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ULTRACONVERGENCE OF THE PATCH RECOVERY 
TECHNIQUE 

ZHIMIN ZHANG 

ABSTRACT. The ultraconvergence property of a derivative recovery technique 
recently proposed by Zienkiewicz and Zhu is analyzed for two-point boundary 
value problems. Under certain regularity assumptions on the exact solution, 
it is shown that the convergence rate of the recovered derivative at an internal 
nodal point is two orders higher than the optimal global convergence rate when 
even-order finite element spaces and local uniform meshes are used. 

1. INTRODUCTION 

In the finite element history, there have been many investigations on derivative 
recovery techniques. For the literature, the reader is referred to [2] and references 
therein. Recently, Zienkiewicz and Zhu proposed a patch recovery procedure in 
which the recovered derivative is obtained by discrete least squares fitting on an 
element patch. What distinguishes this new recovery technique from the others is 
its practical effectiveness. The recovered derivative at an internal nodal point is 
simply the weighted average at some Gauss points in the adjacent elements. The 
computational cost for this postprocessing is almost free. 

A surprising observation from numerical tests is that we can actually get an 
ultraconvergence (two orders higher) result based on the superconvergence (one 
order higher than usual) data. An 0(h4) convergence rate has been reported for 
the recovered derivative at the internal nodal points when quadratic elements and 
uniform meshes are used. It has been conjectured that ultraconvergence will occur 
for any even-order finite element space (quadratic element has order 2). The current 
work is devoted to the theoretical justification of this astonishing phenomenon. We 
shall prove, for a certain class of two-point boundary value problems, that the 
recovery procedure will result in ultraconvergence internal nodal recovery when 
local uniform meshes and even-order elements are used. 

2. THE PATCH RECOVERY TECHNIQUE 

Consider the following two-point boundary value problem: 

(2.1) -(a2(x)u')' -(ai(x)u)' + ao(x)u = f in I = (0,1), 

(2.2) u(O) = u(1) = 0. 

We assume that ai and f are sufficiently smooth for our analysis. We also assume 
that a2(x) > o > 0 for all x E I. 
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The weak formulation of (2.1), (2.2) is to find u E Ho'(I) such that 

(2.3) (a2uv') + (au,v') + (aou,v) = (f,v), Vv E Ho(I). 

Let Th, 0 < h < 1/2, be a sequence of subdivisions of I, 

Th = {Xi}I'0, O=Xo <X1 < ** < X=1; 

denote Ii = (xi,-xi), hi = xi-xi , h = max hi, and set 

Sh = {v E H1(I), vJ1, E Pr(Ii)}, So = {v E Hol(I), vJI, E Pr(Ii)}. 

We see that Sh and SO are the spaces of continuous piecewise polynomials of degree 
not exceeding r on I under the subdivision Th. 

The finite element solution of (2.3) is to find Uh E SO such that 

(2.4) (a2uhv') + (aluhv ) + (aouhvV) = (f,v), VV E So. 

In order to define the recovered derivative, we introduce the Gauss points and 
the Lobatto points. 

Let Lr (x) be the Legendre polynomial of degree r on [-1, 1]. It is well known that 
Lr(x) has r zeros and L' (x) has r -1 zeros in (-1,1). Denote by g(r) . gr) the 
zeros of Lr(x), and by l1r), . (r) the zeros of LJ(x) with 1(-r) = 1,l6r)=1; then 

(r) 1... ,r, are called the Gauss points of order r and 1jr) I j = 01 1 . ... r, ji1 = ponsr 3(). ,,. 
the Lobatto points of order r. 

The Gauss and Lobatto points on Ii are defined as the affine transformations of 
(r) and 1jr) to Ii, respectively: 

Gi= 2(xi-, + xi +hig)) j =1,... r, 

1 
Lij = 2(xi- l + Xi + hiljr) ) j =01 1 )...,r 

Here the index r on Gij and Lij is dropped in order to simplify the notation. 
In general, u' is a piecewise polynomial of degree r - 1 and is discontinuous at 

the nodal points xi, 1 < i < N - 1. The recovered derivative by the patch recovery 
is a continuous piecewise polynomial of degree r (as Uh), Ru' E Sh, which is 
uniquely determined by its values at the Lobatto points. The values of the recovered 
derivative at the Lobatto points are obtained by the following least squares fitting 
procedure. On the element patch 

Ji = Ii U {xi} U Ii+i, 

consider a polynomial of degree r, 

p*(x) = (1x, . . . , x)a. 

The vector a = (aO, a,... . ar)T is computed by fitting, in the least squares sense, 
U/ at 2r Gauss points {Gij, Gi+i,,}>ir= in Ji, i = 1,... , N - 1. Then the values of 
Ru' at the Lobatto points are the values of pr at the same points, i.e., 

(2.5) Ru'h (Lij ) = pr (Lij) vj = 1v r; 

(2.6) Ru1(Li+ij) =p*(Li+1 j), j =0 ,... r-1. 
Note that there is an overlapping of adjacent element patches, i.e., Ji-1 n Ji = Ii, 
1 < i < N - 1. If different patches result in different recoveries on Ii, an averaging 
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is applied (see [3] for more details). But if the exact solution is a polynomial of 
degree r + 1, we shall show that the two recoveries from adjacent patches are the 
same. 

3. ULTRACONVERGENCE ANALYSIS 

The first step of our analysis is to reduce (2.4) to a simpler problem. Subtracting 
(2.4) from (2.3) yields 

(3.1) (a2 (U - u'), v ) + (a, (u- Uh), v ) + (ao(u - h), V) = O. EV E Sho 

Let uh E Sh be given by 

(3.2) (u' -iv ) =0, VvESho 

Then we have the following "superapproximation" and "ultra-approximation" re- 
sults between uh and iih (see [2, Theorem 1.3.1 and Remark 1.3.1]): 

Lemma 3.1. Let Uh, uh satisfy (3.1), (3.2), respectively. Then there exists a con- 
stant C, independent of h and u, such that 

(3.3) jjuh - uhIIL(I) < Chr+1lIIaIWr+1(I)* 

For the special case when r > 2, a2 = 1, and a, = 0, we have 

(3.4) Huh - uhIIL.(I) < Chr+211|uWr+l,(J). 

By virtue of Lemma 3.1, we can reduce our discussion to a simple case: 

-u" = f in I= (0,1), u(O) =u(1) = 0; 

or 

(3.5) (U' 0' f v), Vv E Ho (I), 

since the finite element solution of (3.5) satisfies (3.2). 
In the following, we shall construct the finite element solution uh E Sh for 

(3.5) and prove superconvergence and ultraconvergence properties of the recovered 
derivative. 

We characterize Sh by the following basis functions (cf. [1, p. 38]): 

Sho = Spanf Ni (x), i= 1, 2,.... ., N -1; Ojk W i i = 1, 2, ... ., N. k = 2, 3, . . ., 

Here, 

I1 + (x -xi)/hi, x E Ii, 
Ni(x) = 1 + (xi -x)/hi+,, X E 1i+11 

10, otherwise 

is the usual finite element "tent" basis function, Ojk is a "bubble" function with 
support on Ii and its value on Ij is defined as follows: 

Ojk(X) = k(Xj = k), E (-1,1), 

where 

k(() = 2k 1 J Lkl(t)dt, 
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and Lk1 is the Legendre polynomial of degree k - 1. Observe that 

Ok(-l) = Ok(l) = ?, O' 01() O' 01 k(Xl(d k 1. 

We then have, 

rl~~~ 

(.)(X h 1) = Njk(xj) +uoxy)Ni(x) +Ziktdx =x) 

k=2 

where 
Cik = fiAik= i k) 1 

Theorem 3.1. Let u be the solution of (3.5), and letUh be its finite element ap- 
proximation on SI. Assume that u is a polynomial of degree not greater than r + 1 
on an element patch Jo = (xoi,xi+i). Then RuI = u' on Ja. 

Proof. From (3.6), we have, on IA, 

S r~~~ 

(3.7) U (X) = C 1 + Cuki) k (x)+ 

k=2 

where 

Ci = (U',xi/ x (Xii, XiJ = 
hix)- 

and XI, is the characteristic function of 3. By the definition of eitk, e see that 

Span{XI (x),t pk(x)h k = 2, ... ,Trh + 1} = Pr(Ii)o 

When u E Pr+i(Ji), we have u' E P,(Iu), and therefore 

r+1 F0 
u'(X) = Cu il + S: U' ' 

-i) 

k=2 (i'k O k= 

(3.8) r+1 (-u",cf'uk) = (Xi) Cii+X 

= c{Xi (x) I: k (X'vk = 2, h . . . C, + 1 } i, = Pr (I W 

U()= C21 + E (c/t he 2k hkI, 

k-2 Wik' Oik)i 

Note that ,i r+l(x) is linearly dependent on the rth-degree Legendre polynomial 
on Ii; therefore, it vanishes at the r Gauss points gik of Ii; i.e., Oi 4r+1(gik) = 0, 
k= 1,... ,r. Hence, 

(3.9) Uh(gik) = U'(gik), k = 1, , r. 

Applying the same argument on Ii+1, we have 
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Recall that Ru' is a polynomial of degree r on Ji and fits u', a polynomial of the 
same degree, in a least squares sense at the 2r (r > 1) Gauss points on the element 
patch Ji (since u' equals u' at these points). Therefore, Ru' = u' on Ji. D 

A direct consequence of Theorem 3.1 is the following superconvergence property. 

Theorem 3.2. Let u be the solution of (2.3), and let Uh be its finite element ap- 
proximation on So. Then there exists a constant C, independent of h and u, such 
that 

(3.11) u'(xi) - Ru (xi)I < Chr+ l(JU Wr+2(J ) + ||UHJWr+1(I)). 

For the special case a2 = 1 and a, = ao = 0, we have 

(3.12) iu'(xi) - Ru(xi) ? < Chr+ lIUIWr+2(J). 

Proof. The proof of (3.12) follows from Theorem 3.1 and the standard argument 
by applying the Bramble-Hilbert Lemma. The proof of (3.11) follows from Lemma 
3.1 and (3.12) for the special case. C] 

Based on Theorem 3.1, we can further prove the ultraconvergence result. 

Theorem 3.3. Let u be the solution of (2.3) when a2 = 1 and a, = 0, and let Uh 

be its finite element approximation on So with r (> 2) an even number. If the two 
elements on the element patch Ji have the same length, i.e., hi = hi+,, then there 
exists a constant C, independent of h and u, such that 

(3.13) u'(xi) - Ru (xi)I < Ch+2(HUWr+3(J.) + JJUJJWr+1(I)). 

Assuming further that ao = 0, we have 

(3.14) u'(xi) - Ru (xi)I < Chr+2IUIWr+3(J,). 

Proof. We first prove (3.14). Associated with any interior node xi, i = 1, ... ,N-1, 
there is an element patch Ji = (xi - hi, xi + hi) (recall that hi = hi+1), and a linear 
mapping Fi from I = (-1,1) onto Ji defined by x = xi + hiS. Given any function 
v on Ji, we define 

v = v o F, orv(() = v(Fj(()) =v(xi +hid). 

Now, consider 

(3.15) u'(xi) - Ru (xi) = (u' - Ru , 6i) = hiu'- Ru , Si) = hiE(u'). 

Here, Si = 6 o Fi and 6 is the discrete delta function. Obviously, E(u') is a linear 
functional which is bounded in Woo2(I) We shall show that E(u') vanishes when 
u' is a polynomial of degree not greater than r + 1. 

Let r = 2s; we examine the case when 

(3.16) u(x) _ a( ht )s+l(i+- )s+l, a $0 , 

on Ji. Note that u'(xi) = 0, and u(x) is symmetric with respect to xi on Ji (so is 
u"(x)). By definition, Oik and qi+lk are symmetric (antisymmetric) with respect 
to xi when k is even (odd). Therefore, 

Cik = (-U", qik)/(qik4 qik) = (-U" vb i+1,k)/(Qi+lki 7i+lk) 
= Ci+lk, k = 21; 

Cik = -Ci+1lk, k = 21 - 1. 
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Recalling (3.6), we have, on Ji, 

Uh(X) = aN=(x) + 1Ci,210i,21(X) + E1si Ci,21-1qi,21-1(x), x E Ii Uh~~~~x) = 
aik~ii~) -Z(xC,2iq +,2i1),x1 E =1 Ci,210i+1,21(X)-1=1 Ci,21-10i+1,21-1(X), X EIi+li 

, (x) = Jla/hi + EZ>1 Civ,21id21(x) + E1=1 c i 
,ib21 

(x), x E Ii 

-a/hi + Zs>1 Ci,21i+/+1,21(X) - Zll c i+1i+2-1l(x) x E 

Observe that 

Xi, 
7 

( T) =-t+ l,2l (Xi + T), 
q$',21 -( -T)= 4i,2li(Xi + T), O<T<hi, 

so that 

(3.17) Uh(xi -T) = -u(xi + ?T), 0 < ?r < hi. 

By the patch recovery procedure, 
r 

(3.18) Ruh (xi) = hj [Uh(Gij) + i (Gi~r-j+l)], 
j=1 

where the aj's are weights of the least squares fitting. Note that when hi =hi+1, 
the Gauss points and weights are distributed symmetrically on Ji with respect to 
xi. By symmetry, we see that xi -Gij = Gi+ - rj+l-xi, and we set this value as 
T in (3.17) to obtain 

u' (Gij) = -U' (Gi+ir-j+i). 

We then have from (3.18) 

(3.19) Ru (xi) = 0 = u'(xi), 

when u is given by (3.16). 
Since any u E Pr+2(Ji) (r = 2s) can be decomposed into 

u(x) = a( h )S+l( h 
+ )s+l + w(x) 

for some a E R1 and w E Pr+i(Ji), from Theorem 3.1 and (3.19) we see that 

(3.20) Ru'(xi) = u'(xi) Vu E P,+2(Ji), 

i.e., the linear functional E(u') vanishes for all u' E Pr+i(I). Therefore, by the 
Bramble-Hilbert Lemma, we have 

(3.21) 
IE (u) I< C 11 i IW~O(I) I|u I WOO+2( 

< Ch- 1 16i W0(J,)hU+2 u/JWr+2(Jp) = Chr+l1U1Wr+3(Ji). 

Note that 16illwlo(J.) < C(r), a constant depending on r only. Combining (3.15) 
and (3.21), we obtain (3.14). Finally, (3.13) follows from (3.14) and Lemma 3.1. F 

Remark 3.1. The ultraconvergence recovery result is local with regard to the mesh. 
If we want the ultraconvergence recovery at the node xi, we only need to use uniform 
meshes adjacent to xi. 
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Remark 3.2. The ultraconvergence recovery for the general case where a, :& 0 is 
not known since we have only the superapproximation result (3.3) instead of the 
ultra-approximation result (3.4) in general. 

Remark 3.3. The generalization of the result to the higher-dimensional tensor prod- 
uct case is not straightforward. 
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