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A MUSCL METHOD SATISFYING ALL THE NUMERICAL 
ENTROPY INEQUALITIES 

F. BOUCHUT, CH. BOURDARIAS, AND B. PERTHAME 

ABSTRACT. We consider here second-order finite volume methods for one- 
dimensional scalar conservation laws. We give a method to determine a slope 
reconstruction satisfying all the exact numerical entropy inequalities. It avoids 
inhomogeneous slope limitations and, at least, gives a convergence rate of 
Ax1x/2 It is obtained by a theory of second-order entropic projections involv- 
ing values at the nodes of the grid and a variant of error estimates, which also 
gives new results for the first-order Engquist-Osher scheme. 

1. INTRODUCTION 

Second-order upwind schemes for scalar conservation laws, based on ideas of 
B.Van Leer [28], rely on two steps. First, the application of an upwind solver to a 
piecewise linear function, then a reconstruction step in order to build this piecewise 
linear function. The "slope reconstruction" is crucial, and is performed using a 
minmod limitation, so as to satisfy the total variation diminishing (TVD) property 
(see A. Harten [11], P.K. Sweby [25]). This procedure is usually called MUSCL 
method. Unfortunately, this property cannot hold in several dimensions on a non- 
Cartesian grid, and appears only in a weaker form (S. Champier, T. Gallouet and 
R. Herbin [5], F. Coquel and P. LeFloch [8], A. Szepessy [261, J.P. Vila [30]). 

An entropy inequality is also necessary in order to compute the physical shocks, 
and is not easily checked when dealing with second-order schemes. It was obtained 
in various situations by S. Osher [19, 20], S. Osher and S.R. Chakravarthy [21], S. 
Osher and E.Tadmor [22], J.P. Vila [29]. The numerical entropy inequality is usually 
obtained for the entropy S(u) = u2/2, with a first-order approximation, under a 
supplementary nonhomogeneous limitation on the slopes depending on the grid 
size. Many works are devoted to avoiding this inhomogeneous limitation. H. Yang 
[31] proposes an approach in that direction. Also, using Hamilton-Jacobi equations, 
P.L. Lions and P. Souganidis [17] could avoid this kind of supplementary limitations 
in the case of a convex flux for the implicit scheme. For finite element methods, 
these problems are also relevant. J. Jaffre, C. Johnson and A. Szepessy [12] have 
developed a high-order multidimensional discontinuous Galerkin method, which 
satisfies all the entropy conditions, but again with a nonhomogeneous artificial 
viscosity term. In a simpler context, G. Jiang and C.-W. Shu [13] have presented 
a simple approach to get this inequality without unnatural limitation or viscosity. 
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In this paper, we present a second-order MUSCL-type scheme which satisfies 
the entropy conditions for general one-dimensional scalar conservation laws. It 
does not use any grid size dependent limiters. The key of the construction is to 
evolve not only the cell averages but also the solution values at half nodes. Hence 
the result does not contradict the (almost) impossibility of such a second-order 
scheme within the class of schemes evolving only cell averages proved by S. Osher 
and E. Tadmor [22]. The abstract form of our scheme is very simple. Starting from 
a piecewise linear function, one first evolves it exactly or approximately (as done in 
practice). One then projects the solution at the next time level back to a piecewise 
linear function. Our major contribution is to give such an abstract projection 
which diminishes all entropies (Lemma 3.2). In order to make the scheme effective, 
some technical modifications are needed. They lead to easy-to-code schemes in 
several situations which we present first. Our most general approach is presented 
in Theorem 3.6. 

We consider a one-dimensional scalar conservation law 

f atv + aA(v) = O. t > O, x e i, 
(1.1) l ~~v(O,x) = v?(x). 

Second-order finite volume approximations of v(x) are developed as follows: 

(1.2) A/xi(uQ +l - un) + At(An-l/2- An/2) 0. 

We will construct numerical approximations Azn~2 of the exact flux 

(1.3) A(tn X?+l/2)= At A(v(s,xi+1/2))ds 

such that the scheme satisfies exactly all the numerical entropy inequalities 

(1.4) Ax2(Snil - S.) + At((Inl/2 - t/1/2) <0 

hence recovering in the limit the exact entropy solution, i.e., 

(1.5) ats(v) + aXrI(v) < 0, 

for all convex functions S, with r' = S'A'. We are concerned with second-order 
schemes, which means that, for smooth solutions, the numerical fluxes are second- 
order approximations of the exact fluxes (1.3). 

As usual for finite volume methods, in (1.2), z4n is an approximation of the 
average of the solution v at time tn nAt on the cell Ci = (xi1/2, xi+l/2) of 
length Axi = Xi+12- Xij172 and center xi = (x?i7+2 + x--172)/2. These cells are 
supposed to cover IR, but their sizes are not supposed to be uniform nor to vary 
smoothly from i to i + 1. We set 

(1.6) h = sup Axi. 
iEZ/ 

In MUSCL-type methods, one constructs a piecewise linear approximation of 
v(tn, X), 

(1.7) un(x) = Un + snjx - X.), x e C0; 

we will denote by V1 the vector space of piecewise linear functions. These functions 
have a possible jump at the point Xi+l/2: 

J -+1/2 = U (X.+1/2) -U Z.+1/2)- 
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We will often need a subset of V1 defined by the no sawtooth condition 

(1.8) 
En 1/2s > 0 or En+/2s+l > 0. 

We prove that it is possible to determine the numerical fluxes A and the slopes 
s? so that the entropy inequalities (1.4) hold for all convex S with 

1 Xi+112 

(1.9) S n j S(u7 + s7(x - xt))dx. 

Notice that all the authors quoted above use the discrete entropy S(u0), whereas 
our results only hold for (1.9), which seems fairly new. Another difference is that 
we use the "characteristic" variant of finite volume methods, where not only the 
average u? of the solution is computed at each time step, but also point values 
Uni1/2 (see for gas dynamics P. Colella [7], R. Sanders and A. Weiser [24]). This 
leads to a more precise reconstruction when using a rough grid. 

More precisely, to obtain the values Un+l/2, we use the kinetic interpretation 
introduced by Y. Brenier [3, 2], Y. Giga and T. Miyakawa [10], which is closely 
related to the kinetic formulation of (1.1) (see P.L. Lions, B. Perthame and E. 
Tadmor [16], B. Perthame and E. Tadmor [23]). This means that our method 
is nothing but a second-order version of the Engquist-Osher scheme [9]. But our 
reconstruction of the slopes s7 does not involve any nonhomogeneous limitation, 
and this is also new. 

Another motivation to obtain all entropy inequalities is that apart from the 
duality method of E. Tadmor [27] it is the main tool, via S.N. Kruzkov [14] entropies, 
to obtain error estimates by the method of N.N. Kuznetsov [15]. As an application, 
we recover the first-order convergence rate of h1/2. For second-order schemes, such 
a rate is only known for the max-mod scheme of Y. Brenier and S. Osher [4]; this 
recent result is due to H. Nessyahu, E. Tadmor and T. Tassa [18]. The results of 
this paper were announced in [1]. 

The details of the construction of the schemes are given in ?2; with our precise 
results, we first treat, for simplicity, the particular case of a linear equation or of 
Burgers' equation. Extensions are possible, but they require more technicalities, 
and we give the general result as well as a general slope reconstruction theory in 
?3. The other sections are devoted to proofs. In ?4, we show that the explicit 
schemes of ?2 are indeed particular cases, or easy variants, of the general result. 
In ?5, we introduce some general tools, which can be useful elsewhere, to prove 
the convergence rate. These results are used in the Appendix in order to give 
new convergence rates for Engquist-Osher type schemes: we do not impose any 
condition on the time step. 

2. NOTATIONS AND SECOND-ORDER ENTROPIC SCHEMES 

This section is devoted to particular cases of our main result (Theorem 3.6), 
which are completely explicit. For linear or Burgers' equations, we give the ex- 
pression of the numerical fluxes A and of the entropy flux n+1/2 and state 
precisely the properties of the resulting method. The derivation of the scheme, and 
the proofs of the theorems, are given in the next sections. The linear case is very 
simple, and we give our results in that case after we have introduced some nota- 
tions. Next, we treat the Burgers equation without sonic point in ?2.3. Finally, 
the case of Burgers' equation with general initial data is treated in ?2.4. We do 
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not claim that these results are of practical interest. They only indicate that it 
is possible to go further in the theory of second-order schemes, thus recovering at 
least all the entropy conditions and known convergence rates. 

2.1. Notations. We begin with some notations and assumptions that will be used 
throughout the paper. For general fluxes A(v) in (1.1) and initial approximation 
u' E V1 of v0 (but we will denote for simplicity u0 = uh), we define 

(2.1) a(.) = A'(.) 

(2.2) aoo= sup ja(()J. 
min u0<?<max u0 

Also, we will often need the following conditions, which bound the time step in 
(1.2): the Courant-Friedrichs-Levy condition (CFL in short) 

(2.3) aooAt < minAxi, 
iE7Z 

and the piecewise nonovertaking condition 

(2.4) Vi, Vt E [min u',max uO], At si a'(() > -1. 

Throughout this paper, TV(u) denotes the total variation of u, 

TV(u) = j laxu(x)l dx. 

Finally, we recall the definitions of the classical minmod limiter and its extension: 

minmod~b\~~f if ab < 0 
( a ) {signa min(Iaj jb) if ab > O. 

(inf(E) if E C i+, 
minmod(E) = sup(E) if E c R-, 

10 otherwise. 

2.2. The linear case. In the linear case A(u) = au, a > 0 for instance, we 
define the exact node values and numerical fluxes, and the slopes, by the induction 
formulae 

(2.5) Un+1/2 =u7 + s8(Axi/2 - aAt), 

(2.6) A = au? + a 
sn 

(Axi - aAt), 

_ 2__ -+ ?+1, un+1 n+1~ 

(2.7) s A, minmod(u++?l/2 - U , u,_ ui12). 

For this numerical flux, the finite volume method (1.2) satisfies 

Theorem 2.1 (Linear equation). Under the CFL condition (2.3) and for initial 
data u0(x) E V1 nBV(R) satisfying the no sawtooth condition (1.8), the scheme 
(1.2), (2.5)-(2.7) is second-order accurate and satisfies: 

(i) the entropy conditions (1.4),(1.9) for all convex functions S, 
(ii) min uO < un(x) < max uO 
(iii) the no sawtooth condition (1.8), for all n > 0O 
(iv) the TVD property, TV(un+1) < TV(un), 
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(V) IV(tn,) )-U I()IL1(R) ? CTV(u)h h + jv0 -UhiL1(R). 

The entropy flux associated with S is 
A /t 

hn+1/2 = % j aS (un + sn (Axi/2 - at)) dt. 

We remark that the no sawtooth condition is not necessary; we just need to 
replace the minmod in (2.7) by a slightly different formula, see Lemma 4.1. 

From the numerical point of view, we have tested this scheme and other variants 
motivated in ?3. We have obtained results whose precision lies between the Van 
Leer and second-order ENO schemes. 

2.3. Burgers' equation without sonic point. The problem of computing an 
exact node value Un and the exact flux An is more difficult for Burgers' 
equation, 

(2.8) A(v) = v2/2. 

In this subsection, we only consider the nonsonic case, i.e., v(x), un (x) > 0. Then, 
we introduce the following scheme obtained'by solving exactly the kinetic equation 
which follows from the kinetic interpretation of the Engquist-Osher scheme [3], 

(2.9) -+ U1/ 
' 

+ /\AXi/2 1+/ i+ Ats, 

(u0 + s~'Axi/2)2 
(2.10) Z+1/2 2(1 + Atsi ) 

(2.11) = 2 minmod (uU+14i2 1,U U-4/2). 
Axi ,12-Ui I7 ) 

For this scheme we obtain the same results as in the linear case: 

Theorem 2.2 (Nonsonic Burgers' equation). We assume the CJFL and nonover- 
taking conditions (2.3)-(2.4), and that the initial data uo(x) E V1 n BV(R) sat- 
isfy uo(x) > 0 and the no sawtooth condition (1.8). Then, the scheme (1.2), 
(2.9)-(2.11) is second-order accurate and satisfies u >(X) > 0 for all n > 0 and the 
conclusions (i)-(v) of Theorem 2.1. The entropy flux is given by 

A /t ri(t) 
=n j:t S'(~)dtd~, 71i+1/2 = At J =o (dt( 

where 
0 + S~'Axi/2 

1 + tst2 

Remark 2.3. The above expression of the entropy flux can be written in a 'charac- 
teristic spirit' rather than a 'kinetic spirit', for instance, following [24], 

Ti "+1~ _ Un+1 SmU+1 r+1/ _ E/+ (Ui++1/2 )-i+ 1/2 S(i+ 1/2 ) 
1 rXi+112 

+ / S (un + sn(x - xi)) dx, 
J+1/2-/tUi+1/2 

w+(. S, w(+ 
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2.4. Sonic Burgers' equation. To treat the general Burgers equation, we need 
more complete formulae. They are obtained by refining the mesh by a factor of two 
in order to avoid mixing some waves. They produce an algorithm which is more 
complicated but still effective, 

(2.12) r+1 (u- + szAxI/2)_ (Ui7+ 
- 

s7?+1x?i+/2)_ i+1/2 - 1 + Atsln 1 + Atsn~1 

13 An - (u0 
+ 

si Ax\/2)2+ (uinl - /2)2 
(2.13) A-p+~x~/ i+1/2 2(1 + Atsi) 2(1 + Ats~n~) 

The slopes are computed by means of 

__ __ (U n~)2 
(2.14) un+1 = 1 An= %C 1 + Ats.' 2(1 + tsI)' 

n+I n? snAxi At n n (2.15) Ui'?1/4= Ui i 2 (A,?-sAzi?/2), 

4 +1~ ~ Ax 92? 

(2.16) DU2n+l =? minmod(Un+l/4-u n+I uI? l/2-tl/4), 

in+1/ 2 (Un+4- n+1 n+I n s =Ax, i -/1 +/ 

(2.17) Utn+_l -U9n+l + DUn+9l AX 
n i-1/4 i-1/4 4 

-/Ui +Du2+1 'Ax 
i91?l 92+ i1/4 42) 

Notice that in the nonsonic case, un > 0 this scheme reduces to the nonsonic scheme 
(2.9)-(2.11). Again, we obtain the entropy and convergence rate properties: 

Theorem 2.4 (General Burgers equation). We assume the nonovertaking condi- 
tion (2.4), the half CFL condition 

(2.18) ao A I 
minxi, 2 iEz 

and that the initial data u?(x) c V1 n BV(R) satisfy the no sawtooth condition 
(1.8). Then, the scheme (1.2), (2.12)-(2.17) is second-order accurate and satisfies 
the conclusions (i)-(v) of Theorem 2.1. The entropy flux is given by 

Tl+1/2 = At - JAE[OI( _ S'(])d() dt, 

where 

(t) - ui ? s'AxjI/2 C M 1+ tSn 
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3. ENTROPIC PROJECTIONS AND KINETIC FORMALISM 

The schemes presented in ?2 are particular cases of a general theorem that we 
present in this section. It relies mainly on a new tool that we introduce here: the 
notion of entropic projections. This means finding a second-order approximation 
of a function u-(x) by a piecewise linear function u(x), while decreasing all the 
convex entropies 

(3.1) J S(u(x))dx < ? S(u- (x))dx. 

Before doing so, we explain how it is possible to reduce the numerical resolution of 
scalar conservation laws (1.1) to two steps: exact transport and projection, using 
the kinetic approach. This is a preliminary step to the proof of the theorems 
presented in ?2. 

3.1. Kinetic interpretation of the Engquist-Osher scheme. The interpreta- 
tion of the Engquist-Osher scheme, due to Brenier [3, 2], is based on the following 
approximation (see also [23, 16]). Introduce a real parameter ( and define 

+ 1 for 0< <u, 
(3.2) X(U- 1 for u < < 0, 

0 otherwise. 

Given u (x), we solve the free transport equation 

(3.3) | tf + a(() Ox f = 01 t E [tni tn+l)i x,( E RI ( 
f(tni x,I ) -X(Un(X)= a). 

We obtain an infinitely accurate in time approximation of the solution to (1.1), just 
setting 

(3.4) unh+1(x) - f(tI[i,x,4)d<. 

Indeed, if un is smooth and At is small enough, un+1'- is the solution to the scalar 
conservation law (1.1) at time tn+1 corresponding to the initial data un at time tn. 
This is the basis of the Transport Collapse (TC in short) method of [2]. We thus 
define 

(3.5) T(t)u (x) = j X (u(x - ta(s)), a) d. 

Notice that in the linear case a(S) = a, we have that T(t)u (x) = u(x - at) is 
the exact solution to the equation (1.1). The TC operator satisfies the following 
properties: 

Lemma 3.1 ([2]). We have 
(i) flX-Xc,<R IT(t)u - T(t)vl < fAx-xol<R+alt lu -V, 

(ii) if u < v, then T(t)u < T(t)v and infR u < T(t)u < supR u, 
(iii) IT(t)u -T(t)vIL1(R) < U - VIL1(R)i 

(iv) TV(T(t)u) < TV(u), 
(v) jT(tl)u - T(t2)uIL1(R) < IaKTV(u) It1 -t2li 

(vi) for any convex function S(.), 
(t S( 

(3 6) S (T (t) u) - S(u) + tax |S'(S)a(S)X (u(x -sa(S)), S) d<ds < O. 
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These properties are straightforward consequences of the fact that 

(3 7) AIX(u,) (- X(v, e)ld = Ju -vI, 
and that x(u(x - a(()t), ,) solves the linear transport equation (3.3). Also, for 
convex functions S (see [3, 2, 23, 16]) we have 

(3.8) S(T(t)u) < S(O) + j S'(t)X(u(x - a()t), )d(, 

because, for any function f () satisfying 0 < sign(() f(() < 1 we have that, for any 
convex function S, 

(3.9) S(j fQ()d<) ? 5(0) + j S'(Q)fQ() df 

3.2. Entropic projections. Up to this point we have developed a good approxi- 
mation of the solution of the scalar conservation law (1.1) after a time step. But, 
if u' is piecewise linear, the approximation un+l - = T(At)un is not. Therefore, it 
remains to explain how to construct a projection Un+l of Un+l - in V1, the vector 
space of piecewise linear functions, which realizes the entropy dissipation (3.1). A 
general method is as follows. 

Lemma 3.2. Let u E L1(a, b), c= 2 arnd 

(3.10) u(x)dx. 

Define the function C - C(a, b) and the approximate derivative Du of u by 

(3.11) ((y) = b (b1 / (x)dx- ju(x)dx) a < y < b, 

(3.12) Du = minmoda<y<b (y). 

Then, (i) for all convex functions S and 0 [0, 1], 

ob rb 
(3.13) S(u + ODu(x - c))dx < S(u(x))dx, 

(ii) if u is continuous at the points a and b, then C c C([a, b]) and 

((a) = b~ (u -u(a)), C(b) = b (u(b) -u). 

Proof. The continuity statements and (ii) are obvious, and we just prove (i). Denote 

v(x) = u + Dv(x-c), Dv = ODu. 

Since (3.13) holds as an equality when S is a linear function, it is enough to prove 
it for the entropies S(u) := Sk (u) = (u - k)+. We have, by convexity, 

b jb 

(3.14) - (Sk(U) -Sk(v)) > /(u- v) Iv>k := J. 
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and we are going to prove that J > 0. The result is clear if Dv = 0, or more 
generally, if v - k has a constant sign on (a, b). Thus, we can assume that Dv > 0, 
for instance, and 

J (u-v)I>Y, a<y=c+ k-<b. 
Dv~b 

Then, 

b 
Jo/ (u- v) 

fb 

_ = a jb - y ju - Dv(y - a) (-/(b-y)/2 

= - b u _ b- / u-Dv(y -a)(b -y)/2 

= (y - a)(b - y)(((y) - Dv)/2. 

Since Du > 0, and from the definition of Du and Dv, we have ((y) > Du > Dv. 
Hence J > 0. The case Dv < 0 is similar. [ 

Remark 3.3. (1) Our definition of Du is consistent with the derivative for C1 func- 
tions. Indeed, if u is linear, then Du is just the slope of u. Then, by a convexity 
argument, one can check that, for all y E (a, b), there is a point 71y E [a, b] such that 

(3.15) ( b) 2aa(aIx?<? + XIy<x)u'(x)dx = u'(y). 

Therefore, there is also an 7j c [a, b] such that Du = u'(ri). 
(2) Another way to see the consistency of Du is as follows. If u is convex in [a, b] 

(resp. concave), then ( is nondecreasing (resp. nonincreasing) and thus 

2 
Du =- minmod(u - u(a), u(b) - u). 

b-a 

This is a consequence of the following formula, which gives the derivative of (: 

(3.16) 

<;/( ) _ 2' K y-a / b - by /8 
Y (b -y) (y -a) (b -a) (b - ) Y (b - a)y (-a) J 

and of the following type of inequalities, in the convex case for instance, 

u(Y+j) =u( j: xdx) < ? j u(x)dx 

(3) Still another case where consistency appears clearly is u' E L1(a,b); then 
Du = minmod{u'(y), a < y < b} satisfies indeed 

(3.17) Du = ODu for some 0 < 0 < 1. 

Therefore, this evaluation Du of the derivative, although it is entropic, is not as 
good as Du. Especially when u has discontinuities, it cannot be used because it is 
too far from Du and accuracy is lost. D 
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We can now go back to the numerical schemes for (1.1). Given a piecewise 
linear function u' (x), we have developed a second-order approximation of the scalar 
conservation law u'+'l - T(At)un, using the transport collapse method. We can 
define another operator and another piecewise linear function (we use the notations 
of the introduction and ?2.1), 

(3.18) Q1 (At) = Pl T(At), u n+ = pl7n+l,- = Q1(At)un; 

the projection P1 is just defined as above on each cell: 

P1u(x) =2-+Du-(x-x-) forx E C0, 

(3.19) U2 ] J u(x)dx, Dui = minmod{(i(x), x E Cil, 

and (i is just defined as C in (3.11) in each cell Ci by means of Lemma 3.2. We can 
give some properties of the operator PF: 

Proposition 3.4. The projection P1 enjoys the following properties: 
(i) Vu E VI, Plu = U, 

(ii) inf(u) < P'u < sup(u), 
(iii) for any convex function S, we have, for all i E 2, 

S(Pu) < ? S(u), 

(iV) IP'uLP(R) < IUILP(R) for all 1 < p < o0, 

(v) if u is monotone nonincreasing (resp. nondecreasing), so is P1u, 
(vi) TV(P1u) < TV(u), IP1U - 'ULl(R) < +TV(u), 
(vii) if u E BV(R) is continuous at the points xi+172, then P1u satisfies the 

"no-sawtooth condition" (1.8). 

Remark 3.5. (1) The approximation rate given in (vi) is just first-order. This is 
because we only use the BV regularity of u, the only one available in practice. If 
U E C2, one can prove that IP1u-uul, < 101 ,h2/2. 

(2) It is easy to check that, except for property (i), Proposition 3.4 holds if we 
replace Du- by O-Du-, 0 < 02 < 1. 

Proof of Proposition 3.4. We use the notation v = Plu throughout this proof. (i) 
is clear because, when u is linear on Ci, then Du- is just its slope. Next, we let 
y > xi_172 tend to Xi-172, and y < xi+172 tend to Xi+172. We find in the definition 
of (i that 

Du2 = 2i A (u - A), Dui = 2i A -v) 

for some 0 < aj,-) < 1, inf(u) < Ai, ,u < sup(u) (if right and left limits exist, in 
the BV case for instance, then A2 - u(x+-172)u - u(x172)). Hence, 

(3.20) V(z+-/2 Eu A-m], v-~/)E 2,l] 

and (ii) is proved. (iii) is just the inequality (3.13). (iv) is obtained from (iii) 
by choosing S(u) = IP. Next, if u is nondecreasing for instance, then we obtain 
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Dui > 0 and (3.20) shows that the jumps of v are nondecreasing. This proves (v). 
The proof of (vi) is more delicate. We have 

TV(v) = S Iv(x/+lZ2) -v(xt l/2)1 + -IV(X++/2)-V(X+112) 
i i 

and 

Iv(xt+l/2) - V(X 1/2)I < IU(X+1/2) - u(xT/2)1 + Iv(x++/2)-u(x++/2) 

? Iv(x,+ll/2)2-u(x71/2)I1 

Hence, 

TV?(v) < - v(xt 1/2)1?Ixtl)- 

i + IV(X+ 1/2) V(X+ 
1/2) 

1 + IV(X+ 
1/2) U(X+ 1/2)1l 

?Iv(x~1+/2) - U(Xi+1/2)l)1 

But, by (3.20), 

/Vx 
- 

/ 2 ) U(x+_1/2)|+IV(X+ I =1/2) v(xit112)I + IV(i-x112) ux1/2)1 + IV(Xtil/2) - U(XT-1/2)1 

= Iv+x1/2) - Uij I + U - V(Xtb ll2)1 + IV(X~ii112) -(i-/) 

? Iv(x,+l/2) - U(X7+1/2)l 

= Iu(x+l2) - uil + IUi - U(xtl/2)11 

which yields 

TV(v) ? 5 (Iu~xhi+1/2) - uil + IU+ - U(Xt 1/2) ? lu(xi+1/2) - U(X+1/2)1) 

< TV(u). 

This is the first inequality of (vi). To prove the second, we use the first-order 
projector P0 (on piecewise constant functions): 

|U- vii ?U - POUIL1(R) + IPOu - VIL1(R) <4hTV(u), 

because IPOu - UIL1(R) < hTV(u)/2, and 

IPOu-vIL1a(R) J IDuiIIx-xildx= Ai IDu 

AX< IU(Xi+1/2) - U(Xi-1/2)1 

< TV(u) h/4, 

which gives the second inequality of (vi). Finally, (vii) is also a straightforward 
consequence of (3.20). D 
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From these properties of P1 follow the properties of the operator Q1, i.e., of the 

scheme 0+1 = Q1 (At)UnT. Although it might look very abstract, this is our main 
result, because we will show in the next section that Q1 can be made explicit in 

particular cases. 

Theorem 3.6. The numerical scheme Q1 satisfies the following properties 

(i) inf(u) < Q '(At)u < sup(u), 
(ii) Q1(At)u1LP(R) < IUILP(R) for all 1 < p < 00, 
(iii) if u is monotone nonincreasing (resp. nondecreasing), so is Q1(At)u, 
(iv) TV(Q1(At)u) < TV(u) and IQ1(At)u - U|Ll(R) < TV(u)(aOOAt + 3h/4), 

(v) for any convex function S, we have, for all i, 

(3.21) I S (Q1 (At)u) - I A(u) ? Axx (ti+/2 -7i-1/2) ? 0, 
Axi ~ Axi Jci 

(3.22) ?li+1/2 AJ S'(~)a(~)X(U(Xi+1/2- sa(()), () dads, 

(vi) let uo E VI n BV(R), denote T = nAt, and let v be the exact entropic 

solution to (1.1) with initial data u0. Then, we have for some absolute constants 

C, 

(3.23) IQ1(At)n u - v(T, )lLl(R) ?CTV(u0) (ao)TAt +h T/At), 

and in the linear case a(S) = a, 

(3.24) jQ1(At)niU -v(T, .)II < CTV(u0) hT/At. 

Remark 3.7. (1) These results hold without any CFL condition, and for any flux 
A(v) in the equation (1.1). They can be seen as an abstract second-order extension 

of the Transport Collapse method. Under the CFL condition and for At > ah for 
some af > 0, we obtain the classical rate of convergence h' 

(2) Since Pl is a conservative operator, we also have a discretized equation on 

the cell averages, 

xIc Q1 (At)u - u +At , (Ai+1/2- Ai-/2) = 0, 

(3.25) Ai+/= At a()X(U(Xi+1/2- sa(c)), )dsd. 

Proof of Theorem 3.6. All these results are straightforward combinations of the 

corresponding results of Lemma 3.1 and Proposition 3.4. Only the global rate of 

convergence (vi) is new, and its proof will be given in ?5. 

4. PROOF OF THE MAIN RESULTS 

Under some conditions the operator P1 can be completely identified. Then, our 
results on the operator Q1 give the convergence and the entropy inequalities for 

numerical schemes. This is the case of the three results announced in ?2. We detail 

the explicit computations for the different cases below. 
Since all these results are special cases of Theorem 3.6, the fluxes A and 

the entropy fluxes +n in the theorems of ?2, are those given in (3.25) and 

(3.22), which are explicit for u a piecewise linear function, for a CFL less than 
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one and under the piecewise nonovertaking condition (2.4). They are just those of 
the (TC) operator. Also second-order accuracy is always maintained because Q1 is 
second-order in space and time. It remains to explain how to compute PI. 

4.1. The linear case. This case relies on a preliminary lemma. 

Lemma 4.1. With the notations of Lemma 3.2, let d E (a, b) and assume that u 
is linear in each subinterval (a, d) and (d, b), with a jump E at the point d. Then 

2 b -a (4.1) Due-b~ minmod( - u(a), u(b) - u 2 ((d)) b -a 2 
If u satisfies the no sawtooth condition 

(4.2) U E>O or U E>?O, 
where u', UI are the left and right derivatives of u, then 

2 
(4.3) Du = minmod(u - u(a), u(b) - u). 

Proof. Following Lemma 3.2 (ii), we have Q E C([a, b]), and one easily computes 

(4.4) 1(8) = { 2 (u( y)>u) if d < y < b 

But ( is monotone on both subintervals (a, d), (d, b), and thus (4.1) follows. The 
no sawtooth case will be proved in the next subsection (see Lemma 4.2). l 

Now, we can complete the proof of the linear case because, under the CFL 
condition, the projection P1 can be completely identified. Indeed, after a time 
step, a piecewise linear no sawtooth function is translated into a new function 
which satisfies the assumptions of Lemma 4.1. Thus, (4.3) holds, just giving in 
each cell the slope sn+1 = Dui4+l- used in the scheme of Theorem 2.1. Hence, 
Theorem 2.1 is nothing but Theorem 3.6 in this particular case. Notice that the 
no sawtooth condition propagates thanks to Proposition 3.4 (vii), which holds true 
here. 

4.2. Nonsonic Burgers' equation. Again, we will prove that the formula given 
in ?2.3 is an explicit expression of the operator Q1, in the nonsonic Burgers case 
and under the CFL and nonovertaking conditions (2.3), (2.4). Indeed, in that case 
we can compute the exact solution of the Transport Collapse operator, with ua > 0 
a piecewise linear function. It is a continuous function given by the formula 

[T(At)u'h(x) _u ? s, (x -X) _ (x-d,2)- (x--di, 
1 + Atsq At(1 + Atst ) At(1 + Ats& )' 

di,,= Xii1/2 + At(u-l + ?s Axi-U1A/2), 
) 

di,2 = Xi1/2 + At(uO - s\Axi/2). 

In each cell Ci, this function is composed of, at most, three linear pieces. In order 
to compute its projection, we need to identify Du in the following case: 

Lemma 4.2. With the notations of Lemma 3.2, let a < d1 < d2 < b. Assume that 
u is continuous on [a, b] and linear in each subinterval (a, d1), (di, d2) and (d2, b), 
with respective slopes u', ul , ul satisfying the condition 

(4.6) minmod(ul, u' , u') = minmod(u', u') 
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Then 
2 

(4.7) Du ii minmod(u - u(a), u(b) - u). 

Remark 4.3. (1) Notice that, by Remark 3.3 (3), we have for some 0 < 0 < 1, 

minmod(u', u' , u') = ODu. 

Therefore, the expression (4.7) gives a better slope than (4.6), i.e., the Du of (3.17). 
(2) In the limit case di = d2, U' = ?oo, we recover the case of Lemma 4.1 and 

the condition (4.6) is nothing but the no sawtooth condition in Lemma 4.1. Hence, 
we indeed recover the conclusion (4.3). 

Proof of Lemma 4.2. Since u is continuous, ( is Cl, and one computes 

2 (Mu -(a+y)) if a < y < di, 
(4.8) ((y) 2 (u(+)-u) if d2< y < b, 

(y a +by +7 ' if d1 <y<d2, 

for some real numbers a, h3, -y, which are uniquely defined so that ( E C'ja, b]). 
The function ( is homographic, hence monotone, on [a, di] U [d2, b]. We have to 
prove that Du = m := minmod(((a), ((b)). Three cases occur: if m = 0, then 
clearly Du = 0, and we are done. Next, we treat the case m > 0, for instance (the 
case m < 0 is similar and we do not repeat the proof). We are going to prove that 

(4.9) ('(a) > 0 or ('(b) < 0. 

Indeed, one has 

(ia 2___ ((a) = (u -u(a)), ('(a) - (((a)-2'(a)), 

(b)_ 2 __ 

((b) = b (u(b) -u), ('(b) - _ (b)-((b)). 

If we had ('(a) < 0 and ('(b) > 0, since ((a) > 0, C(b) > 0 (m > 0), we would have 
(remember that c = (a + b)/2) 

(4. 10) u(a) < u < u(b), u(b) + (c - b)u'(b) <u<u(a) + (c - a)u'(a). 

Hence, u'(a) > 0, B(b) > 0, i.e., u' > 0, u4 > 0. By the condition (4.6) this implies 
U' > min(u/, 4u'). Now, if u' c [u, a'], then u is either convex or concave, and we 
are done thanks to Remark 3.3 (2). On the other hand, if u' > max(u, ') ), then 
it is geometrically obvious that this yields 

u(a) + (y-a)u4 < u(y) < u(b) + (y-b)u', d < y < d2 
From (4.10), we deduce that c does not belong to [di, d2]. Using (4.10) again, we 
obtain, in the case c > d2 for example, that u' > u' and thus, u(y) < u(b)+(y-b)u. 
Integrating this over y E [a, b] gives u < u(b) + (c - b)u', which contradicts (4.10). 
The case c < d1 is similar and we always obtain that (4.9) holds. 

Now that (4.9) is proved (still in the case m > 0), we deduce the result Du = m. 
Indeed, notice that C is monotone on [a, di], [d2, b]; and on [d1, d2], C is either 
nondecreasing, nonincreasing, convex or concave. Since ( is Cl, the only nontrivial 
case is when ( is first nonincreasing, then convex, then nondecreasing, which of 
course contradicts (4.9), and Lemma 4.2 is proved. E 
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Now, we may complete the proof of Theorem 2.2. On each cell, T(At)u' satisfies 
the conditions of Lemma 4.2. Indeed, the no sawtooth assumption on u' gives 
exactly (4.6), as is readily proved computing the three derivatives of T(At)u'. 
And the point values referred to as u(a), u(b) are exactly the values u'+I in (2.9), 

so that the slope of [Q1(At)un] in Ci is exactly 8n+I in (2.11). Therefore, Theorem 
2.2 is again nothing but Theorem 3.6 in this case and the no sawtooth condition 
propagates thanks to Proposition 3.4(vii). 

4.3. Sonic Burgers' equation. Now, we treat the general case of Burgers' equa- 
tion without any sign assumption on the initial data. Then, a simple identification 
of Q1 is not possible because the exact solution of the TC operator is more com- 
plicated. Under the conditions (2.3), (2.4) it is still continuous but composed, at 
most, of five linear pieces, 

[T(At)u](x) _at + ?St (X-xi) _ (X-di,2) + (x-di,?)- 1 + Ats? At(1 + Ats't) At(1 + Ats_1) 

(4.11) (x - di+1,,)+ (x -di+,2)+ 
?At(1 + Ats&) At(1 + Atsn+1) 

Here, dij, di,2 are still given by (4.5). In principle, it is possible to test where the 
minmod is attained in the definition of Du. But the resulting effective algorithm 
is not very simple. Instead, it is simpler to introduce a new projection P1*, and a 
new scheme Ql* (At) = Pl* . T(At), with 

(4.12) PI* = PI . 

where PI denotes the second-order projection associated with the grid whose cells 
are half of the original ones. Of course, the properties of Theorem 3.6 are still valid 
for Pl*, because they are deduced from properties which hold for T(At), P1. But 
P1 introduces some discontinuities at the points Xi+l/2, therefore item (vii) in 

h/2 

Proposition 3.4 does not apply and thus, un+1 - Ql*(At)un does not satisfy the 
no sawtooth condition. 

In order to compute P1* in the above situation, we first prove a preliminary 
result. 

Lemma 4.4. Let u E L1(a, b), and c = (a + b)/2. Define 

(4.13) 1 fi~~b 1 C fb 

(4.13) U b U) Ul = U, Ur = ~~U) 

and let Du,, Dur be the approximate derivatives of u given by (3.12), corresponding 
to the intervals (a, c), (c, b), respectively. Set 

(A1A\ - ~2 mimdu b- a b -a 
(4.14) Du>* = b minmod(U - l + Du1, Ur + Dur - u, Ur - ul). ~1~i) Du* b- a - 

4l 4 

Then, for any convex function S and any 0 < 0 < 1, we have 

ob ob 
(4.15) jS(u + Du*(x-c))dx < jS(u(x))dx. 

Moreover, if u is continuous at c, then the last argument ur - ul can be omitted in 
(4.14) and it does not change the value of Du*. 
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Again, it is easy to see that Du* is consistent with the value of the derivatives, 
because for C1 functions u, we have Du* = u'(ri) for some T1 c [a, b], and thus 
U'= Du* for linear functions. Also, both Du and Du* belong to [0, ba (ur -U0 

Proof of Lemma 4.4. Define the function 

(fl +D(x a?C) 
if a < x < c, 

v) {l Dr (xD - C+b) if c<x<b. 

We have v = u, VI= u, Vr = ur, and by Lemma 3.2, for any convex function S, 
c c fb ob 

j (v) < S (u), S (v) < ? j (u 

Hence, using Lemma 3.2 again, for any 0 < 0 < 1 we find 
fb ob ob 

S(v + ODv(x - c))dx < S(v) < S(u). 

Now, we may compute the approximate derivative of v using Lemma 4.1: 
2 

Dv minmod(v - v(a), v(b) - v, vr - vl) 

_ 2 b -a b -a 
b minmod(u - ul + _ Dul, Ur + 4 DUr - u, Ur - ur). 
b -a 4 4 

Hence, Dv= Du*, and we obtain (4.15). Finally, if u is continuous at c, we have 

v (c- 0) C [Ul, u (c) ], V(c + 0) C [u,, U(c) ] 

and the no sawtooth condition (4.2) is met for v. Then, in view of Lemma 4.1, the 
last argument in the above minmod can be omitted. E 

In the cases when u satisfies either the conditions of Lemma 4.2 or 4.1, with 
the nosawtooth condition (4.2) fulfilled, it is possible to prove that Du= ODu* for 
some 0 < 0 < 1. This means that the slope reconstruction using Du is not optimal 
to realize the minimal entropy dissipation. 

Notice that, as is evident from the above proof, the derivative Du* yields the 
operator P1* in (4.12). Now, we can complete the proof of Theorem 2.4. We just 
apply the above lemma to compute D*uanl on each cell. The formula (2.15) gives 
the averages in the half-meshes of T(At)u'i, uii+1 is its exact value at xi, and in 
(2.16) we deduce the right and left derivatives (Dur Dul in the above lemma) by 
applying Lemma 4.2, since the nosawtooth condition on ui ensures (4.6) for ui+1'. 
In the slope reconstruction (2.17) we have just added the two first arguments in 
the minmod to ensure the preservation of the nosawtooth condition (1.8). This is 
just a variant of Q1, which does not affect its properties stated in Theorem 3.6. 

5. CONVERGENCE RATE 

In this section, we prove the convergence rate estimate, which has been an- 
nounced in Theorem 3.6 (vi). The difficulty we have to face is that the averaged 
entropy inequality (1.4) does not seem strong enough to obtain it. We need to go 
further and derive a differential form for this entropy inequality (p5.1). Then, the 
convergence rate follows from a general result that we present in p5.2. In p5.3, we 
conclude the proof of the convergence rate. 

Throughout this section, we use the notations of the introduction, ?2.1 and ?3. 
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5.1. Improved entropy inequality. In order to study Q1, we define the functions 
f(t, X ) = fh(t X, ), U(tX) := Uh(t, x) by using the free transport equation 
(3.3), with discontinuities at times t?, from f(t-, x, to x(Un -(x), () and then to 
X(Un (x), (). We set 

(5.1) U(t, X) = j f(t, x, ;)d(; 

Of course, this means that u also has a discontinuity at times tn, but not its cell 
averages. At these times, the jump from Una' to un is defined by un =- = 

Qlun-1. 
We can state a global inequality on the macroscopic entropies. 

Lemma 5.1. For convex and Lipschitz continuous functions S, the scheme Q1 
satisfies 

00 

(5.2) &tS(u) + &x(u)?<&tG(tx) + Ax[Ho(tx)?+Z6(t-tn)Hn(X)], 
n=1 

where the error terms G, Hn are estimated for some measures aG, acHn by 

IGI < IS'IooaXG, IHnI < IS/IcXoYHn) 

(5.3) IcaG(t, )ILl(R) < 2 aoTV(u0)At, 

(5.4) IclHo(t ')ILl(R) < 2 (am)2 TV(u )At, 

() 4 

Remark 5.2. As we will see, the projection P1 only enters in the estimate of the 
term Hn. Moreover, it only uses two properties of F1: in-cell entropy dissipation 
and error estimate from Proposition 3.4 (vi). It is very clear that they are also 
true for P"* and the variant used in the nonsonic case. Therefore, our proof holds 
also in the case of Theorem 2.4. As we will see, these properties are also true for 
the projection on piecewise constant functions, and thus we recover also, in a very 
particular case, the rate of convergence for the Engquist-Osher scheme. 

Proof of Lemma 5.1. Taking into account the discontinuities on f, recalled above, 
we may write 

00 

&tf + a(6)Oxf = Z6(t-tn)( (X(u 'nX),E)-f(tnjx,)) 
(5.6) n=1 

+ (x(U (x), ) X(U, -)) ( ))). 

We mutiply this equation by S'(() and integrate it in !. This yields 

(5.7) 3tS(u) + i3x?(u) < atG(t, x) + DxHo(tlX) + Zb(t -tn)Kn(x) 
n=1 

where the error terms are defined as follows: 

(5.8) G(t, x) = jS'(0) (x(u(t, x), 0 )-f (t- xI ;)) d; 
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(5.9) Ho(t, x) = j S'(Q)a() (X(u(t, x), a) -f (t, x, a)) d<, 

(5.10) Kn (x) = S (u (x)) -S (un - (X)). 

Indeed, the first jump term in (5.6) gives a nonpositive contribution, which is the 
only reason for the '<' in (5.7), thanks to Brenier's kinetic entropy dissipation 
inequality (3.9). Next, we estimate separately these three error terms on the time 
interval [tntn+?), using (3.7): 

G(t,x)l < S' jo (IX(U(tx), - X(Un(x),) I+ If(tx,) X (Un (x), ) )d 

< IS/o [tU(t, X)-Un(X)I +1 If (ti x f (tnixj()I . 

Taking aGG as the above bracket, we obtain, thanks to Lemma 3.1 (v) and to the 
similar direct estimate on f, 

IaG(t, ) IL1(R) < 2 a,,TV(u0)At. 

Next, we can treat Ho in exactly the same way and obtain (5.4). Finally, for any 
nonnegative test function 4> CCc (R), 

j ?(x))Kn(x)dx S EJ Kn(X) ('I(xi 1/2) + X21/(y)dy dx 
i JE ,=Xi-1/2 Xi-1/2 

oxi+1/2 FXi+112 

<~ ~~41 EJ (v) J Kn (x) dx dy 
i(EZ Y=Xi -1/2 

=-J j'4,(Y)Hn (y)dy, 

where, for Xi1/2 ? Y < Xi+l/2, 

rxi+ 1/2 

Hnr(Y) -j+ Kn (x)dx, 

}xi+1/2 

Hn (Y) I < I S/jxo ? X un(X)-un, (x)I dx. 

Above, we have only used that, on each cell Ci, the operator P1 dissipates entropy 
thanks to Proposition 3.4 (iii) (and 4(Xi-/2) > 0). We have now obtained all the 
terms of the equation (5.2), and it remains to estimate 

fXi+1/2 

aHn(Y) = ] nu(x) -u X (x)ldx for xi 1/2 < Y < Xi+l/2, 

( aJHn-(y)dy < hj un(X) Un,- (x) Idx 
(5.11) 3 

< -h2TV(U? ). 
4 

The last inequality is just the error estimate on the projection P1, Proposition 3.4 
(vi). This gives the last result (5.5), and Lemma 5.1 is proved. E 
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5.2. A general convergence rate estimate. We now consider an approximate 
solution u of the scalar conservation law (1.1), in the sense that it satisfies the 
approximate entropy inequalities (5.2), and we deduce an error estimate which is 
nearly that on Q1. 

More generally, suppose we are given v E C(R+; L' (]l)), the exact entropy solu- 
tion to (1.1) with initial data v(t = 0,.) = E BV(R), and let uEL' (R+; LIo(IR)) 
satisfy, in the distribution sense and for the same initial data, the entropy inequal- 
ities 

(5 12) |f &tS(u) + &ax7(u) < atG(t,x) + AxH(t,x), 
(5.1* S(u)(t = 0,.) = S(u0), G(t = 0, x) = 0, 

for Lipschitz continuous convex functions S. We assume that the distributions G 
and H satisfy 

|G| < IS'|ooaeG(ti x) |H| < IS'|ooatH(ti x))i 

for some locally bounded measures aG, axH. 

Theorem 5.3. With the above notations, and for any 6, A > 0, T > 6, we have for 
some absolute constant C 

bJJ Iau(T+ s, x) - v(T+s,x)Idxds 

< CTV(u0)(A + aoob) + C ? + A )dxds. 

Proof. We follow the classical approach of Kruzkov [14] and just insist on the new 
point: the treatment of G and H. We choose a test function of the form 

i(s, t, x, y) = W1(s + t)W2(x + y)(1(s - t)2(x -Y), 

where W1, P2, (1, (2 are smooth nonnegative functions with compact support. We 
assume, moreover, that 

WI_< 1, (p(t) 1 for 0< t< 2T, WI (t) = for t> 2T +46, W2'<1, 

and (1 (a) = ( 42(Z) = A2(A), with 

< 1, ,1(a)=0 for a > or a <-6, 1(,() = 1 for -4 < a <-2, 

42?< 1) 42(Z) =? for z < 1, 42(Z)=1 for JzJ >2, J42(z)dz =3. 

We classically introduce the entropies S(s, t, x, y) = u(s, x) - v(t, y) and the en- 
tropy fluxes r1(s, t, x, y) = sign(u(s, x) - v(t, y)) (A(u(s, x)) - A(v(t, y))). Then, the 
equation (5.12) in the distributional sense gives 

- j j [S(s, tx, y)iD + 71(s, t, x, y)4D]dsdx 
s=O ER 

< u 0(x) - v(t, Y)1D(O, t, x, y)dx 
jER 

[G(s, x)4D, + H(s, x)4Dx]dsdx. 
s=O ER 
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Also, since our assumptions imply that D = 0 for t < 0 we have 
r00 

- j j [S(s, t, x, Y)4>t + TI(s, t, x, y)4Dy]dtdy = 0. 
t0 yER~ 

We integrate both equalities in the extra variables t, y and s, x, and we add up the 
results. This gives 

-2 j j [S(s, t, X, y)W (t + s)p2(x + y)(i (s - t)(2(x - y) 
s,t=O xyER~ 

? t(S, t, x, y)(i(t ? s)((x ? Y)41(s-t)(2(x - y)] dxdydsdt 

r00 

-= j j 1u(x) - v(t, y) jW l(t)2 (x ?+ Y)(I (-t)2 (x - y)dxdydt + RI 
t-0 xyER~ 

ir66 
(5.14) ? 

Y] 
J / 1u0(x) - v(ty)Idtdydx + R1, 

(5.15) R= J [G(s, x)>J, + H(s, x)4D]dsdtdxdy. 
s t=o z YER~ 

Before estimating R1, let us notice that it is possible to choose a sequence P2 which 
converges to 1 with a derivative which converges uniformly to 0. And we may also 
choose a sequence WI which converges to the indicator function of [0, 2T + 46], and 

(P converges to a Dirac mass of weight -1 at the point r = 2T + 46. We may pass 
to the limit in the above formula, which gives exactly the first line of (5.13) after 
some very standard calculations. It remains to estimate R1: 

RI < j 1 [tG (S. x) ( | W(t + s)1l(1( (s t) + Wl (I| 1|)W2 (X + Y)(2X (- Y) 
st=O xYER 

? aH(sJx)(pR2(x ? y)2(x - y) ? '2I4I)WI(t + S)(2(8 - t)] dxdydsdt. 

Here, using the limits on WI, P2, we obtain for some constant C 

RI < 6 f oG(T + 26 + - ,x) (I (a)dadx 
xER2 

C GT+26 
aG(S,) dxds + 

C T, ( 
aH (8 x) dxds. 

6o J R A xER 

This completes the proof of Theorem 5.3. 0 

5.3. Proof of the convergence rate. We are now ready to conclude the proof 
of the convergence rate in Theorem 3.6 (vi). We can bound the right-hand side of 
(5.13), using Lemma 5.1 and the fact that v is TVD. We find (using T in place of 
T + 6 and choosing T > 8) that the left-hand side of (5.13) is bounded by 

(5.16) CTV(uO) ( aaoo) + Taoo +T(aoo)2 h + ] 6 ?A~)~ AtA- 

The optimal choice of the free parameters 6, A reduces (5.16) to 

(5.17) CTV(u?) (acO(TAt)/2 +h(? T 
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which gives exactly the result (3.23). It remains to notice that this bound for 
the left-hand side of (5.13) causes a difficulty because u does not belong to 
C(R+; L' (I1)). But the same terms are involved, writing 

j Iu(T, x) - v(T, x)id - - jj u(T + s, x) - v(T + s, x) Jdxds 

< j jIv(T + s, x) -v(T, x)jdxds 

+ j j/u(T + s, x) -u(T, x) Jdxds 

? a TV(u')60 ? j j l ut(T + t, x)ldx dt ds 
s =0 t0 R 

p+n* 

< 2a0oTV(uo)6 + E S Un _ n-U I L1 (R) 
n=p 

< 2acoTV(u0)6 + C TV(uo)h At 

where ntAt -6 and pAt = T. The last inequality is obtained by using again the 
estimate of Proposition 3.4 (vi). This proves the estimate (3.23), and the proof of 
Theorem 3.6 is complete. 

Remark 5.4. In the linear case, we can only improve the transport step which is 
exact. This means that G = Ho = 0 in Lemma 5.1, in which case the estimate 
(5.16) becomes 

T h2 6 
J Iu(T,x) - v(T,x)I < CTV(u0) [(A + aco6) + - - + h -]; AtA A 

the last term comes from (5.3). We let 6 tend to zero and, optimizing the choice of 
A, we obtain (3.24). 

6. APPENDIX. CONVERGENCE RATE FOR THE ENGQUIST-OSHER SCHEME 

This appendix is devoted to another application of the error estimates developed 
in ?5. In a very simple case, when we consider the projection Po on piecewise 
constant functions instead of P', it generalizes the known rates of convergence for 
the first-order Engquist-Osher scheme. The general scheme can be written, with 
our previous notations, 

Q0 (At) Po T(At), 

which is the Engquist-Osher scheme under the CFL condition (2.3). Our theory 
allows us to give convergence rates without any restriction on the time step. We do 
not need any inverse CFL condition At > ah. Nor do we need the CFL condition; 
we must use a multipoint extension to identify the numerical fluxes in formula 
(3.25). 

Theorem 6.1. The first-order scheme QO satisfies the error estimate 

Iv(tn,) -Uh(.)IL1(R) < CTV(uh)/tC(`ach + a00At) + IV - U'IL1(R) 
This holds in particular for the Engquist-Osher scheme under the CFL condition 
(2.3). 
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Proof. We use the proof given in ?5, but we change the estimate (5.11) to 

jaH, (y)dy < CTV(u')aOh At. 

Indeed, instead of the estimate (vi) in Proposition 3.4, we can use 

4U n+1 _ n+1- L1((R) < TV(u')a, ,At, 

which is obtained as follows, see Lemma 3.1 (v): 

|+ 
- U L1(J) ? 4U +1 - ULl (R) + lUn+1 - _ l() 

< |Un+_ Un Ll (R)+ CTV(u')aOAt. 

It remains to compute, using the fact that Po diminishes in-cell entropies, 

J | n+l(x) -un(x) dx= J IPO(un+l,-)(x) -i<ndx 

<J u 'n+l-(x) -in dx, 

hence 

Un+1 - UnI L1(R) < C TV(u')a,,At. EL 

Remark 6.2. Such a result also holds for any variant Q1 of Q1 which is time 
Lipschitz continuous, i.e., 

IQI(At)un -Un Ll(R) < CTV(u )aOAt. 
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