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ABSTRACT. We study the uniform approximation of boundary layer functions 
exp(-x/d) for x E (0, 1), d E (0, 1], by the p and hp versions of the finite ele- 
ment method. For the p version (with fixed mesh), we prove super-exponential 
convergence in the range p + 1/2 > e/(2d). We also establish, for this version, 
an overall convergence rate of 0(p-1lnp) in the energy norm error which is 
uniform in d, and show that this rate is sharp (up to the lnp term) when 
robust estimates uniform in d E (0, 1] are considered. For the p version with 
variable mesh (i.e., the hp version), we show that exponential convergence, 
uniform in d E (0, 1], is achieved by taking the first element at the boundary 
layer to be of size O(pd). 

Numerical experiments for a model elliptic singular perturbation problem 
show good agreement with our convergence estimates, even when few degrees 
of freedom are used and when d is as small as, e.g., 10-8. They also illustrate 
the superiority of the hp approach over other methods, including a low-order 
h version with optimal "exponential" mesh refinement. 

The estimates established in this paper are also applicable in the context 
of corresponding spectral element methods. 

1. INTRODUCTION 

Our goal in this paper is to develop the approximation theory for boundary layer 
functions 

(1.1) u(x) = exp(-ax/d), < x <L, 

where d E (0, 1] is a small parameter that can approach zero, a > 0 is a constant 
and L > 1 is a typical length scale of the problem under consideration. We are 
interested in obtaining convergence estimates that are robust, i.e., uniform in d, 
when (1.1) is approximated by piecewise polynomials via p and hp type numerical 
schemes. 

Boundary layers (1.1) arise as solution components in singularly perturbed el- 
liptic boundary value problems, a model example of which is 

(1.2) Ldud :=-d2 U(X) + a2ud() = f(x), x I = (-1,1), 
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(1.3) Ud(+l) = al . 

A large body of literature has been devoted to their effective resolution. Most 
available references analyze the convergence of finite difference or finite element 
schemes of fixed (usually low) polynomial degree in conjunction with various mesh 
refinements (the h version); see, e.g., [4, 6, 13, 18, 19], and the references therein. 

If the mesh refinement is quasi-uniform (or, more generally, independent of d), 
either on the whole domain or locally near the boundary, then the optimal (alge- 
braic) decrease in the global error is observed provided a condition of the form 
h < Cd is met (h being the mesh spacing parameter). Such methods are nonro- 
bust, in a sense made precise in ?3. In practical terms, the amount of discretization 
required with such schemes for satisfactory resolution of the boundary layers may 
be infeasible when d is very small. On the other hand, strongly graded d-dependent 
mesh refinement, like the one from [20] presented in ?6, does lead to robust conver- 
gence, at an optimal rate that is algebraic (see [4, 16, 18, 19, 20], where this and 
other graded meshes are discussed). 

An alternative approach is to increase the polynomial degree and keep the mesh 
fixed, i.e., use a p version or spectral element method. In [5], various such schemes 
(Galerkin, Tau and Collocation) have been considered for the special case of (1.2)- 
(1.3) where f = 0, a+ = 1, a = 0, using a Chebyshev-weighted spectral approx- 
imation. In this paper, we consider the unweighted Galerkin p version/spectral 
element approximation. We provide a detailed study of the approximation theory 
for this method, showing that an asymptotic superexponential convergence rate for 
the error in the energy norm is achieved for -: p ? 1/2 > e/(2d). We also provide 
estimates for this error in the preasymptotic phase when d is small, showing that 
(A) for (3/(4d))1/2 < P < 2/d, the error is bounded by Cexp(-jp2d/3) and (B) 
for P < Kd- 2, the error is bounded by Cp1 (numerical experiments in ?6 are in 
agreement with these rates). The results we prove for a single element also hold 
when a fixed mesh with several elements is used. Using our various estimates, 
we establish that for the pure p version on fixed meshes, the overall robust rate, 
uniform in d, is O(p-1np) and, up to the lnp term, this is the best possible. 
Note that this rate is essentially double the uniform rate of O(h2 ) achievable (for 
the global error) by the h version with quasi-uniform meshes (Theorem A.1(ii) of 
[13]). It is also double the uniform rate for p version/spectral element methods 
that can be established from the results in [5]. (Since the methods in [5] involve a 
weighted projection, the estimates there are in (stronger) weighted norms.) 

The p-type results in [5] can be considerably improved by using special "mapped" 
polynomials in the spectral element method. This is shown in [8, 7], where singular 
mappings of appropriately high order are used to establish algebraic rates of con- 
vergence that deteriorate relatively slowly as d -> 0. However, these estimates are 
still not uniform in d, and therefore, not robust in our sense. 

Our main result in this paper shows that excellent robust rates for the uniform 
approximation of functions (1.1) can be achieved by using, instead of the pure 
p/spectral version, a variable mesh with only one more element. More precisely, 
a robust exponential rate can be obtained by using the p version on two elements, 
where the first one is of size O(pd). (For problems like (1.2)-(1.3), three elements 
are needed, owing to boundary layers at either end see ?6.) We call this an 
hp version since the size (though not the number) of elements changes, as does p. 
(More appropriately, it is an "rp" method.) Note that an exponential rate is not 
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possible with either the h version or the pure p/spectral version - the estimates 
obtained in the papers above are all algebraic. Finite element computations for 
(1.2)-(1.3) presented in ?6 confirm the theoretical convergence estimates obtained 
here and clearly show the dramatic superiority of this robust hp FEM over other 
methods, especially for small d. 

Although we concentrate here only on the approximation theory for the one- 
dimensional function (1.1) applied to one-dimensional problems like (1.2), the scope 
of our results is wider. This is due to the fact that solutions to singularly perturbed 
problems over two-dimensional domains w, arising, e.g., in beam, plate and shell 
theory, as well as in reaction-diffusion and certain fluid dynamics problems, also 
exhibit boundary layers, which are of the form 

(1.4) UBL(S,X) = C(s)exp(-ap(x)/d), O< s <T, < p <o 

Here s, p denote, respectively, the arc length and normal distance to the bound- 
ary, of a point x in a neighborhood of ofw, and the function C(s) is smooth. For 
several problems of practical interest, decompositions of the solution into a regu- 
lar part and such boundary layers UBL(S,x) have been obtained in the literature; 
cf. [1] for the Reissner-Mindlin plate, [17] for beam theory, [11, 12] for shells. 
Similar decompositions arise also in three-dimensional problems (then, however, 
s = (1, S2) are coordinates in the boundary manifold). The key observation from 
(1.4) is that since C(s) is smooth, the boundary layer phenomenon is essentially 
one-dimensional, namely, in the direction normal to Ow. Hence, the crucial aspect 
of the FE approximation of such functions is how the FE spaces are designed in the 
p direction, i.e., how the function (1.1) is approximated in one dimension. Using 
our results, therefore, we can construct two- and three-dimensional FE spaces (with 
robust exponential convergence) for the functions (1.4), e.g., using tensor product 
spaces in the (s, p) coordinates. See [15, 16]. Note that "brute force" mesh refine- 
ment will be even less competitive in two dimensions and practically impossible in 
three dimensions. 

The outline of this paper is as follows. In ?2 we present an asymptotic expansion 
for the solution of the model problem (1.2)-(1.3) which includes the boundary 
layers. The proof uses standard techniques and is provided for completeness in the 
Appendix. In ?3, we describe the finite element methods and error measures to 
be analyzed. We also define the concept of robustness, using a definition from [2]. 
Section 4 is devoted to the convergence analysis of the p version FEM. In ?5, we 
consider an hp version for which we prove a robust exponential convergence rate 
in various norms. Finally, in ?6 we present numerical experiments comparing, in 
particular, the p and hp version FEMs analyzed here with an h version from [20], 
based on asymptotically optimal meshes. We show that the hp version consistently 
outperforms the other versions and that high accuracy can be achieved with few 
degrees of freedom for arbitrarily small d (we take values of d as small as 10-8). 

Throughout, Hk (I) will denote the Sobolev space of order k E N0 on an interval 
I C R, with HO(I) = L2(I) and 11 IkijI | 1kI denoting the norm and seminorm 
as usual. Whenever there is no confusion about the domain, we omit the subscript 
I. For u, v E L2 (I), we denote by (u, v) the L2 inner product. Also, HJl (I) = {u E 
H1(I): u(?l) = 0}, HDj(I) = {u E H1(I): u(?l) = a+} and H-1(I) = (Hol)*, 
the dual space. Throughout the paper, C, K will denote generic constants, while 
Ci, Ci will denote constants that are explicitly given or can be easily estimated 
from the exposition. 
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2. REGULARITY OF THE MODEL PROBLEM 

The variational formulation of the model problem (1.2)-(1.3) reads: Find ud E 

HDj(I) such that 

(2.1) Bd (Ud, v) =(,v) Vlv E HO' (I). 

Here, f E H-1 (I) and 

(2.2) Bd(U, v) j{d2u/v/ + a2uv} dx. 

For every f E H-1 (I) the problem (2.1) admits a unique solution Ud E HD(I), and 
if f E Hk (I), then Ud E Hk+2 (I) n HD (I). This regularity, however, is nonuniform 
in d since in the a priori "shift" estimate 

(2.3) flUdllk+2 < C(k, d)lffIlk, k = 01,2, ... I 
the constant C strongly depends on d. The following theorem, the proof of which 
can be found in the Appendix, presents a decomposition of Ud into a smooth part 
ud/ (x) and boundary layers 

(2.4) Ua,d(X) = exp(-a(1 + x)/d), ua,d(X) = exp(-a(1 - x)/d). 

Theorem 2.1. Let f E H4M+2 (I) for some M E N. Then 

(2.5) Ud(X) = Um(x) + AmUad(X) + BdjUa,d(X), 

where udm(x) satisfies the following regularity estimate uniformly in d for f = 

0,1, ... ,2M: 
M+1 

(2.6) u'Mld < ? l(d/a) 2M?2f|(2M+2) + 2a E (d/a)If12k~f. 
k=O 

Further, 

(2.7) 
M 

IAdf ? +IBd l ?C(a) ?ce+ + ? Z +E(d/a)2k (f(2k)(_1) + If(2k)(+?) ) 

k=0 

where C(a) is independent of M and d. 

For any interval I let ]Iln(I) denote the set of polynomials on I of degree < n. 
The following result follows by Remark 6.1 in the Appendix. 

Corollary 2.1. Let f E I2M?1(I); then ujE e H2M+1(I) in (2.5). 

Remark 2.1. Analogous results hold when the Dirichlet end conditions (1.3) are 
replaced by Neumann or mixed boundary conditions. 

For f smooth enough (i.e., M large enough), we see from Theorem 2.1 that the 
regularity of Ud (in terms of d) will be determined by the boundary layer terms. 
We have, in fact, by (2.5)-(2.7), 

(2.8) IUdlf <? |ud f + |AMj lUa,d~f + |BjI ||a,dlf < 0(1 ?+ Ua,d~f ? Ua,dlf), 

where the constant C depends upon a, f and ca- but is independent of d. For the 
function Ua,d, we have for ? = 0,1, 2,... 

(.)t d) 2e -1_ e 4a/dl Cd1-e 
(2.9) lUa,dke = -) [1 2]d1/2 
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so that (2.9) and its analog for Vla,dle, substituted in (2.8), gives an upper bound 
for ludlie. Since, except for special cases, the coefficients Ad, BJ are nonzero, we 
see that the following equivalence generally holds: 

(2.10) lUdlie C( + d2), t=0,1,... ,2M. 

To conclude this section, we define the following solution spaces, which will be 
used later: 

H M = {UdlUd is a solution of (1.2)-(1.3) with f E H M+ (I), 

If 1I4M+2 < B, la+iI < B}, 

H-dIn = {UdlUd is a solution of (1.2)-(1.3) with f e lHn(I) such that 

all coefficients in f are absolutely bounded by B, Ia- I < B}. 

3. THE FINITE ELEMENT METHOD 

For any finite-dimensional subspace S of H1(I), denote SD = S r H1 (I), SO = 

Sfn H0 (I). Then a finite element approximation us of ud is obtained by restricting 
both sides of the weak formulation (2.1) to finite-dimensional subspaces: Find 
uS E SD such that 

(3.1) Bd(Ud v) = (fv) Vv E So. 

For every d E (0,1] there exists a unique solution us E SD of (3.1). 
We will be interested in spaces S of piecewise polynomials on I characterized by 

the mesh-degree combination Z = (A, p@, defined as follows. Let the m + 1 > 2 
nodal points 

(3.2) -1=Xo < x1 < x2 < .. < Xm-1 < xm : 

be given; then the mesh A is defined by 

(3.3) A =f{Ii}i1, IJ=(xji_,xj), hj=jIjj=xj-xji 

(we will also write A = o{X, xl, . .. , xm } where convenient). 
The degree vector j is defined by 

(3.4) P (1piP2* *Pm) 
Then 

(3.5) S(E) = {u: u|ji E lpi(Ii), Ii E A} n cO[-1, 1]. 

Obviously, S(s) C H1(I) and 
m 

(3.6) dimS(FD) = 1?+Zp, N=dimSD(E) =dimS(Z)-2. 
i=1 

By (2.1), (3.1), 

(3.7) Bd(Ud-Ud, v) = 0 Vv E So(S), 

so that es = ud - u satisfies 

(3.8) lIedslld = inf I|ud - XI|d. d 
X ESD (F2) 

Here the energy norm 11 lId, 0 < d < 1, is defined by 

(3.9) IlvIld = (Bd(v, v))1/2 - (d21vIl2 + I1vII2)1/2 dlvil + Ilvilo. 
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The question we wish to explore here is the design of the spaces S(Z) such that 
lesIld has a good convergence rate g(N) -> 0 as N -> ox independent of d. To do 

this, we recall the definition of robustness from [2]. 

Definition 3.1. The FEM for problem (3.1) using spaces SD(S) is robust with 
uniform order g(N) for 0 < d < 1 with respect to solution sets 7d = HBM (or 

H~d~1) and error measures Ed = ld if and only if 

im (sup sup Ed(ud- U ) C < x. 
N-*oo \\e01dd~~ ~ ) g(N) , 

Although we concentrate here primarily on the energy norm, other error mea- 
sures could be considered as well: the L2 norm obviously follows as a corollary, 
while the maximum norm is considered in Corollary 5.1. Note that by (2.10), the 
unscaled H1 norm of Ud is not bounded uniformly for d E (0, 1], so that we cannot 
expect robustness with uniform order in this norm (see, e.g., estimates (4.3) in [13]). 

Let Ud E HdM. Using Theorem 2.1 and (3.8), we see immediately that for the 
energy norm, 

(3.10) Ed(Ud - UN) = NedS||d < inf II(um + Ad Ua,d + Bd ia,d) - XId 
X1 ES d -XED Sdd 

< inf JU 11 

Xi (?l)=uM (?1) 

+ |AdMf inf Uad - X21Id + IBJ | inf flUad -X31d 
X2ES 

d 
X3ES 

I- Id 

X2(?l)=Uad(?l) X3(?l)=fad 

Assume the space S(Z) has the following approximation property: 

(3.11) inf u - XlI1 < F(N, k) IUIk, k = 1,2,.... 

x(+ l)=U(? l) 

where F(N, k) is some (optimal) approximation order (i.e., F(N, k) -> 0 as N > 
ox). Then for ud E HdM, by Theorem 2.1, the first infimum in (3.10) will tend 
to zero at the rate KF(N, 2M) as N -x oc, where K is a constant independent of 
d (K only depends upon B and M). Also, we may assume by Theorem 2.1 that 

JAjMI, IBfMI < K, so that the second infimum in (3.10) will decrease at the rate 
KF (dS), where 

(3.12) 1(d, S) = inf lU1,d - X1d 
xES 

X(?1)=Ul,d(?1) 

- inf {d 2U1,d - X?lUid - 

X(?1)=Ul,d(?1) 

By symmetry about x = 0, the last term in (3.10) will also have the same bound. 
Then it may be shown that our FEM will be robust in the sense of Definition 3.1 
if and only if @(d, S) in (3.12) can be bounded independently of d, i.e., 

(3.13) sup (d, S) < G(N). 
dE (0, 1] 

In that case, by (3.10)-(3.13) and Definition 3.1, our FEM will be robust with 
uniform order 

(3.14) g(N) = C max{F(N, 2M), G(N)}. 
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We will use the following related definition. 

Definition 3.2. The spaces S(E) will be said to approximate boundary layers Uld 
robustly at the rate G(N) in the energy norm if and only if (3.13) holds. 

Remark 3.1. Our main concern in (3.14) is the rate G(N), i.e., finding spaces S(s) 
such that (3.13) holds with G(N) -* 0 uniformly at a sufficiently fast rate. This 
is because in general, G(N) will be the dominant term in (3.14), the idea being 
that M is large enough so that F(N, 2M) is sufficiently small. For the hp spaces 
in ?5, however, G(N) -* 0 exponentially, so that the algebraic rate F(N, 2M) 
achieved by assuming regularity in terms of finite M will dominate as N becomes 
sufficiently large. This technical problem could be overcome by restricting the set of 
solutions 1d in Definition 3.1 to those for which the first infimum in (3.10) decays 
exponentially (or sufficiently fast). In particular, choosing ?d = Hdrn will make 
this infimum vanish for suitable S(s) (see Theorem 5.2 ahead). 

Remark 3.2. The FE spaces satisfying (3.13) constructed in this paper and the 
estimates G(N) established for them are also applicable to various other problems 
where the solution can be decomposed into boundary layers and smooth terms. 

4. APPROXIMATION RESULTS FOR THE P VERSION 

In this section, we will prove asymptotic error estimates for 4(d,S) given by 
(3.12) as p -> oo, in the case that a single element I = (-1, 1) is used, i.e., S(s) = 

Hp1(I). Our first estimate (4.1) will be valid uniformly in d for the range p > e/2d. 
(For any integer k, we write k = k + 1.) We will also provide separate estimates 
(again uniform in d) for the preasymptotic ranges 3/4d < P < 2/d and 1 <73 < 
Kd-2 . Our final theorem will establish a uniform robustness rate of Cp-1ln p 
for the p version over a fixed mesh, which will be shown to be optimal (up to the 
factor /np). 

In order to estimate P(d, S), we will use the following lemma from [3, Chapter 
3], that will give a concurrent approximation of U1,d(X) in the L2(I) norm and 
H1 (I) seminorm. 

Lemma 4.1. Let u, u' E L2 (I) and denote by 

(4.1) an = Ai/ u'(x)Pn(x)dx 
i-1 

the Legendre coefficients of u'(x). Then there exists X E Hp (I) such that 

(4.2) X(+l) = u(?1)) 

(4.3) Hlu'-X'llI = ln 
n=p 

(4.4) flu<-xIIX ? S n(n ? 1)i) 

n=p 

(4.5) HlU -X 'loi < ?fu' - ClOI 
for any E e Hp(I) satisfying ~(?1) = u(+1). 

For a proof, we refer to [3, Theorem 3.3.4]. 
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Remark 4.1. The polynomial X above is obtained as an antiderivative of the trun- 
cated Legendre expansion of u', of degree p - 1. While by (4.5), this is optimal in 
the H1 (I) seminorm, it is nonoptimal in the 11 * ldnorm. Nevertheless, Lemma 4.1 
will be sufficient for our purposes here. 

The estimates in (4.3), (4.4) obviously depend on the size of the Legendre coef- 
ficients a, in dependence on d and n. The following lemma gives precise bounds 
for these coefficients for our function u _u1,d 

Lemma 4.2. Let u- Uld and an be defined by (4.1). Then with h = n+ 2? 

( 2v\ / d 2v -1 

(4.6) (1_ 2> < an < (1f>0 or n= ii I q(n, d) 

where 

(4.7) 0(n, d) = (_1)n?1 d l e-(Z-(z)) z - 
(1Z2)~ 4 

(4.8) (Z) = (1 + z2) 2 n(1 + (1 + Z2)1/2) 

Vo= ? + -- 0.158. 
6 v/ 12 

Proof. Using (4.1) and the fact that u d = -d-1lud, we have 

-n d-1e/1d 1e-xd d X(2 - 1)n) dx 

= ()n+ld-n-le-l/d (1 - x2)ne-x/d dx. 

Hence, by formula 3.387 of [10], 

(4.9) an(d) = (_1)n+ldn-l e- 1/d n (2d)n In(d1- 

= (-1)n+'d-I/2 /ir f e-l/d I- (d-l) 

where Ifi(d-1) is the modified Bessel function ([10, 8.406]). Thus, to obtain the 
asymptotic behavior of an(d), we must investigate Ifn(d-1). To this end, we use 
asymptotic expansions of I(vz) that are uniform for z > 0. Such uniform expan- 
sions have been obtained by F.W.J. Olver (see [9] and the references therein). 

Let v=?A= ?n+ 2 and z= (vd)1; then 

(4.10) e /dId,(dl) = evz IV(Vz). 

It is shown in [9] that 

(4.11) e(VZ1(uZ) = ( ) ev(z-((z)) s=0 Ut ? Em( vt) 
27rv I 

+~~1 'EM (, 0) 
where t = (1 + z2)-/2, m> 0 is an integer, and the Us(t) are certain polynomials 

of degree 3s in t (see [9]), the first two of which are given by 

(4.12) Uo(t) = 1, U,(t) = (3t - 5t3)/24. 
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The 6m in (4.10) are estimated by ([9]) 
ii 

VtPjM+ I) 

(4.1.3) 
'Em (VI t) I < ( v) VM+1 

where 

Va(U) JU'(t)I dt and vo = Vo(U1)= 6 12 

Simplifying (4.9) and using (4.10)-(4.13) with m = 0 yields, with q(n, d) as in (4.7), 
that 

an=q$(nd) 1 +?+ (ii, 0) 

The assertion then follows since 

1 < :oQt) <1 2I- 0 1 

Remark 4.2. The bounds (4.6) are quite sharp, since, for example, for n > 1 we 
obtain that 

0.7895 <I - 2, (I I- -? < 1.2667. 
n A 

Lemma 4.2 reduces the description of the asymptotic behavior of an(d) to a 
discussion of the function 0(n, d). We then obtain the following bounds on the 
approximation errors (4.3), (4.4). 

Lemma 4.3. We have 
00 

(4.14) 11- 2X < E 0+(n, d) e-2fi(z-(z)) 

n=p 

00 

(4.15) u' -x < E 
I 

? 5 0+(n(,d) e-2f(z(zz)) 
n=p 

Do 

(4.16) 112 X llo > E12 (n, d) e-2f(Z-(z~)) 
n=p 

where z= (id) 1,(z) is as in (4.8) and 

(4.17) At' (n, d) I (1 _ A (d2 + ii-2)- 2 

As is readily apparent from the expression for q(n, d) in (4.7), we can expect 
exponential decay of an as n -- oc provided the function z - ((z) is positive and 
of reasonable size. The following lemma provides bounds for z - ((z) in terms of 
the asymptotes shown in Figure 1. The proof follows by elementary arguments. 

Lemma 4.4. For any z > 0, we have z - &(z) > 0. Moreover, the following bounds 
hold: 

(4.18) -(I + ln(z/2)) < z - (z) < z- (I + ln(z/2)), 

(4 19)I1 - 1 < Z -(( ) < 1 
(4.19) 1 1 -(Z 2 

2z 24z32z 
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100 
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10-3 10-2 1O-1 10 10 

FIGURE 1. The function z - (z) (- -) and its asymptotes 1/(2z) - 

I/(24z3) ( ) and -(1 + ln(z/2)) ( ) 

We prove now an error bound for sufficiently large p (p > e/2d). 

Theorem 4.1. Let r e/(2pd) < 1. Then for u =ald there exists a polynomial 

X E Hp IJ) such that x(?1) = u(?1) and 

(4.20) HU X'Hlo < CWd- 12rp(l -r2)-/2 

(4.21) HU - xio < Cod'12rp(l _-r2)-1/2 

Here, Ci are independent of p and d (numerical values can be read off the proof). 

Proof. By (4.14), (4.17), we must estimate the sum 
00 / 

o 
- 2 

(4.22) S = E (- _ (d2 + ?-2)-e e2AC(z 
-(z)) 

nn 

< - 4?) Ed-' e-2i(z-((z)). 
n=p 

Using the lower bound in (4.18), we get 

(4.23) S+ < (1 - 4vo/3)2d S ( ) e 
n=p 

00 

= C2 dI Jr2A = Cj2 dIr2 ( 2)-1 
n=p 
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This is (4.20). To prove (4.21), we observe that r < 1 implies that 

1 9 9(4d2_ 9d2 

p(p + 1)?8p2 8 Ve2 ) 2e2 

Hence, 

pplS+< C02 dr2p (I _r2) -11 C02= 9 c2 
AP(P+ o()02 2e2 0 

and (4.21) follows. 

Corollary 4.1. Let (d, S) be as in (3.12). Then for r = e/(2pd) < 1, 

(4.24) 1(d, S) < C2d1/2 rp(j- r2)-1/2, C2 = (C2 + C2)1/2. 

Remark 4.3. The asymptotic rate of convergence with respect to p in (4.20) and 
hence (4.24) is optimal up to a constant depending on d, since by (4.16), 

00 

112x ? E 0 (n, d) e-2i(z-((z)) . S-. 

n=p 

Using the upper bound in (4.18) yields 

-? (1- 2uo)2E(d2?-2<2 e-2/dr2A 
n=p 

> (1- 3)2e- 2/dd-1 (1 + Z2)-1/2 r2n 

n=p 

(1 4U (I1 + 4/e2 2 e- /d-1 rP (I -r2 

since z= (Ad)-1 < (Pd)-1 < 2/e. Hence, 

1-U -X 'o > C3 e-l/d d-1/2 rP(1 - r2)-1/2 

Now X is the same polynomial as in Lemma 4.1, so that (4.5) holds. Comparing 
the above estimate with (4.20), we see that (4.20), (4.24) are optimal in p for any 
fixed d> 0 as p -? x0. 

The estimates in Theorem 4.1 are useful for the case that p is large compared 
to e/ (2d). Such a situation arises in the next section, where this theorem will be 
applied. In actual practice, if d is small, then it can be difficult to ever be in this 
asymptotic range of p. The computational results in ?6 show that convergence is 
observed in the preasymptotic range p < e/(2d) as well. Therefore, we now obtain 
estimates for the rate of decrease of the error in the range 3/(4d) < p < e/(2d). 

In Theorem 4.1, we used the bounds (4.18) as well as (4.19), the latter being 
sharper for the range p < e/(2d), i.e., z > 2/e (see Figure 1). It is seen that the 
two lower bounds for z - ((z) in Lemma 4.4 intersect at the root of 

2 - 43 21?ln(2) =0, 

i.e., at z* = 0.51388... , which is close to 0.5. Our estimate will therefore be valid 
for z > 0.5, i.e., in the extended range 3/( < p < 2/d. 
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Theorem 4.2. Assume that 3/(4d) < < 2/d. Then, for u= Ul,d, there exists 
a polynomial X E llp4I) such that x(?l) = u(+1) and 

(4.25) -U x H <02 + ? exp(-2p2d/3) + C3 dl(e/4)4/d, 

(4.26) 11U-x 11 < 8C2 (p +? 
3 

exp(-2p2d/3)+ ? C3 d(e/4)4/d. 
'8 4dI 15 

Hlrere the constants Ci are independent of p and d (and are given in the proof below). 

Proof. Let us define the index sets 

Ii(d)={nEN:jp<in<2/d}, I2(d)={nEN:n>?2/d}. 

Then, taking X to be the polynomial in Lemma 4.1, we have by (4.14) 

1u - x'l2 <=Si ? S2, S -E O+(n, d) e-2f(z-((z)). 
nEIl 

The quantities S1 and S2 will be estimated using the lower bounds in (4.19) and 
(4.18), respectively. First, by (4.19), 

(4.27) S1 < 0 0+(nd)exp - 2n ( 2z I 
nEII (d) 

where, since n E 11(d), we have 0 < z-= Ad < 2, so that 0 < z-3 < 4z-1. Hence, 

1 _ 1 1 _1 _ 1 
2z 24z3 -2z 6z 3z' 

and (4.27), (4.17) give (with CI = (1 - 4vo/3)-1 as in (4.23)) 

Si < C i 
n(l + ii2d2)-1/2 e- A2d 

nEI, (d) 

Now the function xe-3xd attains its global maximum at x = 3/(4d) and is 
decreasing for x > 3/ (4d). Hence, 

Si?01 > n e-3nd<Ci (pe-25 d?JA + / xe-3 ddx) 

nEIi (d) 

< C P+ - e d 
4d/ 

For the term S2, we use (4.18). Noting that ii-1 < d/2, we have 

E O+ ( id)( < 03d-1 E (e)2f 
ih>2/d fA?2/d 

where 03 = (1- O)-2 (4)1/2. Summing the geometric series leads to the last term 
in (4.25), where C3 = 03(1 - e2/16)-1. 

For the L2 estimates, (4.15) gives 

HlU - x112 <Si ?1 +2, S Z n(n + 1) O (n, d ei 

nEIj(d) ?(~?1 
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It is easy to see that 

1 9 S < 
(P + ?1)S 

< 8p Si 

16 - d2 15 Also, for n E I2(d), wehave n(n+?1)> > d for d<1, so that 
- 4d2 4d2 

4d2 
S2 < 5 S2. 

The theorem follows. E 

Theorem 4.2 leads to the following corollary. 

Corollary 4.2. For 3/(4d) < P < 2/d, 

(4.28) 1(d,S) < C4 e- 3 d+C5 
e I 

where the constants Ci are independent of p, d. 

Proof. Using the definition of b(d, S), we obtain from Theorem 4.2, 

3~~~~~~~~~ (4)(d, 
S <2 + 

34d) (d + ) e- 
432d2+ C3(e)d 

Hence, (4.28) holds with C52 = 419C3 and 

d 2 3 9 ~-I27p <2 4P1 3P- + 9 2 

C1 (p +4d+ P +3 d) < C1 (4- +2 -1+p-1+ 8) < Q4 4 8 32 d 1 / 

We see from Corollary 4.2 that for small d, since the term C5 (e/4)2/d is negligible, 
the first term C4exp(-(p2d)/3) in (4.28) will dominate. Hence, the error will 
decrease at an exponential rate in this range when p2d/3 is large enough. For 
p > e/(2d), a better estimate may be provided by Theorem 4.1. When p2d/3 is 
small (i.e., p = Kd-2 ), the estimate (4.28) deteriorates. We will therefore establish 
another bound, which is valid in the range 1 < p < Kd-2 . First, we prove the 
following lemma. 

Lemma 4.5. There exists a unique polynomial X E Hp(I) that minimizes KJXilo 
subject to the constraints x(?I) = a&. This polynomial X satisfies 

(4.29) 1 max(Ja+J, lJj1) < 1XI < Cmax(JaI+J, -j) 
C p <Iio?C p 

(4.30) llxiii < C max(Jai+J, ja- J)p, 

with C > 1 a constant independent of ai, p. 

Proof. We may write X in the Legendre series expansion satisfying the end con- 
straints, 

p p 

X(x) = EakPk(X), Zak()k -a. 
k=O k=O 
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Introducing Lagrange multipliers for the constraints, we get the minimization prob- 
lem 

P P P 

min F(d', A+, A-_) = Wka2 + A+ ( ak- a+) + A- (1 ak (_1)k a-a), 
aA~~~,A k=O k=O k=O 

where Wk = 2/(2k + 1). Let A = p(p + 1)2(p + 2)/4. Then it may be shown that 
the unique minimizer for the above is given by 

)A? 
2 A ( (-I)p (P + I) _ c.? (P + W)2 

ak 

? 

+ 
(-I)ka-) 

((p + 
1)2 - (-i)p+k(p 

+ 1)) ak = 
~~~~2Awk 

from which the bounds for HX o in (4.29) follow easily. The bound for HXi follows 
by the inverse inequality for polynomials, 

IXlI < Cp-211XHyO. C] 

Theorem 4.3. Assume that 1 < P < Kd-2 for some K (which may depend upon 
P, d). Then for such p, d, 

(4.31) 4) (d, S) < CKp-, 

where the constant C is independent of K, p and d. 

Proof. We note that for any X E Hp(I) satisfying x(?l) = Ul,d(?I), 

(d, S) < C(ul|,djjd + dIX11 + H1X1o). 

We use (2.9) to bound 1Ju1,dld and choose X as in Lemma 4.5, with a?- = Ul,d(?I)- 

Then we obtain by (4.29), (4.30), 

(4.32) @(d, S) < C(dl + dp + p-1). 

Now since p < Kd-2, we have d2 < KP-1. Substituting this in (4.32) gives 
(4.31). 

Let us now put together the results of Theorems 4.1-4.3. The following theorem 
shows that the spaces S(Z) = Hp(I) approximate boundary layers U1,d robustly 
at the rate G(p) = Cp-1lnp in the energy norm (in the sense of Definition 3.2). 
Moreover, the best robust rate possible is Cp-1, so that the result established is 
optimal up to a factor /np. 

Theorem 4.4. Let S(Y) = Hp(I) . Then 

Cp-1 < G(p) = sup b(d, S) < Cp-1 V/np, 
dE (0, 1] 

where C is a constant independent of p. 

Proof. Let d E (0, 1] be arbitrary. Suppose first that 

l ,/ np 4d'~ _ - d 

Then by Theorem 4.3, with K = 3 lnp, we have in this range 

(d, S) < CKp-1 < Cp-1 lnp 
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Next, for 3/(4d) ? P/(2 lnp) ? 2/(2d/lnp) we may use Corollary 4.2, by 
which 

J?(d, S) < C4eP2 d/3+ C5 (e) d 

Since P/(2/lnp) > 3/(4d), we have p2d/3 > lnp, so that exp(-p2d/3) < I/p. 
Also, since 2/d > P, it follows that (e/4)2/d ? (e/4)P < p-1. Hence, 

(4.33) 4)(d, S) < Cp- 1 

in this range. Finally, it is easy to see that the estimate for 1b(d, S) for the range 
j3> 2/d, given by Theorem 4.1, also satisfies (4.33). 

To establish the lower bound, we note that by the triangle inequality, for any 
X E Ip(l) with x(?l) = u(?), 

(d, S) > H|X|ld - |Uld 

> 1XIHo - lU~ld. 

If d -+ 0, then IuIld -+ 0. But, by Lemma 4.5, HjXjjo > Cp-1, giving the result. E 

Suppose the p version is used with a fixed mesh for problems (3.1). Then the 
rate F(N, k) in (3.11) satisfies 

F(NI k) < Cp-(k-1)j 

so that the first infimum on the right side of (3.10) will certainly be less than Cp-1, 
uniformly in d whenever k > 2. Using Theorem 4.4 on the whole interval [-1, 1], 
we can bound the infima involving boundary layers uniformly by Cp-1 lnp (the 
fact that we have more than one interval can only enhance this rate). Hence, the 
p version is robust with uniform order Cp-1 lnp. Moreover, this robust rate is 
optimal up to lnp, since for d -> 0, the approximation of the boundary layer terms 
in the end intervals cannot be better than Cp-1 by Theorem 4.4. We therefore have 
the following result. 

Theorem 4.5. The p version with fixed mesh for problems (3.1), 0 < d < 1, is 
robust with uniform order g(p) satisfying 

Cp-1 < g(p) < Cp-1 lnp 

with respect to solution sets H"M (or HgII) and error measure the energy norm. 

Remark 4.4. In terms of the number of degrees of freedom N, we see that g(N) 
N-10ln N. This is essentially twice the best uniform rate of N-1/2 that can be 
attained using the h version with a quasiuniform mesh [13]. Hence, the "doubling" 
phenomenon for the rate of convergence for the p version, which is well known for 
the case that (x + 1)' type singularities are present at x - -1 (see, e.g., [3]), 
also occurs when the solution contains boundary layer components of the type 
exp(-(x + 1)/d) at x = -1. 

5. APPROXIMATION RESULTS FOR AN hp VERSION 

In the previous section, we showed that the p version over a single element yields 
a super-exponential rate of convergence for P > e/2d. Also, the error decreases at 
the (exponential) rate exp(-p2d/3) in the preasymptotic range 3/(4d) < P < 2/d 
for small d. Unfortunately, in practice both these ranges may be difficult to achieve 
if d is small and p is restricted (p < 8 is typical in programs such as MSC/PROBE 
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and STRESSCHECK), so that all that may be observed is the uniform rate of 
0(p-1lnp) predicted by Theorems 4.3, 4.4. In this section, we show that if only 
one extra element of size O(pd) is inserted in the boundary layer, then robust 
exponential convergence is achieved uniformly for 0 < d < 1 as p increases. Since 
the mesh is changed at each step when p is increased, we call this an hp version 
FEM (more appropriately, it is an rp version FEM). Naturally, if the polynomial 
degree p is sufficiently large, we have to allow a transition to the single-element 
mesh analyzed in Theorem 4.1. 

A more general question that could be considered is, given N degrees of freedom 
(N as in (3.6)), for what mesh-degree combination Z (i.e., choice of SD) is the 
error minimized? We do not consider this theoretical question here, since the 
simple two-element mesh below already gives exponential convergence, uniformly 
in d. This mesh is easier to implement than a general hp version, and moreover, in 
computational experiments performed using meshes with more elements, we were 
unable to achieve better convergence rates (see ?6 and [20]). Note that the mesh- 
degree combination we propose is similar to the optimal mesh-degree combination 
obtained for a related problem by Scherer in [14] (see Remark 5.2). 

The following theorem is our main result in this section. 

Theorem 5.1. Let I = (-1, 1) and u(x) = Uld = exp(-(x + 1)/d). Let further 
E = (A, pj be such that for p > 1 

p = {p 1}, A = {-1,-1 +?qPd, 1} if jpd < 2, 

P ={p}, A={-1,1 } if ,pd > 2, 

where 0 < io < is < 4/e is a constant independent of p and d. Then there exists 

up E S(Z) such that up(?1) = u(+1) and 

(5.1) 

1u- Up|ld < d'12C6 Ce', 1U - Uplo < d1/2C7 6w', 11U/-UpO ? d-112C8 06P. 

Here the constants are independent of p and d but depend on iso and 

(5.2) e/(2pd) if tpd > 2, 
(5.2) 

a 
max {e/4, e-('-)} if ,pd < 2 < 

with c > lnp/(2p) arbitrary. 

Proof. If ,pd > 2, we have that r = e/(2pd) < 1, owing to our assumption that , < 
4/e. Therefore, Theorem 4.1 is applicable, and a p-increase in the single-element 
mesh A = {-1, 1} yields exponential convergence with the number r decreasing 
with p. 

Consider now the case ,pd < 2, i.e., the two-element mesh \ = {-1, -1 + 
ipd, 1}. We assume first that P > 2/io0 and construct the function up(x) E S(E) 
elementwise. Denote I1 = (-1, a), where a = -1 + ,pd, ro ? r, < 4/e, and let 
Si E Hp(Ii). Transforming I1 to I = (-1,1), we see that for t = 0,1, 

J dxt ) cd) J dy ) 

Here, f(y) denotes the image on I of any function f (x) defined on I1 . Consequently, 
we obtain that ii(y) = exp(-(y + 1)sjP/2) = u1j(y), where d = 2/lip. 
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Since , < 4/e, we have r := e/(2pl) = ie/4 < 1. Now Theorem 4.1 and Corol- 
lary 4.1 apply uniformly to functions u Uld for all d E (0, 1]. Since P > 2/,o > 

2/ we have that d < 1, and hence Theorem 4.1 and Corollary 4.1 will apply when d 
is chosen to be d. Then, since r < 1, we obtain a polynomial sp E Hp(I1) satisfying 

(5.3) sp(-1) = u(-1), sp(a) = u(a 

and 

(5.4) I-dt(usp)HoI2 <C2 / (1- 
t = - r2) 

(5.5) (d 211U -_ S12,J1 + 11U - Spl21 1 )1/2 < C2 d1/2 r( 

This gives the asserted bound on I1 in the case p > 2/io. Since this excludes only 
finitely many values of p, these estimates hold for all p after possibly adjusting the 
constants Ct, t = 0, 1, 2 in (5.4), (5.5). 

As noted in Remark 4.1, the approximation sp(x) constructed via Lemma 4.1 
is optimal in the I 11 seminorm but not in the 11 * mid norm. For fixed d > 0, 
Sp yields the optimal-order error as p -4 oc, but is suboptimal as d -4 0, owing 
to the enforcement of the interpolation condition (5.3). Therefore, we modify sp 
as follows: let up = SP - Si + s1, where si is the linear interpolant of u1,d(x) at 
x = -1 and x = a, and s1 is a linear function such that 91(-1) = u(-1) and 
s1 (a) = max{d1/2u(a), u (1)}. Then 

(5.6) Hu- UplldJ1 = U- (Sp - S1 + 1)lldI1 

< |U - Spld,11 + ||S1 - SlldJ11 

The first term was estimated in (5.5), so we estimate the second term. We have 
Pa 

-S _ gl)2dx < max I 
(Si _ l)(x)2 (1 + a) i- 1<x<a 

< d1)u(a) 12 (I + a). 

Since 1 + a = ,Pd and u(a) = exp(-(a + 1)/d) = exp(-lip), we get 

Si _-s Ho1I1 < e-2 K,,5d. 

Also, 
a e -2 K,, 

(S 
g /)2 dx < (I _ N/) 

2 lu(a) 12 
(I+ a)- < p 

Hence, 

dls' - 9lo,I1 < He P 

and altogether 

1 K 
(5.7) <s -slld2 d p?+ e 

< d2 ( + 1) 2(K-E)P 
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for any e > 2-n (c = works for all p). Then, from (5.5)-(5.7), 
foranyc>2 

2j3 

(5.8) ||U - upH|1 ? < Co2 d { (-)P + e- 

Next we consider 12. Here we select up C HI1(12) to be the linear interpolant 
between max{d1/2u(a),u(1)} at x = a and u(1) at x = 1. One verifies that 

(5.9) up(x) = (u(1) - max{u(1), Vd u(a)}) ( + max{u(1), Vd u(a)} 

No 2e-> 2>- 1ndl ___ __ (4 - e1) 
Now let 2 > P > - 1 Then, since nd< 2 we have P > 

i, d - 
- d 2 r 2K ~2Kd'w- 2rd 

in this range. Also, 

u(l) > Vd u (a) and 1- a < 
I In 

d1 < In (4PK d) 2 
- 2 - 4(4- e1)} 2 

Hence, 

1 1 In~ 
2~ ln e2'P (5.10) ju dx < U2(1) 2d < -In ( 

2 
)) 

< de 2( -E)p 

j u) = 0. a 
Next, forp < 2 _ lndI 

id 2 ,< 

u(1) <V u(a) and 1 < 2 uka) 
1I-a 

- 
dI Indl' 

Hence, 

(5.11) up dx < ( u(a))2 (1 - a) < 2de2'P, a 
2d u 2(a) 2e-2 Kj, 

J Ip) lndd 
d 

n- lid 

For d < e-1 this gives 

(5.12) d2 j (uD)2dx < 2d2e-2KI a 
For e-1 < d < 1 we have by (5.9) that 

(Up)2 dx < 2 ((u(1)-u(a))2 + (1 _ Vd)2 U2(a) 

By the Mean Value Theorem, there exists E [a, 1] such that u(1) -u(a) = 

u'()(I - a), so that 

(5.13) d2 a(u )2dx < 2e (d )(1-a) + 4d(1- 

< C2de -2K 
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uniformly as d -4 1, where 02 may be explicitly evaluated. Hence, we conclude by 
(5.10)-(5.13) that 

(5.14) 
I 
|Up11| 2 < C3 d e-2 (K h~i )p. 

Also, it is easy to verify that 

(5.15) IuI12 
? de 2Kii 111 < e2 ~i~ 

(, I2 2 e U 0, I2 - de P 

so that by (5.14), (5.15) and the triangle inequality, 

(5.16) |u - up||i2 < 04de 2('i ) p. 

Then the first inequality in (5.1) follows from Theorem 4.1, (5.8), (5.16). The other 
two inequalities also follow from the estimates above. E 

Remark 5.1. The constant 1s in Theorem 5.1 could be selected such that e,*e = 
4e- , which yields a* 0.71. This gives oa em* in (5.2) when two elements 
are being used. This value for a,* is, however, not optimal since it is obtained by 
optimizing some upper bounds. The optimal choice of r, is numerically addressed 
in ?6 ahead. Use of the above value of a*, however, simplifies the bounds above. 

Remark 5.2. The choice of E = (A, P) used in Theorem 5.1 is similar to that 
obtained by Scherer in [14]. He considered the best mesh-degree combination (for 
a fixed number of degrees of freedom N) that would minimize the L' error of best 
approximation (by discontinuous piecewise polynomials) of the function e-x on the 
interval [0, oc). He was able to solve this problem explicitly - the asymptotically 
optimal Z was given by A = {0, qo(p + 1), oo}, II = {p, 1}, where p = N - 2 
and qO = 0.89548641.... For this Z, Scherer showed that the asymptotic L' 
convergence rate was e-qoN = e-qo(P+2), which (up to an algebraic factor in N) 
was, asymptotically, the best possible for any mesh-degree combination. 

We can also deduce pointwise error bounds. 

Corollary 5.1. Under the assumptions of Theorem 5.1 we have 

(5.17) H- U Up|oo() < C9&e 

with oa as in Theorem 5.1. 

Proof. This follows from (5.1) and the interpolation inequality 

|IVIILOO(I) < 2||vl /11(I) 11V" 12 (I)- 1: 

Remark 5.3. The estimates in Theorem 5.1, Corollary 5.1 are obtained using poly- 
nomials of degree 1 in 12. They evidently remain valid if 12 is subdivided and/or 
the degree p is greater than 1 in 12. 

Theorem 5.1 says that it is sufficient to use two intervals of the type described to 
resolve boundary layers with a robust exponential convergence rate. As discussed 
in ?2, the solution will typically have other (smoother) components as well. For the 
approximation of these components, the mesh-degree combination of Theorem 5.1 
will typically not be sufficient and will have to be enhanced (e.g., by subdivision 
or p-increase in element 2). This enhancement will ensure that the rate F(N, k) 
in (3.11), which measures the approximation of these smoother components, is 
sufficiently rapid. For solutions in Hd M the robust rate of convergence g(N) of 
the hp version will then be given by (3.14), where G(N) represents the exponential 
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rate (5.1). As noted in Remark 3.1, the overall rate will be exponential only if 
the smooth components are also approximated exponentially. One such case occurs 
when f is a polynomial, as noted in the theorem below. (Note that we have a 
boundary layer at each end-point now.) 

Theorem 5.2. Consider the hp version for problem (3.1), 0 < d < 1, with Z = 

(A, pj given by 

(5.18) Pi= {p'p'p}' A= {-1,-1+jPd,1-jPd,1} if jPd <1, 

P={pp}, A={-1,0,1} if fqd>1, 

where r, is as in Theorem 5.1. Let oa < 1 be defined as in (5.2) (with the condition 
rpd < 2 replaced by ,pd < 1). Then there exists a constant C > 0 independent of 
p and d such that with respect to solution sets H g and error measure the energy 
norm, this version is robust with uniform order g(p) = Cd1/2ac# for p > n. 

Proof. The theorem follows easily by (3.10), Corollary 2.1 and Theorem 5.1. E 

6. NUMERICAL RESULTS 

In this section, we present the results of numerical computations for the model 
problem (1.2)-(1.3), where: 

(6.1) f (x)-_=1, ax+ =a- = O. a = 1. 
The exact solution is then given by 

(6.2) Ud(X) = 1- cosh(1/d)' 

so that 

(6.3) JjUd1d = Bd(UdUd) = (1,ud) = 2- 2dtanh(1/d) = 0(1). 

Note that since f(x) is a polynomial of degree 0, Corollary 2.1 applies. Noting 
(6.3), we conclude that the relative error in the energy norm, 

ER(d) = JjUd - Ud'd/jHUdjjd, 

should behave like P(d, S) given by (3.12). All graphs shown in this section will 
depict ER(d) versus the number of degrees of freedom in the finite element method. 
The value of d (and, where applicable, of a,) will be stated with the figures. All 
computations were done in double precision on an SGI indigo2 workstation using 
MATLAB 4.1. 

We first consider the p version over a single element. Figure 2 shows ER(d) 
plotted versus the number of degrees of freedom N = p - 1, for various values of d, 
in a semilog scale. By Corollary 4.1, for P > e/2d, the error will be in the asymptotic 
(superexponential) range. This is only reached, however, when p 13 for d = 0.1, 
p 136 for d = 0.01, p 1359 for d = 0.001 and p 13,591 for d = 0.0001. We 
see that, except for the first value, none of the rest can be considered as within a 
practical range of p. For d = 0.1, however, the graph in the semilog scale of Figure 
2 is close to a straight line for p in this range, showing agreement with the theory. 

Turning to the case d = 0.01, we note that Corollary 4.2 predicts for d small and 
3/(4d) < P < 2/d, i.e., 5 < p < 200, that log(ER) should behave like -y 2d, 

where -y > 0 is independent of d (the value of -y in Corollary 4.2 is 1/3, but this may 
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FIGURE 2. The p version with one element 

not be optimal). Hence, we should observe a parabolic curve for d = 0.01 when p 
is large enough. Again, the graph in Figure 2 is consistent with this bound. 

As d becomes even smaller, the error in Figure 2 is seen to deteriorate further. 
For 1 < P < Kd- 2, Theorem 4.3 predicts a convergence rate of only CKp-1. This 
is precisely what is observed in Figure 6 (d = 10-3 ) and Figure 7(d = 10-6) ahead. 
The graphs are now in a log - log scale, and we observe straight lines with slope 
-1. The "doubling" over the rate of convergence with the uniform h version is also 
clearly apparent from these figures. 

Let us now consider the hp version, i.e., the p version on a variable mesh. Since 
our model solution (6.1) has a boundary layer at each endpoint of the domain, the 
minimum number of elements as in Theorem 5.2 will now be 3, with Z given by 
(5.18). (Since f is a polynomial of degree 0, we can actually take the minimal 
degree vector to be f = {p, 1, p}.) From Theorem 5.2, we have the error estimate 

(6.4) ER < C(ti)d1/2aN/2, N = dim(So(Z)) = 2p + 1, 

with oa given by (5.2). The experiments in Figure 3, obtained with i, = a* = 0.71, 
clearly show the uniform exponential convergence as well as the factor d1/2, since 
log(ER(d)) plotted against N is a straight line, which translates downwards as d 
decreases. By Remark 5.1, for i, = 0.71, we have oa e-0 71 for p large this is 
the same value that emerges by measuring the slopes in Figure 3. Note that the 
striking accuracy obtained for small d is not possible with a comparable number of 
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FIGURE 3. The hp version for three elements with K, = 0.71 

degrees of freedom and methods based on a single element (see, e.g., the results in 

[7, 5]). 
In Figure 4, we investigate the convergence of the three-element hp version for 

different values of a,, when d = 10-6 (other values of d show similar results). We 
observe that i, = a* = 0.71 is not quite optimal, since 1s = 1 gives better results. 
Careful examination shows that the graph for 1s = 1 consists of two linear pieces 
with different slopes. This is due to the fact that initially, the error in the central 
interval is dominant, so that the value of oa in (5.2), (6.3) is close to e-K. As p 
increases, the size of this interval decreases and the error in the other two intervals 
eventually dominates, with a behaving like ie/4. (Recall that we obtained ,* by 
setting em equal to ,e/4, so that only one straight line is observed in this case.) 

Finally, in Figures 5 - 7, we show a performance comparison between the various 
methods for d = 10-2, 10-3 and 10-6, respectively (smaller values of d up to 
10-8 were tested, for which the behavior was similar to d = 10-6). In these 
figures, we have shown the results with four methods: (a) the p version with one 
element, (b) the h version with p = 1, (c) the hp version with 3 elements taking 
pi= (p,p,p) and r, = 1 and (d) the h version (taking p = 1) with the exponential 
mesh A = {-1,xj,... ,Xm-1, 1}, where, for m even, 

(6.5) X 2 = Tdp Iln(1-c), i0,... m 2' 
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FIGURE 4. The dependence on parameter 1s 

with c = 1 - exp(-l/(dp3)). The mesh (6.5) is derived in [16, 20]. We observe the 
following. 

(i) The uniform h version converges with order (9(N- 1/2), the p version on a 
single element with order O(N-1), and the h version with exponential mesh 
at the optimal algebraic rate of O(N-1). 

(ii) Both the h version with exponential mesh and the hp version have an error 
which behaves like 0(d'1/2) in dependence on d. The other two versions do 
not display this translation as d --+ 0. 

(iii) For d = 102, the p version rapidly reaches a superexponential rate, and even- 
tually becomes the method with the fastest convergence. Asymptotically, i.e., 
for i,3d > 2 and fixed d, the p version with a single element will always have 
the best convergence rate according to Theorems 4.1 and 5.1. Accordingly, 
Theorem 5.1 indicates that at about ,'ijd = 2 one must switch from the hp ver- 
sion to a single-element p version. For d = 10-2, this is apparent in Figure 5, 
where the one-element p version becomes superior at some point. However, as 
is clearly visible in Figures 6 and 7, this point may occur so late that the only 
feasible method (in the practical range of p) is the three-element hp version. 



1426 CHRISTOPH SCHWAB AND MANIL SURI 

d=1 0"(-2) 
100 

h-versionunif. mesh,p=1 

010 

-iO2 
h-version 

z non-unif. mesh 
p=1 

X 10- 

10 i 

h*-v 3 i p-version 

2 

> 10 

10 

1 ~~~~~~~~hp-version,3 elem 

0 10 

100 101 
Degrees of Freedom 

FIGURE 5. Comparison of various methods, d 10-2 

APPENDIX 

We prove Theorem 2.1. For M E N, we define 

M 

(6.6) WjM(x) = Ed2ka-2k-2f (2k)(X). 

k=O 

Then we see, using (1.2), that RdM = Ud - WM satisfies 

(6.7) LdRd = f - LdM = (d/a)2M+2f (2M+2)(X) =(). 

For M large, we see that wdM will satisfy (1.2) up to the correction g(x). However, in 
general, the boundary conditions (1.3) will not be satisfied. We therefore introduce 
appropriate boundary layer terms to enforce (1.3). For this purpose, we define 
UBL (X) to be the unique solution of 

(6.8) LdU BL(X) = 0 on I, 

(6.9) uBL (?l) = C :=o6 ka? -a-2k-2f(2k)(?l). 

Then with Ua,d and U1a,d as defined in (2.4), we may verify that 

(6.10) UkBL(x) = AkUad(X) + BKuad(X), 
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FIGURE 6. Comparison of various methods, d 1o03 

where 

Cj Cje-2a/d 0k C- CIe/d (6.11 ) Ak = 1 -4a/d eBk = 1 -4a/d 

Then we write 
M 

UBL (X) = d2kukL (X) = AmUad(X) + Bd ia,d (X), 
k=O 

where AM - Zk=0 d2kAk and BM = ZL0- d2kBk We see that 

M M 

(6.12) JA " < Ed2kIAkI < (1 - e-4a)-1 Ed2k(Ic-J + ICk+ 
k=O k=O 

with a similar bound holding for IBdMI. Equation (2.7) follows from (6.12) and 
(6.9). 

We now define 
M UL 

rd = Ud-Wd -AdUa,d- Bd ia,d = R 
- -UM 

Then rdM E Ho'(I) and rM satisfies (6.7). Hence, 

IIrMI := Bd(rdm,rd ) = (grdm) < 1110o IIrdMIIE. 
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FIGURE 7. Comparison of various methods, d = 10-6 

From this we deduce (using (6.7)) that 

(6.13) 11rMj'1 < a-1(d/a)2M+2jjf(2M+2)iHO, IrdMlI < a l(d/a) 2M+I f(2M+2) Ho. 

Since rdM satisfies (6.7), we may differentiate (6.7) successively to obtain, using 

(6.13), 

(6.14) 
i-2 

r Mj < ?-al (d/a)2M+2-i jf (2M+2) H0o + a-2 E (d/a)2M+2+k f(2M+2+k) I 

k=O 

where = 0,1, .. ., 2M. Moreover, from (6.6), we see that for 0 = 0.1,.. , 2M 

M 

(6.15) jwgj' < a S(d/a)2kIIf(2k+) Ho. 
k=O 

Define udm = WUm + rdm. Then (2.5) holds. Also, using (6.14)-(6.15), we may 

establish (2.6). 

Remark 6.1. Suppose f E I12M+1(I). Then in (6.7), we have g(x) 0, so that, 

since rdM E HO (I) satisfies (6.7), we must have rM = 0. Hence UM WM and it 
isd - nce)ud d 

is seen by (6.6) that umj E 112M+1 (I). 
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