) < ai/(ai + al), and it 
follows from (14) and from (17) that 

H~~f~i~iui~s~ ? 
5 ______ at-1/2 a1/2 

IINjENiDi <uiusj ? . ,,,+ , R1 2uis 
G.EG540 GE'*#0 

< LR1/2 SUp P1H2bui lls, < LR1 /211uilsi 

Now by (19), 
k k 

S1 E NTNiDiui1s1 < K2 L2Rlui 112 
j=l i=1 

which concludes the proof, owing to Theorem 3.1. LI 

Note that the constant K is the maximal number of adjacent subdomains Qj 
to any subdomain Qi plus one, and L is the maximal number of globs in any 

mQi n DQj. If t > 1/2, the estimate (18) can be slightly improved; in particular, 
if t = 1, analogously to the method of De Roeck and Le Tallec [11], one has 
cond (M, S) < K2L2R/2. 
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The related method of Dryja and Widlund [16] uses the coarse space W with 
t = 1/2 in (16), and the matrices Si in (11) replaced by Si + ciMi, Mi positive 
definite, to avoid solving singular problems. Sarkis [23] obtained an estimate for a 
similar method for nonconforming elements with any t > 1/2. 

4. THEORY FOR A FINITE ELEMENT DISCRETIZATION 

Let Q be a bounded domain in R d (d = 2 or d = 3) with a piecewise smooth 
boundary DQ, and DQ = Fi U F2 with F1, F2 disjoint, F 1 > 0. Consider the model 
problem 

(20) Lu= f in Q, u = g on F,, -= O onlF2, 

where 
d 

(21) Lv 
a 

(c(x)3(x)aV)XI 
r D~ Xr Ox 

with the coefficient matrix (firs) uniformly positive definite, bounded and piecewise 
smooth on Q, and al(x) a positive constant in each subdomain Qi, i.e., 

al(x) =cai > 0 forx E Qi- 

Let Q denote a reference domain of diameter 0(1) (e.g., square or cube in 2D 

or 3D, respectively) and assume that the subdomains Qj are of diameter O(H) and 

shape regular, i.e., 

(22) Q F = Fj(), jDIFjII < CH, 110Fi-111 < CH-1, 

with DFj the Jacobian and 11 .1 the Euclidean iRd matrix norm. 

Let Vh(Q) be a conforming linear finite element space on a triangulation of Q 

such that each subdomain Qj is the union of some of the elements, and the usual 

shape regularity and inverse assumption hold [8]. All functions v E Vh(Q) satisfy 

homogeneous boundary condition u = 0 on F1. 

Let Vh(Qj) be the space of the restrictions of functions in Vh(Q) to Qj. In all 

the estimates below, C and c denote generic positive constants independent of the 

shape or size of Q and Qj. Note that these constants may depend on the constant 

in (22) or on the regularity of the triangulation, but they are independent of h and 

H. 

Following [4], [12] or [25], we define the scaled Sobolev norms 

IIUIQi~ = IU 12,Q +H U2 IIUI1~2,-~= IUi2a +J IU12Q llull~xi =| tt1A, +H2 I Ut 1,QiI 11ull2,azi = 111ll2,asi + H-uo,aQiv 

where 

I u 2Qi= J IVU(x)12dx, I Uj j I U(t)- U(S) 2 dtds. 1 - 
i 

112,a~~i 
Qj Qi 

I 
t ~- S I 

The advantage of this definition is that it allows us to restrict all of our consid- 

erations to the reference domain Q and use the mappings Fj to obtain the results 

for each Qj from the obvious norm equivalence 

C (23) C 2IU < I/a U oFi112 QHd-2 < CIIUI2aQ.. 

(~~ ~~~ 2 ),I IxII 12 A 

< } | x , 11 H d-II f 2 < lC| ,I U1 2 
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Assume that for each Qi, ri naQi is either empty or a part of DQi of size bounded 
below by a fixed proportion of the size of DQi so that the Poincare inequality holds 
uniformly for all Qi and with the constant C independent of h and H, 

(24) Iu12.Qi < CHIu12 UQi 1Qi < CH1/2IuI/21 

for all u E Vh(Qi) if ir n Qi 0 and for all u E Vh(Qi), faQ, uds = 0 if 
r fln Qi =0. 

To apply Theorem 3.1, we first need to replace the Si norm by the scaled H1/2 
norm. This is a standard result [3, 13, 26], which we state here for reference in a 
form suitable for our purposes. The scaling by ai is obvious. 

Lemma 4.1. There exist constants c > 0, C independent of H or h so that 

CIU1/2 aQi< ?1 IIU1ls2 < CIU1i/2,AQ' VU E Vh(&Qi)- 
aYi 

To derive the fundamental inequality (17) assumed in Theorem 3.3, we identify 
(by abuse of notation) V with Vh(F) and Vi with Vh(~iQ). Then the glob projections 
are EG: Vh(F) -- Vh(F), and (17) becomes a bound on the increase of the H1/2 
norm when a function in Vh(&Qi) is changed by setting its values to zero on all 
nodes of &Qi \ G. 

We'first consider the two-dimensional case, Q c R2. Since &Qi is one-dimensional, 
we may use the properties of the space Vh(O, H) of piecewise linear functions on 
a uniform mesh with step h on the interval [0, H]. The following form of Discrete 
Sobolev Inequality was proved by Dryja [12]. 

Lemma 4.2. There exists a constant C such that 

|Uj12 o(oH) < C (1 + log H4) IIUI1Ip/2(o H), Vu E Vh(OH). 

We will also need the following bound for the H1/2 norm of the extension by 
zero from an interval to the whole X, proved by Bramble, Pasciak, and Schatz [3, 
Lemma 3.5]. 

Lemma 4.3. There exists a constant C such that for all u E Vh(O, H) satisfying 
u(O) = u(H) = 0, u = 0 outside (0, H), 

IUI1/2,R < C (1 + log h!) IIUII (oH) + l81/l2 (0 H) 

An estimate of the H1/2 norm of a "spike" function, obtained by sampling the 
value of a given function at one point, follows easily. 

Lemma 4.4. There exists a constant C such that for all u E Vh(O, H), 0 < h < 1, 
and vo E Vh(R) defined by vo(0) = u(O), vo(X) = 0 for Ixl > h, 

1VOi/2,R < C (1 + log hi) I1U//2,(OH) 

Proof. Let L = |IUIILO(OH) . It follows from Lemma 4.3 that 

(25) |voll/2,R < C (1 + log h) IVOL(-hh) + 1VOI/2,(-h,h)- 
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Using linearity of vo, we obtain 

(26) 1V0l/2(hh) = 1h j I o(s v(t)J dsdt < 4 L2, 

because llVoll(2hh) = Ivo(0)12 < L2. Thus, lVOll/2(<hh) < CL2. But L2 < 

C(1 + log ' 4)lUl1/2,(OH) by Lemma 4.2, which concludes the proof. 

By subtracting such spikes at the endpoints, we can extend Lemma 4.3 to the 
case when the values of u at the endpoints are nonzero. 

Lemma 4.5. There exists a constant C so that for u E Vh(O, H) and w E Vh(R) 
such that w = u on [h, H-h], andw(x) = O for x < O. x > H, 

IW12 R< C (l+ log h)IIUII1/27OH 

Proof. Define u(x) to be zero for x E (-ox, -h) U (H + h, ox), and linear in [-h, 0] 
and [H, H + h]. Further, define vo and VH by 

V ( f) u(0), x = 0, 
V0\X) ~ 0, lxi ? h, 

vo linear in [-h, 0] and in [0, h], 

VH(X) uH0 = { 
= 

x-HI 

VH linear in [H - h, H] and in [H, H + h]. Writing w as w = u -vo -VH, and 
applying Lemma 4.3 and Lemma 4.4, we obtain 

W/2R < C (1 + log h ) IIWII1OO(OH) + IWI1/2,(OH) 

= C (1 + log h ) IIUIIhOL(OH) + IWI1/2,(OH) 

? C (1 + log h) |IUIhL?(oH) + 3(IuI1/2,(oH) + IVI1/2,R + IVHI1/2,R) 

?0C((1 + log h -) IlUII| LOO(OH) + IU1I/2,(0,H) + (1 + log h I)/ul/2,(oH)) 

Application of Lemma 4.2 to IIUIILO,(OH) concludes the proof. LI 

We are now ready for the estimate of the H1/2 norm of the glob projections EG, 
which shows that an arbitrary function in Vh(&0i) can be decomposed into its glob 
parts with only a small increase in the H1/2 norm. 

Theorem 4.6. Let Q C RdI d = 2 or d = 3. Then there exists a constant C not 
dependent of h or H, so that for any glob G E g and for all u E Vh(&9Qi), 

IIEGuII2/21,a~i < C (1 + log h ) U11/2,G 

Proof. In the 2D case, the proposition follows by using a mapping of fQi onto an 
interval so that G maps to (0, H), from Lemma 4.5 for G being an edge, and from 
Lemma 4.4 for G being a vertex. 
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In the 3D case, the proposition was proved for the case of G being a face of &Qi 
as Lemma 4.3 in [5]. In the case of G being an edge or a vertex of iQi, the proof 
follows from Lemma 4.2. and the proof of Lemma 4.1 of [5]. l 

The bound on the condition number of the BDD algorithm follows. 

Theorem 4.7. Let Q c Rd. d = 2 or d = 3, and the weight matrices Di be diagonal 
with the entries given by (16). Then there exists a constant C independent of H, h 
and ai, so that the condition number of the BDD method satisfies 

cond (M, S) < C (1 + log2 h 

Proof. We only need to verify the assumption (17) of Theorem 3.3. Lemma 4.1 
allows to replace the Si norms by the H112 (&Q,) seminorms, which may in turn be 
replaced by the H1/2 (9Qi) norms, owing to the Poincare inequality (24). It remains 
to use Theorem 4.6. E 

5. COMPUTATIONAL RESULTS 

The purpose of our computational tests was to demonstrate the fast convergence 
of the BDD method on complicated problems with varying coefficients. 

In all of the following examples, the space 1h of the piecewise linear functions 
defined on a uniform rectangular mesh of stepsize h in 2D or 3D was used for the 
solution of the elliptic problem of the form (20), 

-div(ucVu)-l in Q, u = 1 on f, =0 on F2, 

with aQ = F1 U F2, F1 n F2 = 0. The coefficient oa is an elementwise constant 
function, and k is the number of subdomains. 

We have compared three algorithms: conjugate gradients applied to the reduced 
system (2) without preconditioning (denoted as CG in the tables), conjugate gra- 
dients with Neumann-Neumann preconditioner and the local singular problems (6) 
solved using the Moore-Penrose pseudoinverse (Algorithm 2.1, denoted as N-N), 
and conjugate gradients with the BDD preconditioner using Range Zi = Ker Si 
(Algorithm 2.2, denoted as BDD). 

The stopping criterion for the iterations was based on 

(27) Amax(M-1S) KM-lrj r) < E2 

Amin(M- S) KM-lb, b) - b 

with r the current residual and b the right-hand side, which guarantees the rel- 
ative precision of e in the energy norm, cf. Ashby, Manteuffel, and Saylor [1]. 
The condition number Amax(M-1S)/Amin(M-1S) reported in the tables and also 
used in (27) was estimated as the ratio of the extreme Ritz values for the Krylov 
space, computed from the eigenvalues of a tridiagonal matrix constructed from the 
Lanczos recursion in conjugate gradients. Number of iterations with * means that 
the criterion (27) was not satisfied when the maximum number of iterations was 
reached. 

The 2D examples were computed by a prototype implementation of the BDD 
method programmed using the CLAM package [24]. In the two-dimensional test 
BDD implementation, the weights Di were based on the diagonal entries of the 
Schur complements, as suggested in [11], because we had the diagonal entries of the 
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TABLE 1. 2D results for Poisson equation on unit square (Fig. 1, 

01= 02= 1) 

CG [ -N f BDD 
h 1k |[iterations I cond.|iteratjd iterations cond. | 

1/20 4 31 63.426 10 45.592 6 1.231 
1/40 16 65 338.008 38 3,190.710 13 2.004 
1/50 25 82 555.515 58 8,691.200 13 2.046 

TABLE 2. 2D checkerboard pattern (Fig. 1, a, = 103, o2 = 10-3) 

|h | a, | U 2 |iter |cond. |iter |cond. | iter I cond.| 

1/30 9 T03 i03 61 866.051 10 16.145 4 1.555 
1/40 16 _T0T - 

0=7- 130* 6.89 10 49 5.61 10 11 1.941 

1/50 25 10 i0- 116 1,571.66 25 63.939 7 1.629 

TABLE 3. 2 x 2 checkerboard pattern for various cl, U2 

1~~1 J J~CG ] N-N J BDD 1 
|h k al c2 |iter I cond. iter I cond. iter |cond.| 

1/40-4 101 10-1 30* 220 10 268 7 1.22 
1/40 4 10 T0 30* 436 9 2,574 5 1.04 
1/20 4 10 10- 30* 506 7 10,280 4 1.00045 

Schur complement available: Denote s"1 the diagonal entry of Schur complement Si 
corresponding to global degree of freedom 1. For subdomain Qi, the weight matrix 

Di was constructed as diagonal with diagonal elements df.(I)' where fi (1) is the 

local number in 6iQi associated with the global degree of freedom 1, 

ST 
j:l EaQj 

which is essentially (16) computed node by node with the diagonal entries of Si used 
instead of the scalars oai. This choice of the weights was found to give good results 
[11]. The domain Q was chosen to be the unit square and F1 was the left-hand side 
of Q. 

The tests show that unlike for the CG and N-N method, the condition number 
and the number of iterations of the BDD method does not deteriorate for increasing 
number of subdomains (Table 1, Fig. 1), the coefficient o varying by orders of 
magnitude between the subdomains (Table 2, Fig. 1), and increasing jumps in the 
coefficients (Table 3). 
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r2 

FIGURE 1. 2D checkerboard pattern 

TABLE 4. 3D Poisson's equation, various h and number of subdomains 

hxl hy hz k | dof I iter I cond. | 
1/15 1/15 1/20 36 5376 25 3.5375 
1/20 1/25 1/30 120 9246 37 4.6354 
1/30 1/30 1/30 27 29791 22 4.8000 

A FORTRAN implementation was used for the 3D experiments, with the action 
of Si implemented in a straightforward way following the definition of the Schur 
complement (3). The implementation of the action of the inverse, that is, the 
solution of Sjy = x, relies on the obvious fact that y may equivalently be computed, 
using notation of ?2, as solution of the sparse system 
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TABLE 5. 3D checkerboard pattern with alternating o 

|h 1k J [1 |2 [ dof I iter I cond.] 
1/25 125 10? 10? 17576 22 3.1154 
1/25 125 101 10-1 17576 19 2.4893 
1/25 125 l10 10-2 17576 18 2.2071 
1/25 125 103 10- 17576 16 2.0211 
1/25 125 104 10-4 17576 16 2.0023 
1/25 125 105 10- 17576 16 2.0002 
1/25 125 0 10-6617576 15 2.0000 
1/25 125 17 10-7 17576 15 2.0000 

discarding z afterwards. Since the diagonal entries of Si are not available, the 
weights were defined from aei = vi by (16) with t = 1. The problem was set on unit 
cube Q, with zero Dirichlet boundary condition on the whole &Q, and e = 10-18 

was used for the stopping criterion (27). Again, the results confirm the theory. 
Finally, one should note that the 12 norm of residual of the global solution was 

never larger than 20 times the 12 residual of the reduced solution. For further 
numerical results, see [21]. 

FORTRAN 77 code that implements the method is available from MGNET by 
anonymous ftp to casper.cs.yale.edu in the directory /mgnet/jmandel. The 
code invokes user-supplied subroutines that implement the matrix-vector multipli- 
cations Sixi and solution of the possibly singular systems Sizi = ri. 
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