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STRICTLY POSITIVE DEFINITE FUNCTIONS ON SPHERES 
IN EUCLIDEAN SPACES 

AMOS RON AND XINGPING SUN 

ABSTRACT. In this paper we study strictly positive definite functions on the 
unit sphere of the m-dimensional Euclidean space. Such functions can be used 
for solving a scattered data interpolation problem on spheres. Since posi- 
tive definite functions on the sphere were already characterized by Schoenberg 
some fifty years ago, the issue here is to determine what kind of positive definite 
functions are actually strictly positive definite. The study of this problem was 
initiated recently by Xu and Cheney (Proc. Amer. Math. Soc. 116 (1992), 
977-981), where certain sufficient conditions were derived. A new approach, 
which is based on a critical connection between this problem and that of mul- 
tivariate polynomial interpolation on spheres, is presented here. The relevant 
interpolation problem is subsequently analyzed by three different complemen- 
tary methods. The first is based on the de Boor-Ron general "least solution 
for the multivariate polynomial interpolation problem". The second, which is 
suitable only for m = 2, is based on the connection between bivariate harmonic 
polynomials and univariate analytic polynomials, and reduces the problem to 
the structure of the integer zeros of bounded univariate exponential. Finally, 
the last method invokes the realization of harmonic polynomials as the polyno- 
mial kernel of the Laplacian, thereby exploiting some basic relations between 
homogeneous ideals and their polynomial kernels. 

1. INTRODUCTION 

Let Sm-1 denote the unit sphere in the Euclidean space IRtm (m > 2), and dm 
the geodesic distance on Sm-1, i.e., 

dm(x,y) = Arccos(x y), x,y ESm-1 

Here x y denotes the usual inner product of x and y. Let g: [0, ir] -* IR be a 
continuous function, and let 6 c Sm-1 be of cardinality n. We study in this paper 
the possible strict positive definiteness of the n x n matrix 

(1.1) A:= AEt := Ag,E0 

whose rows and columns are indexed by e, and whose (0, O)-entry is 

( 1.2 ag Xd 
A 

O, 
\ 
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i.e., for any arbitrary ordering (01, 02.... ) of the points in e we look for conditions 
such that 

n n 

cTAc = E E cicjg(dm(0i, Oj)) > 0, Vc = (Cli... Cn) cE I 
n\O. 

i=1 j=1 

The matrix A of (1.1) naturally arises in the study of approximations to scattered 
data on spheres. Given f: e (i.e., a function f defined, at least, on the set O), one 
may choose to interpolate f on e by a function gf in the linear space 

Ge := span{g(dm(.,0)): 0 E } 

with g: [0, ir] a fixed univariate function. The existence of a unique interpolant 
gf E GE) for f then amounts to the invertibility of the above matrix A. Of course, 
if A is also positive definite, then the finding of gf, i.e., the inversion of A, can then 
be approached by efficient and stable numerical (iterative or direct) methods. 

In view of the above, the following problem becomes self-suggestive: 

Problem 1.3. Determine conditions under which the interpolation matrix AEt of 
(1.1) is 

(a) positive definite (for Sm-1), for any e C S-1 of cardinality n, for some 
fixed n; 

(b) positive definite (for Sm1), for any e c Sm-i; 
(c,d) same as (a,b), with "invertibility" replacing "positive definiteness". 

Definition 1.4. Let g be a univariate continuous function defined on [0, ir]. We 
say that g is (strictly) positive definite of order n for Sm-1 if for each e c Sm-1 of 
cardinality n the corresponding matrix AEt is (strictly) positive definite. A function 
g that is (strictly) positive definite of all orders, is (strictly) positive definite. 

The analogous problem in Euclidean spaces, i.e., when e C Rlim, has been inten- 
sively studied in the literature. In [17], Schoenberg had characterized the positive 
definite functions of all orders for IRtm, and in [8], Micchelli established the invert- 
ibility of certain interpolation matrices arising from approximating scattered data 
in RIm. Micchelli's results had led to a wealth of results (cf. e.g. [13], [14], [15], 
[20]), in which estimates for various norms and corresponding condition numbers 
of the interpolation matrix A were established. We refer to the review article of 
Dyn [6] for more information on this subject. Schoenberg also considered the prob- 
lem on the sphere. In [18] he proved the following characterization for a function 

g to be positive definite of all orders. In this result, PkA) denotes the kth-degree 
Gegenbauer ("ultraspherical") polynomial associated with A, [22, p. 81], [19, p. 
148]. 

Result 1.5 [18]. A continuous function g: [0, ir] -* IR is positive definite on Sm-1 

if and only if it has the form 
00 

(1.6) g(t) = ZakP A)(cost), 
k=O 

in which A = (m - 2)/2,ak > 0, and EakPk() () < o. 

Our interest in the problem was initiated by the paper [23] of Xu and Che- 
ney, where the following question is addressed: "find conditions on the coefficients 

(ak)kEN in (1.6), under which g is strictly positive definite" (either of a specific order 
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or of all orders). Among various other results, it is shown in [23] that, if all the 
coefficients ak in (1.6) are positive, then the function g is strictly positive definite 
on S'-1. Further discussions of this problem can be found in Cheney and Xu [5], 
Light and Cheney [7], and Menegatto [11]. 

Our notion of "strict positive definiteness" is not the only possible one. For 
example, Narcowich, in [12], employs a stronger notion of positive definiteness and 
strict positive definiteness (on general compactly supported Riemannian manifolds), 
is able to characterize completely that stronger notion in terms of explicit verifiable 
conditions, and, in turn, recovers (for smooth enough g) the above-mentioned Xu- 
Cheney result. His definition draws attention to classical definitions of positive 
definiteness in terms of smooth kernels. It is interesting to note the following: 
while Narcowich proves that his notion of positive definiteness is equivalent to 
the seemingly weaker notion of Schoenberg (the latter is the one that we adopt 
here), he does not have a similar equivalence between the notions of strict positive 
definiteness; in fact, he refers to that problem as "open". While we became aware 
of [12] only after being essentially done with the present endeavor, it is worth noting 
that Theorems 5.3 (m = 2) and 6.4 (any m) of the present paper provide a negative 
answer to Narcowich's open problem. 

As this paper will show, a close relationship exists between the problem of deter- 
mining strict positive definiteness and that of multivariate polynomial interpolation. 
This connection is discussed in ?3, and allows us to find an equivalent version to 
the original problem in terms of polynomial interpolation on the unit sphere. 

We then present three different methods for analyzing the equivalent polynomial 
interpolation problem. The first exploits the de Boor-Ron "least solution for the 
polynomial interpolation problem" (cf. [2], [3], [4]). This method yields that g is 
strictly positive definite of order n if (but not only if) the corresponding coefficients 
a0, ai,... IaLn/21 are positive (cf. Theorem 4.1; for the case m = 2, this result 
was already proved in [23]). Another approach takes advantage of the connection 
between spherical harmonics on the circle and analytic polynomials, and allows 
us to characterize, for m = 2, the strict positive definiteness of g in terms of 
the positive integer zeros of univariate exponentials with real coefficients. Among 
the various results there, we mention Theorem 5.3, which shows that g is strictly 
positive definite of order n (on the circle) if the coefficients (ak)k in its ultraspherical 
expansion contain n consecutive positive coefficients. Finally, in ?6, we choose a 
different tack which is suitable for any spatial dimension, and makes use of the fact 
that the harmonic polynomials are the polynomials in the kernel of the Laplacian. 
That direction utilizes some of the polynomial ideal basics, and its main results 
are collected in Theorems 6.3 and 6.4. These theorems imply, in particular, that 
g is strictly positive definite if the set K := {k E 2+: ak > O} (with (ak) as in 
(1.6)) contains arbitrarily long sequences of consecutive even integers, as well as 
arbitrarily long sequences of consecutive odd integers. 

We use in the paper the following notations and conventions. The symbol 

stands for the space of all polynomials in m variables (where the value of m should 
be clear from the context). The subspace of II that consists of the kth-degree 
homogeneous polynomials is denoted by 

H?. 
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Also, given any K c E+, we set 

HK = E k 
kEK 

If K = {O, 1, 2, ... , k}, we often use Hk := HK, i.e., Hk is the space of all polyno- 
mials of degree < k. A parallel set of notations is used for harmonic polynomials. 
Here, we set 

for the space of all harmonic polynomials, and define 
l l= rI-I n a, hK := K n a, Hk := Hk nH 

Finally, an exponential in this paper is either a function of the form 

(1.7) eo: Rm - C : I 4 e0 z 0 E Cm 

or any finite linear combination of such functions. 

2. SETS TOTAL WITH RESPECT TO DISCRETE MEASURES 

Let 7HK be defined as at the end of the introduction. Given g, which is positive 
definite on Sm', we associate 9 in this section with a certain K C 2+, and show 
that Problem 1.3 can be equivalently phrased in terms of the nonexistence of a 
nonzero discrete measure ,at supported on Sm-1 that is orthogonal to the entire 
nHK . 

Since we are seeking conditions that characterize the strict positive definiteness 
of g, and since Schoenberg's theorem already characterizes the positive definiteness 
of g, we may assume that g has the form (1.6). In turn, that allows us to write the 
matrix AE) as the infinite sum 

00 

(2.1) Ae E akAk, 
k=O 

with 

Ak (P( )(O * .))0,OEE 

Since each summand Ak is positive definite (by virtue of Schoenberg's result, but 
also directly in view of the discussion below), this immediately shows that the ma- 
trix A is more likely to be strictly positive definite, with the increase of the nonzero 
coefficients (ak)k in the representation (1.6) of g. Also, since the matrix Ak is pos- 
itive definite, it can be written in the form CkjCk. Among such factorizations of 
Ak, we select below a particular one, which is based on basic properties of spherical 
harmonics, and which will allow us to draw the connection between Problem 1.3 
and polynomial interpolation on the sphere. In this course, it will be somewhat 
more convenient to work in a slightly more general setup: let M be any collection 
of real-valued Borel measures on the sphere Sm-1, and consider the map 

(2.2) .Mk : M -+R : p Pk () (X 
* 
y) dl-t(x) dl-t(y) 

Sm-1 XSm-1 

Our quadratic form 

C + CTAkC 

can be easily seen to be a special case of the above setup, corresponding to the set 
M of all finite measures supported on e. Thus, our original question can be viewed 
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as a special case of the following one: given M, what conditions on the nonnegative 
sequence (ak)k guarantee that 

00 

(2.3) Z akMk(Au) > O, Vu E M ? 
k=O 

In fact, we will see in a moment that, always, Mk(It) > 0 (all [t, all k). This, in 
turn, implies that the satisfaction of (2.3) depends only on the set 

(2.4) Kmg := {k E Z+ ak > O}, 

and not on the particular values the sequence (ak) assumes on King: (2.3) holds 
if and only if there exists no nonzero ,a E M whose transform ,a | 4 (Mk([t)) 1O is 

supported in Z+\K,,g. 
With these observations in hand, we start the actual analysis by recalling some 

basics on spherical harmonics. First, a spherical harmonic of degree k, is, by defini- 
tion, the restriction to S''i of a homogeneous harmonic polynomial of that degree. 
Second, spherical harmonics are connected to the ultraspherical polynomials via the 
following fact that can be found, for example, in Stein and Weiss [18, Chapter IV]. 

Let {yI(k),... ,Y~$)} be an orthonormal basis of 'Ho (here, hk dimHO) 
Then, there is a positive constant Ck,A such that 

hk 

(2.5) PA) (x y) = ckvyk)(x)yjk)(y) 
j=1 

Here, A = (m - 2)/2, and, as before, P(A) is the appropriate Gegenbauer 
polynomial. 

We borrowed the idea of exploiting this important formula, i.e., the representa- 
tion of the Gegenbauer polynomials in terms of spherical harmonics, from the paper 
[21] of the second-named author. Independently, that formula was also invoked by 
Narcowich in [12]. Now, (2.5) allows us to separate variables in (2.2). Indeed, 
substituting the former into the latter, we readily obtain 

hk 

(2.6) Mk(I) = CA,k EI f|2 y(k) d .2 
j=l M-1 

In words, up to a constant, the number Mk([t) is the square of the L2(Sm-l)-norm 
of the kth component in the expansion of ,a into spherical harmonics. 

This implies that our original Problem 1.3 is a special case of the following: 

Problem 2.7. Let m be a positive integer, K C Z+, and M a collection of Borel 
measures defined on Sm-1. Determine whether M n XK = 0, in the sense that no 
nonzero ,at E M satisfies 

Ijm ifdII=O, VfCEJK. 

Here, (K is defined as at the end of the introduction. 
If M n 0K = 0, we say that K is total for M. The above discussion shows that 

the matrix AE) of (1.1) is strictly positive definite if and only if, with Kmg defined 
as in (2.4), Kmg is total with respect to all measures M(6) supported on e. 
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The development up to this point puts our problem in the right mathematical 
perspective, and shows its connection to basic harmonic analysis questions, but still 
falls significantly short of solving our problem: The verification whether K is total 
or not with respect to the collection of discrete measures M(O) does not seem to 
be straightforward! We mention in passing, however, that there are collections M 
with respect to which the above problem of totality is transparent: 

Proposition 2.8. Let M be the space of all Borel measures supported on S''. 
Then, the only subset of Z+ which is total for M is Z+ itself. 

Proof. We choose first pu E M to be a spherical harmonic of degree k. Since 
spherical harmonics of other degrees are perpendicular to ,u, it follows immediately 
that pu E 7-K, unless k E K. This shows that no proper subset of E+ is total for 
M. 

The fact that E+ itself is total for the space of all measures follows from the 
facts that (i) spherical harmonics are fundamental in C(Sm-1), and (ii) M is the 
dual of C(Sm-l). 

We now rephrase our original problem in terms of the notion introduced in this 
section: 

Modified Problem 2.9. Given a subset K C E+, and m > 1, determine whether 
K satisfies the following: 

(a) K is total with respect to the collection M,(Sm-l) of all measures on Sm-1 
that are supported on a set of cardinality < n. We say then that K is total 
of order n (on Sm-i) . 

(b) K is total with respect to the set Mo(Sm-1) of all measures supported on 
finite subsets of Sm-1. We say then that K is total of all orders (on Sm-1). 

In the rest of the paper, we state our results mainly in terms of totality. It is, 
thus, worthwhile to summarize here the connection between this notion and the 
original notion of strict positive definiteness (cf. Problem 1.3): g is strictly positive 
definite of order n (respectively, of all orders) if and only if Km,g (defined in (2.4)) 
is total of order n (respectively, total of all orders). 

One should note that, a priori, the totality of K of all orders should be easier to 
determine than the totality of a specific order: the space Mo(Sm-') is linear, and 
the space Mn(Sm-l) is not. 

3. THE CONNECTION TO POLYNOMIAL INTERPOLATION 

Problem 2.9 is connected to the problem of interpolating by spherical harmonics 
on the sphere as follows: 

Theorem 3.1. Let e be a finite subset of Sm-1, and M(6) the space of all mea- 
sures supported in e. Given K C Z+, the following conditions are equivalent: 

(a) K is total for M(19) (i.e., Ik n M(e) = 0). 
(b) The restriction of JfK to e is of full dimension #e, i.e., every f defined on 

e can be interpolated by a polynomial p E JfK. 

Proof. Let 60 be the functional of point evaluation at 0. A general measure in 
M(9) is of the form q5 := g c0. Therefore, M(0) n HI 7& 0 if and only if 
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there exists q 7 0 as above such that 

E cop(O) = 0(P) =O VP E'KK 

This can happen if and only if not every data on 6 can be interpolated from 7K. ? 

In the rest of the paper, we exploit Theorem 3.1 in order to obtain sufficient 
conditions for the totality of K c 2+. As we mentioned before, three different 
approaches are employed, each occupying one of the remaining sections. 

4. THE LEAST SOLUTION OF THE POLYNOMIAL INTERPOLATION PROBLEM 

Recall that AM denotes the set of all discrete measures supported on an n-subset 
of Smi- (m fixed), and that K C 2+ is total for Mn if Mn ne-L = 0 (cf. Problem 
2.9). In this section, we find a minimal k(n) such that K is total for Mn in case 
(0,1, ... , k(n)) C K. Our main theorem of this type is the following: 

Theorem 4.1. Let K c 2+. Then, given any m > 2, K is total of order n on 
Sm- if{o,1,... ,Ln/2j}cK. 

Thus, our original matrix AEt is strictly positive definite whenever the first 
Ln/2j + 1 coefficients in the ultraspherical expansion of g are positive. For m = 2, 
that result is due to [23]. The statement of the theorem is sharp in the sense that 
the set K := {0, 1,... , Ln/2i - 1} is not total for Mn. However, the measures in 
Mn that are perpendicular to 7HLn/2J 1 are of a specific nature: essentially, they 
are supported on circles. The precise statement is as follows: 

Corollary 4.2. Let n be a positive integer, and let K be a subset of 2+ that con- 
tains the integers {0, 1,... , Ln/2i - 1}. Further, let e be a subset of Sm-1 of 
cardinality n, and let ft 7 0 be a measure supported on e. Then yt E Xl only if e 
satisfies the following: 

(a) for an even n, e lies on a circle; 
(b) for an odd n 7& 5, 6\0 lies on a circle, for some 0 E e. 

Thus, if e does not. have the special configuration specified in the above corollary, 
our matrix AEt is strictly positive definite even when only the first Ln/2i coefficients 
(in the expansion of g) are positive. 

The proofs of Theorem 4.1 and Corollary 4.2, together with necessary back- 
ground on polynomial interpolation, occupy the rest of this section. 

Given any polynomial of degree k, we denote by p1 the unique polynomial in I-I 
that satisfies deg(p - pi) < k, and refer to pT as the leading term of p. Also, given 
p E H, we use p(D) to denote the corresponding constant-coefficient differential 
operator. Directional derivatives are denoted by Dx, where x E1 Rm is the direction. 

Given any finite e c Rm, the paper [2] introduces a polynomial space He) that 
satisfies all the following properties: 

(a) For any function f defined on e, there exists a unique p E IHE that agrees 
with f on 6. 

(b) HE) is D-invariant, i.e., for every x E lRm\0, DJIIe C HIE (equivalently, IHE is 
translation-invariant) . 
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(c) H1e is homogeneous. That is, 
00 

HIE = FEIj, 
j=0 

where E3,j HE) n I-Ij. 
(d) If the polynomial p vanishes on E, then its leading term pT annihilates IHE in 

the sense that pT(D)He = 0. 
(e) Conversely, every homogeneous polynomial that annihilates HE) is the leading 

term of some other polynomial that vanishes on E. 
We refer to [2] and [4] for more details about IHE. The exact definition of IHE 

will be given in the sequel; for the time being, though, we need only the fact that 
a polynomial space that satisfies these five properties exists. 

Lemma 4.3. Let k be the least integer that satisfies Ie? C Hk. If e c Smi, then 

dimll3?j > 2, j = 1,2, ... ,k-1. 

Proof. We assume that the claim of the lemma is false, and will seek a contradiction. 
Let 0 < j < k be the maximal integer that violates the lemma's claim. If j = k - 1, 
then "IE,j+l = IIEjk + 0, by the definition of k. Otherwise, by the maximality of j, 
dim I? ,j+l > 2. Either way, IEI,j+l contains a nonzero polynomial p. We consider 
the map Rb glm -* HJQ defined by 

,O(x) = Dop. 

Since IHE is D-invariant, ran 0 C IlE, hence ran0 c CH11,j. Since degp > 0, we have 
0 54 0. On the other hand, dimranb < dim Hej < 1. Therefore, dimranb = 1, 
hence dim ker , = m - 1. Since b is linear, its kernel, then, is a hyperplane, and p 
has to be a univariate polynomial of the form 

p(y) = c(4 - y)j+l 

with ( perpendicular to the above hyperplane. 
Let &(D) be the m-dimensional Laplacian. We note that, since j > 1, &(D)p= 

C/ ZM 1 j 2(y - y)j-l 74 0. On the other hand, the quadratic polynomial q := 6- 1 
vanishes on E, hence by property (d) of IHe, 6(D) = q1(D) annihilates the entire 
IHE. In particular, 6(D)p = 0, which contradicts the previous conclusion. O 

Lemma 4.4. For any E c Sm-i of cardinality n, the following is true: 

(a) There exists a space HE) C Ln/21 such that interpolation from HE9 to any f 
defined on e is always possible, i.e., the restriction of He to 9 is of dimension 
n= #e9. 

(b) If n is even, and e does not lie on a circle, then HIe C Xn/2-1 = XLn/2]-1 
(c) If n > 5 is odd and no (n-1) points of 0 lie on a circle, then HIe C =(n-3)/2 

' 
L Ln/2 -1 

Proof. Claim (a) of Lemma 4.4 follows from Lemma 4.3. With He the least space 
of [2], the proof of Lemma 4.3 shows that He is annihilated by the Laplacian, 
hence consists of harmonic polynomials, whenever 0 c Smi1. Then, since He is 
translation-invariant, it must contain the constants, hence dim H8,o = 1. Also, by 
the definition of k, dim 11?,k > 1. Hence, Lemma 4.3 implies that 

#0 = dimil? > 1 + 2(k - 1) + 1 = 2k, 
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with the right-most equality due to property (a) of H1e. 
The proof of (b) in Lemma 4.4 is also quite simple. We present, however, a 

slightly longer proof, which prepares also for the proof of (c). We assume that n is 
even, and that He .. Hn/2-1, and will prove that 8 lies on a circle. First, by (a) 
of Lemma 4.4, 11e C HIn/2. Second, we have dim 11e,0 = 1, and, since we assume 
that dim H11,n/2 > 1, Lemma 4.4 implies that dim 110,j > 2, j = 1,2,... , n/2 - 1. 
Taking into account the fact that He) is n-dimensional, we realize that none of these 
inequalities can be sharp, i.e., the homogeneous dimensions of He are 

21,,2 . .. ,2, 1. 

Let q E flej\0, 1 < j < n/2, and let A1q be the corresponding map that was 
introduced in the proof of Lemma 4.4. The proof of that lemma shows that ran Oq C 

I18,j-1. Since dim llej3-i = 2, this implies that dimker'bq > m - 2, i.e., that q 
is a bivariate polynomial. Further, the argument in Lemma 4.4 makes clear that 
q cannot be univariate. Consequently, rankVq = 2, and randO = 1e,3j-1. By 
selecting p to be any nonzero polynomial in Ien/2 v and choosing a e E+ such that 
IajI = n/2 - j and q := D'p 74 0, we obtain that each I'llj-1, j = 2,... ,n/2, is 
generated by derivatives of p. That same result is trivial for j = n/2 + 1 (since 
He,n/2 is 1-dimensional), and for j = 1. Thus, 

He = {P(D)p: P E ll}, 

i.e., H1e comprises the derivatives of the single polynomial p, hence, in particular, 
I-e is annihilated by the (m - 2)-dimensional space {D, x E ker Vfp}. Selecting 
any basis for that space, we invoke property (e) of He to conclude that there exist 
m - 2 linearly independent linear polynomials, each of which vanishes on 8, i.e., 
that 8 lies on a 2-dimensional linear manifold. Since 8 is assumed to lie also on 
Sm-1, we conclude that, indeed, it lies on a circle. This completes the proof of (b). 

Before we prove (c), we mention that its statement is sharp in the following sense. 
First, if 8 consists of five points in S2, then, regardless of its distribution, the 5- 
dimensional H1e cannot lie in the 4-dimensional '(n-3)/2 = 111, i.e., the statement 
in (c) fails to hold for n = 5. Further, if all the points of 8D except one lie on a 
circle, then 11e I t l(n-3)/2, and, therefore, one cannot prove in (c) that 8 must lie 
entirely on a circle. 

In order to prove (c), we assume that n > 7 is odd, and that I-e t 11(n-3)/2. 
We need to prove then that, save perhaps for one point, 83 lies on a circle. Here, 
we need to recall from [2] that the definition of 11e is 

(4.5) I-e = spanjf1: f E E(6))} 

with E(89) the span of the exponentials eo, 0 E 8), and with fj the smallest- 
degree nonzero homogeneous term in the power expansion of f. It is then easy to 
check that, if 8 contains four points which are not co-planar, then dimH11e 1 > 3. 
Therefore, assuming 8 not to lie on a circle, we must have that dim 119,1 > 3. 
Repeating the same counting arguments that we employed in the proof of (b), we 
conclude that the homogeneous dimensions of H1e must be 

1, 3,22, ... ,2,1. 

Selecting any p E II1e,(n-1)/2j and repeating the argument that was used in the proof 
of (b), we conclude that p is bivariate and that the derivatives of p form a subspace 
in H1e of dimension n-1 (the argument relies on the fact that dim lle8,(n-1)/2-1 = 2, 
hence requires n > 7). Let x E Rm be such that Dxp = 0. Let also f E E(89) be an 
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exponential that satisfies fi = p. Set g := DJf, k := (n - 1)/2. In what follows, 
we denote by fj the jth-degree homogeneous term in the power expansion of the 
exponential f. Since fj = 0, for all j < k, we have that gj = 0 for all j < k - 1. 
Also, since fk = p, we have that gk-1 = (Dxf)k-1 = Dxfk = Dxp = 0. Thus, 
deg(g) > k. Since gj is in I19, and lle C I1k, we must thus have deg(gj) = k, 
hence that gj is a constant multiple cp of p (since the kth-degree homogeneous 
component of lle is spanned by p). This implies, with q the linear polynomial 
q(y) x y - c, that (q(D) f ) j = 0, 0 < j < k, and thereby that, if q(D) f 7& 0, then 
deg(q(D)f){ > k, in contradiction with the fact that -13 C I1k* Thus, q(D)f = 0. 

On the other hand, as any function in E(e), f can be written in the form f = 

EOE89 coeo hence 0 = q(D)f = EOE8 q(O)coeo. Since finitely many exponentials 
are always linearly independent, we conclude that 

co 7 0 ? q(O) = 0. 

Thus, the subset 

{0 E 9: co 7 0} 

lies in the hyperplane q = 0. Ranging the directional derivative Dx over an (m -2)- 
dimensional space (which is possible since p is bivariate), we obtain, as in the proof 
of (b), that e' lies on a circle. It remains to show that #e' > n - 1: since 
f E E(E)'), and p = fi, we have p E ne1,', and therefore its space of derivatives 
D(p) lies in ll, as well. Since dim D(p) was shown to be n - 1, we conclude that 
#e' = dimlle, > dimD(p) = n-1. 0 

Theorem 4.1 and Corollary 4.2 follow now, in view of Lemma 4.4, from Theorem 
3.1. 

5. SETS THAT ARE TOTAL FOR MEASURES ON Sl: AN ANALYTIC APPROACH 

In the case of interpolating on the circle, dim' HO= 2 for all k = 1, 2,..., and 
'HO is spanned by the two functions cos kT and sinkT, where (r, r) are the polar 
coordinates in R2 . These well-known facts can be nicely used in the course of study 
of Problem 2.9. We will connect our problem to the distribution of zeros of bounded 
univariate exponentials, and use the obtained characterization to derive separate 
necessary and sufficient conditions for the totality of K for finitely supported Borel 
measures. 

Recall that, given T E C, e, is the exponential x F-+ eTx with frequency T. 

Throughout the section, we will make essential use of the following univariate ex- 
ponential space: 

En:={ S creir: #T < n, cr E RI, VT}. 
rETC [0,2r) 

Also, 1 := Un>1 En. It is important to note that we allow only real coefficients cT 
in the definition. 

We first record and prove the basic observation that will be utilized throughout 
this section. 

Theorem 5.1. For K c Z+, the following conditions are equivalent: 
(a) K is total of order n on S1. 
(b) K is a uniqueness set for En, i. e., only the zero function in En vanishes 

identically on K. 
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Proof. On the circle, the homogeneous harmonic polynomial space -k is spanned by 
sin(kT) and cos(kT). This means that a real-valued Borel measure ,i is perpendicular 
to 'HO if and only if 

ei du(T) = 0, 

i.e., if and only if the Fourier transform ju of ft vanishes at k. Consequently, for any 
K c +, we have pt E 'Ott if and only if j2 vanishes on K. 

The assertion of the theorem then follows from the observation that En is the 
collection of all Fourier transforms of Mn(Sl). O 

The next theorem is a necessary condition for the totality of K for Mo (Si), and is 
followed by another theorem which establishes a sufficient condition for the totality 
of K for Mn(Sl). Both results are based on Theorem 5.1. A result similar to the 
first one was mentioned by Menegatto in [9], and [10]. We note that Menegatto 
was then primarily interested in identifying strictly positive definite functions of all 
orders. 

Corollary 5.2. The set K C Z+ is total of all orders on Si only if it has infinite 
intersection with any set of the form kZ+, k E N. The same applies to sets of the 
form k/2 + kZ+, provided that k is even. 

Discussion. The above result is invalid with respect to any other arithmetic pro- 
gression: one can show that the set 2+\(a + kZ+) is total of all orders, whenever 
a k E+. As an illustration, the following observations can be made with respect 
to the value k = 4: in order to be total for MO (S1), K must have infinite intersec- 
tion with 4Z+, as well as with 2 + 4Z+. It also must have an infinite intersection 
with one of the sets 1 + 42+, 3 + 42+ (since their union is 1 + 2Z+), but may have 
an empty intersection with the other of these latter sets. O 

Proof. In order to unify the proof, we assume that the relevant arithmetic progres- 
sion is of the form Z := a + kZ+, a < k. We will further assume that K has only 
finite intersection with Z, and will use that to construct a linear combination ff* 
of exponentials (eiT)TE[o0,2r) that vanishes on K. The crux of the proof is that, if 
a = 0 or a = k/2, the coefficients in the representation f* = E, c-reiT- are real. 
Thus, for these cases, f* E 8, and the desired result is then implied by Theorem 
5.1. 

Set 

T :={(2irl)/k: 1 = 0,1,.. . , k-1}, 

and define the univariate exponential 

f:= E ei( - a). 
rET 

Then f(l) = 0, for 0 < l < k - 1, 1 /4 a, and since f is k-periodic, we conclude that 
f actually vanishes on Z+\Z. 

By our assumption, the set K n Z is finite. Let n denote its cardinality, and let 
to, t1, t2, .. . , t2n be chosen in a way that (a) each set ti + T is a subset of [0, 2wr), and 
(b) the sets t1 +T, I = 0 ... , 2n, are pairwise disjoint. The restriction to KnZ of the 
2n + 1 exponentials {eit, f} 2n0 must be linearly dependent over the reals, since the 
set KnZ contains no more than n points. Let f* be a nontrivial linear combination 
with real coefficients of these functions that vanishes on K n Z. Furthermore, since 
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f vanishes on 7+?\Z, so does every eit, f, and therefore f* vanishes on that set as 
well. This implies that f * vanishes on K, too. Finally, since the spectra of the 
exponentials {eit, f} are pairwise disjoint, f* cannot be identically 0 (since finitely 
many exponentials are linearly independent). 

It remains to show that f * E 8, and this is the part where we need the assumption 
a = 0, k/2. Indeed, for such choice of a, we observe that the numbers ei (-a), 
r E T, are real, hence, in these cases, f E 8, implying that eit, f E ?, too. Since ? 
is a linear space over the reals, we conclude that f * lies in that space, too. 

Consequently, we have found a nontrivial exponential f * E 8, that vanishes on 
K. LI 

Theorem 5.3. Let K C Z+ be given, and let n be a positive integer. Suppose that 
one of the following two conditions holds: 

(a) K contains n consecutive integers. 
(b) K contains n arithmetic progressions, each of length n: 

axj, aj + djl .. ., agj+(n-1)dj, j =1, 2, .. ., n, 

and the numbers (dl,... , dn) are pairwise relatively prime. 

Then K is total of order n on S1. 

Remark. The theorem lists two special cases of a slightly more general result (cf. 
[16]). 

Proof. The proof of (a) is quite simple. We assume that there exists an exponential 
f E En that vanishes on K, and will reach a contradiction. Our claim would then 
follow from Theorem 5.1. Being in En, the exponential f has the form 

(5.4) f = crei, T C [0,27r), c, E R\0, 
rET 

with #T < n. Without loss, we may assume that 0 E T, and that co = 1 (otherwise, 
we divide f by c-o ei,0 with To the smallest number in T). Let p be a univariate 
polynomial that vanishes on ei,(1) = eiT, T E T\0, and nowhere else. In particular, 
since T\0 C (0, 2wr), p(l) 7& 0. 

With p(t) = Tj ajtj, let p(V) be the induced difference operator 

p(V): g ig>E ajg(. + j). 

Then, p(V)ei, = ei, p(ei,(1)) = 0, for each r E T\0. Hence p(V)f = p(l) 7& 0, i.e., 
p(V)f is a nonzero constant. However, since we assume f to vanish at n consecutive 
integers, and since p is of degree < n, it follows that p(V)f must vanish at least at 
one integer point. Contradiction. This proves (a). 

The proof of (b) follows the same lines, but is more complicated. It first requires 
the following simple lemma, whose proof is omitted. 

Lemma 5.5. Let T be any finite subset of (0, 2wr). Then the set of integer zeros 
of the function F := HLET(eir - 1) is of the form JZ, with J a subset of N\1 of 
cardinality < #T. 

The proof of (b) starts as in (a): we let f be an exponential as in (5.4) that 
vanishes on K, and will show that this contradicts the assumption made on K. 
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Again, we assume without loss that 0 E T, and c0 = 1. By Lemma 5.5, the positive 
integer zeros of the function 

F:= 17 (ei,-1) 
rET\O 

are of the form JN, with J C N\1 of cardinality < n. This means that F cannot 
vanish at all the numbers dj, j = 1,... , n (the relative primality assumption implies 
that no kZ+ can contain more than one dj). Without loss, we assume that F does 
not vanish at d:= dl, i.e., 1 ' {ei,(d)}TET\0 

Let p be a polynomial 

p: t - ajtj 

whose zero set is {ei,(d): r E T\0}. Then, degp < n, and p(l) $& 0. Let p(V) be 
the induced difference operator 

p(7) : g | ajg(. + jd). 

Then, p(V)ei, = ei, p(ei,(d)) = 0, for each r E T\0. Hence p(V) f = p(l) $4 0, i.e., 
p(V)f is a nonzero constant. On the other hand, since f is assumed to vanish on 
an arithmetic progression of length n and stepsize d, p(V)f must vanish at some 
point, and we have thus reached the desired contradiction. D 

6. SETS THAT ARE TOTAL FOR MEASURES ON Sm-1: AN ALGEBRAIC APPROACH 

Here, we attack the problem from a completely different angle. While the core of 
the argument used in the previous section was the connection between 2-dimensional 
harmonic polynomials and their analytic completions, the course here is of algebraic 
nature. It is based on the realization of harmonic polynomials as the kernel of the 
Laplacian and thereby exploits the connection between a homogeneous polynomial 
ideal and its kernel in II. Some of the results in this section can be, hence are, 
developed in a more general (and in our opinion more natural) setup. 

We will require here some additional notations. The first is that of exponential 
spaces. These are defined in terms of some set Q c Rm, and a positive integer n as 
follows: 

En(Q) ={ coeo: C Q, #e < n, co E C, V0}. 
0E8 

(Note that co is a constant, but eo is a function.) Obviously, the above exponential 
spaces are not linear spaces, in contrast with the larger space 

E(Q):= U En(Q). 
n>1 

Another set of notations concerns maps defined on the algebra A of all for- 
mal power series in m variables. Since A is the direct (infinite) sum Ek>O lk of 
the homogeneous polynomial spaces, there exists, for every k > 0 a well-defined 
projector 

k: A--3 k 
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that assigns to each power series f E A the kth-degree homogeneous component in 
its power expansion. Further, given a subset K C E+, the sum 

kEK 

defines an analogous projector, this time from A onto HK* 

Finally, we reserve a special notation 6 for the polynomial 
m 

6(X) m= M(X) ZX2. 

n=1 

Thus, 6A is the (homogeneous principal) ideal generated by 6. Note that the 
evaluation 8(D) of 6 at D is the Laplacian operator. 

Recall that a subspace H of A or II is homogeneous if, for each k E E+, the 
corresponding projector k maps H into itself. 

Definition 6.1. Let Q be a subset of Rm, H a homogeneous subspace of II, and 
n a positive integer. We say that H is total of order n on Q if for any e C Q of 
cardinality n, and any function F defined on e, there exists a polynomial p E H 
that interpolates F (on 19). 

To see the connection between the new definition and our original notion of 
totality, one chooses Q := Smi1, and H := 7K (defined as in the introduction). 
Then, in view of Theorem 3.1, the totality of K of order n on Sm-1 is equivalent, 
in terms of the new definition, to the totality of order n of 7(K on Sm-1. 

Theorem 6.2. Let H, n and Q be as in the above definition. Then H is total 
of order n on Q if and only if for every exponential f E En (Q), there exists k E 
E+ such that the kth-order homogeneous differential operator k(f) (D) does not 
annihilate H n ll1. 

Proof. For 0 E Rm, let 8o be the functional 60: f |-- f(0), and for a finite set 
E c Rm, let M(@) be span{6o}oEe. Then H fails to be total of order n on Q 
if and only if for some E C Q of cardinality n, dimH10 < dimAM(0) = n. But 
in (and only in) such a case, there would be A = ZOEO Co6o E M(o), which is 
orthogonal to H, i.e., 

Zcop(0) = O, all p E H. 
OEEO 

Defining f := ZOEO9 coeo, we obtain an exponential f E En(Q) such that p(D)f (O) 
=Ap= O, for everyp E H. Forp E H n l, we have 

0 = p(D) f (0) = p(D) (k(f )) (0) = (k(f ) (D))p(O) = (1k(f ) (D))p. 

Therefore, the condition p(D) f (0) = 0, all p E H, is equivalent to k (f )(D) annihi- 
lating H n HO for every k. L 

The principal result of this section is as follows: 

Theorem 6.3. Let K c E+, and let n be a positive integer. Then K is not total 
of order order n for Sm1, if and only if there exists f E En(Sm-l) for which 

K(f) E6A. 
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In fact, the proof of Theorem 6.3 is more informative than its statement: given 
e C Sm-1, the proof shows that the matrix Age is singular if and only if there 
exists an exponential f E E(19) that satisfies Kmg(f) E 6A. 

Proof of Theorem 6.3. By Theorem 3.1 (and in view of Definitions 2.9 and 6.1) 
the required property of K is equivalent to 7HK being total of order n for Sm'1. 
Therefore, in view of Theorem 6.2, we need to prove that the condition stated in the 
present theorem is equivalent to the following: "There exists f E En(Sm-i) such 
that, for every k E K, (k(f))(D) annihilates -K n 110 = 'Ho." Since 'Ho is the kernel 
in Hok of the Laplacian 6(D), the last condition is equivalent to the divisibility of 
k(f) by 6. l 

The following sufficient condition is derived from the characterization in Theorem 
6.3. 

Theorem 6.4. Given e c Sm-1, define 

-a() := min{#O' c 0 : span(0\0') $& Rmi} 

Let j be the minimal integer that satisfies (jlm7r2) > o(0). Let g be a positive 
definite function for Sm-1, and assume that the set {k E Kmig : k > (#19)/2} 
contains j consecutive even integers as well as j consecutive odd integers. Then 
Ag,e) is invertible. 

We divide the proof of Theorem 6.4 into a sequence of several lemmas; some of 
them might appear to be of independent interest. Note that (j+m-n2) = dimII?_ . 

Lemma 6.5. The operator 8(D) induces an isomorphism between 8n+1H and PH, 
n = 0, 1, .... 

Proof. First, we recall that II is the direct sum of the spaces (8k7.)kE z+. (A quick 
proof of that would go as follows. Since X is the kernel in II of the homogeneous 
differential operator 8(D), II is the direct sum of X and the principal ideal 811: 

II =H X d6 H. 

Multiplying the above equation by 6k, and using induction, we obtain 

k-1 k 

1 = (S bij) 6kyj = (5 bij-) E 6k+ly9) 
j =O j=O 

Next, one checks directly that, for each k E E+, there exists a constant Cn,k such 
that the operator p |-- cn,k(6(D)p)8 is the identity on 8n+l7H. This implies that 
8(D) maps 6n+l7. one-to-one onto 6nl. 

Finally, the decomposition result asserted in the first paragraph of the proof 
allows us to write 

8n+11 e 8kH. 
k>n+l 

The desired result then follows from an application of 8(D) to both sides of the last 
equality, and invoking the isomorphism assertion from the second paragraph of the 
proof. El 
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Lemma 6.6. Assume that f E A and satisfies 6(D)f = ff. Assume further that 
for some k,n EZ+, 

(6.7) (k + 2j)(f) E 611, j = 0 ... ,n. 

Then, 

(6.8) (k + 2n)(f) E 5f+lfl 

Proof. By induction on n. If n = 0, the claim in (6.8) is assumed in equation (6.7). 
Assume thus that the claim is valid for n - 1 > 0. Since 6(D)f = ff, we have that 
6(D)((k + 2n)(f)) = (k + 2n - 2)(f), hence by the induction hypothesis 

6(D)((k + 2n)(f)) E 6n1. 

Invoking Lemma 6.5, we conclude that 

I(k + 2n)(f) E -H+ 6n+11II 

The result then follows from the assumption that (k + 2n) (f) is divisible by 6 (and 
the fact that no polynomial in 7t\0 is divisible by 6). D1 

Proof of Theorem 6.4. Let E) C Sm-1 of cardinality n be given, and let f E E(e). 
By Theorem 6.3 (more precisely, by the statement made in the paragraph that 
follows Theorem 6.3), we need to show that K(f) is not divisible by 6. Assume, 
to the contrary, that K(f) is divisible by 6. We first note that, for some k < n/2, 
say, ko, one has ko(f) : 0. (Indeed, by the definition (4.5) of H1e, if k(f) = 0 for 
all k < n/2, then 119 must contain a polynomial of degree > n/2, in contradiction 
with Lemma 4.4). Since f, as any function in E(Sm-l), satisfies 6(D)f = f, one 
concludes from the fact that ko(f) 7/ 0, that i(f) V8 0, for every i E ko + 22+. 
Because ko < n/2, our assumptions on K imply that there exist j integers , k - 
2, k-4, ... , k-2j + 2 in K, that further satisfy k-2j + 2-ko E 2Z+. In particular, 
each integer i in this progression satisfies the relation i(f) =A 0. On the other hand, 
each of these integers lies in K, and since K(f) E 611, Lemma 6.6 implies that 

k(f) E &ill. 

As the rest of the proof will establish, this last conclusion contradicts the fact that 
f E E(O). 

Since f is a linear combination of {eo}OEe, we have that 

k(f) = c(O.)k, 
OET 

with T C E3, and with any 0, 0' E T being linearly independent. Here, 

(O.)k: X i-* (0 . X)k. 

Let T' be a nonspanning set in T of maximal cardinality. Since dim I`I_1 > (()) > 

#(T\T'), there exists a nontrivial homogeneous polynomial P1 E HlO_1 that vanishes 
on T\T'. Writing P1 in the form P1 = 6ip with p M 611 and i > 0, we conclude 
that p is a homogeneous polynomial of degree r < j which vanishes on T\T'. An 
application of p(D) to k(f) yields a linear combination of the form 

q = E ao(0.)kr. 
OET' 

Since T' does not span, the above polynomial is of less than m variables. 
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On the other hand, k(f) =SP, for some P E 11\(1-1), s > j. Therefore, for 
some c $4 0, 

p(D)(k(f)) = p(D)(EsP) = cps-r p + 6s-r+l p 

Since cpP is nonzero and is not divisible by 6, we conclude that p(D)(k(f)) is a 
nonzero polynomial in 811, hence, in particular, cannot be of less than m variables, 
and we thus have reached the desired contradiction. E] 

Since a(e) < n - m + 1 for any e c Rm of cardinality n, we obtain the following 
corollary: 

Corollary 6.9. Let K C Z+, and n be a positive integer. Then K is total of order 
n on Sm-1, if, with j the minimal integer that satisfies (j+mk 2) > n-m + 1, 
there are j consecutive even integers and j consecutive odd integers in the set {k > 
n/2} n K. 

In particular, if K contains arbitrarily long sequences of consecutive even and of 
consecutive odd integers, then K induces strict positive definiteness (of all orders) 
on Sm-1, for every m > 2. 

Note that, in Theorem 6.4, a(o3) = 1 whenever E3 does not span. Thus, the 
theorem implies that, if we sum two Gegenbauer polynomials associated with Sm-1, 
one of even degree and one of odd degree, we get a function g that is strictly positive 
definite of order n for S'-1, 1 < m, provided that the degree of the above-mentioned 
polynomials is > n/2. In particular, we obtain that g is strictly positive definite 
of all orders on S'-1, if it is positive definite of order m > 1, and Kmg contains 
infinitely many odd and infinitely many even integers (compare with Corollary 4.4 
of [12]). Actually, such observations already follow from Theorem 4.1: the known 
interrelations among Gegenbauer polynomials of different types (cf. [1]) imply that, 
if Kmg contains one odd integer > k, and one even integer > k, then Klg contains 
all integers < k. 
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