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ON THE OPTIMAL STABILITY OF THE BERNSTEIN BASIS 

R. T. FAROUKI AND T. N. T. GOODMAN 

ABSTRACT. We show that the Bernstein polynomial basis on a given inter- 
val is "optimally stable," in the sense that no other nonnegative basis yields 
systematically smaller condition numbers for the values or roots of arbitrary 
polynomials on that interval. This result follows from a partial ordering of 
the set of all nonnegative bases that is induced by nonnegative basis transfor- 
mations. We further show, by means of some low-degree examples, that the 
Bernstein form is not uniquely optimal in this respect. However, it is the only 
optimally stable basis whose elements have no roots on the interior of the cho- 
sen interval. These ideas are illustrated by comparing the stability properties 
of the power, Bernstein, and generalized Ball bases. 

1. INTRODUCTION 

To represent a polynomial p in a digital computer, we store in memory its coef- 
ficients c0,... , c, in a suitable basis. These coefficients, together with a value t of 
the independent variable, serve as input to an evaluation algorithm that furnishes 
the polynomial value p(t) as output. 

Since most scientific/engineering calculations are performed in floating-point 
arithmetic, limitations that are imposed by the choice of basis on the expected 
accuracy of the value p(t) are clearly of fundamental concern. In theoretical ex- 
positions, for example, one usually relies upon the monomial or "power" form 
Co + c1t + + Cntn, which may be evaluated by Horner's method. It has been 
shown, however, that if one is interested only in polynomial values (or roots) on 
t E [0, 1 ], the Bernstein form on this interval is systematically more stable than 
the power form [5], in the following sense: 

We imagine the coefficients of both the power and Bernstein forms of p to be 
subject to random errors of maximum relative magnitude 6, and we ask: how do 
the bounds on the corresponding perturbations 6p(t) in the value p(t) compare? 
These bounds may be expressed in terms of "condition numbers" (see ?2 below) 
and one finds they are systematically smaller - i.e., for every polynomial p and for 
each value t E (0,1) - in the Bernstein form. 

The enhanced stability of the Bernstein form, as compared to the power form, 
can be attributed to two simple facts: (i) the power and Bernstein bases are both 
nonnegative on [0,1]; and (ii) the latter may be transformed into the former by 
means of a nonnegative matrix. Our purpose here is to explore the implications of 
these facts in a broader and more fundamental context. Thus, we consider families 
of nonnegative bases generated by nonnegative transformations and identify their 
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"minimal" members (those not obtainable as nonnegative transformations of any 
other nonnegative basis). 

The Bernstein basis is one example of such "optimally stable" bases, in the 
sense that there exists no other nonnegative basis that gives systematically smaller 
condition numbers than it. Although it is not uniquely optimal, no other basis in 
common use enjoys this distinction, and it is uncertain whether other conceivable 
optimally-stable bases would share the useful properties and algorithms that we 
associate with the Bernstein form. 

We proceed in the remainder of this paper as follows. After reviewing basic 
ideas concerning polynomial condition numbers in ?2, we introduce in ?3 a partial 
ordering of the set of nonnegative bases on a given interval, and identify its minimal 
elements as optimally stable bases. We show in ?4 that the Bernstein basis is one 
such basis, and we derive results that distinguish it from other possible optimal 
bases. In ?5 and ?6 we illustrate the practical consequences of these results in 
the context of three representations (the power, Bernstein, and generalized Ball 
forms) commonly used in computer-aided geometric design. Finally, ?7 offers some 
concluding remarks. 

2. CONDITION NUMBERS 

Any set of n+ l linearly independent polynomials, 4D = {q0o(t), . O. ,q$n(t)}, defines 
a basis for polynomials of degree n- i.e., we can uniquely express any polynomial 
p(t) of degree < n in the form 

n 

(1) p(t) = ZCk Ok(t) 
k=O 

by a suitable choice of coefficients co, .. , cn. We shall be concerned here with the 
stability of such representations, i.e., in how sensitive a value or root of p is to 
random perturbations of a given maximum relative magnitude e in the coefficients 
co ... ., n corresponding to the basis 4(. 

A sharp bound on the perturbation 6p(t) in (1) may be expressed in terms of a 
condition number CD(p(t)) for the value of p in the basis (D as 

n 

(2) I6p(t)I < CD(p(t))e where C,(P(t))=ZEckI'k(t)I 
k=O 

The above bound holds for arbitrary - not just infinitesimal - coefficient pertur- 
bations e. Note that CDp(p(t)) depends as much on the adopted basis 4) as on the 
particular polynomial p under consideration. 

Suppose now that r is a simple real root of (1), i.e., p(r) = 0 :4 p'(r). We can 
also characterize the sensitivity of r to a perturbation e of the coefficients co,... , Cn 

in the basis 44 by a condition number. Namely, the displacement 8r of this root 
satisfies 

(3) IT?l < C(T)e where Co(r)= 1 E Ick7k(T)I 
Ip(T)I k=O 

The quantity Co(r) is called the condition number for the root r in the basis 4) 
(note that the above bound is strictly valid only in the limit e -4 0). Further details 
on these condition number formulations may be found in [5]; for a comprehensive 
discussion, see [6]. 
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To obtain accurate results when performing floating-point computations with 
polynomials, it is desirable to employ a representation - i.e., a choice of basis 
- in which the condition numbers are as small as possible.1 When comparing 
condition numbers in arbitrary bases 1 = {fo,..- , On} and P = {fo,. .. , Pln } one 
will find, in general, that some polynomials p and values of t yield smaller condition 
numbers in the ?b basis, while others are better-conditioned in the T representation. 
In other words, no systematic inequality between C(D(p(t)) and Cq,(p(t)) - valid 
for all p and every t in some domain of interest - can be expected when D and I 
are arbitrarily chosen. 

This problem may be surmounted by imposing suitable restrictions on the bases 
we consider. Indeed, such conditions may be independently desirable, on account of 
useful attributes or algorithms they incur. Specifically, we shall be concerned here 
only with bases 4' = {qo,... n } that are nonnegative over an interval t E [a, b] 
of interest, i.e., for k = O... ., n they satisfy 

Ok(t) > 0 for t E [ab]. 

If, in addition, the basis 4i forms a partition of unity (bo(t) + + ?n(t) 1) the 
representation (1) will exhibit the convex hull property: 

min(ck) < p(t) < max(Ck) for t E [a,b] 
kk 

In terms of condition numbers, nonnegative bases are of particular interest in the 
context of the following result: 

Proposition 1. Let 4J = {fo(t), ... , On (t),} and P = {f0 (t),... , 4'n(t) } be non- 
negative bases for degree-n polynomials on t E [a, b] such that the latter can be 
expressed as a nonnegative combination of the former, i.e., 

n 

(4) ?Oj(t) = AMjk?)k(t) i j=i O... , n 
k=O 

(5) where Mjk >O for all O<j,k<n. 

Then the condition number for the value of any degree-n polynomial p(t) at any 
point t E [a, b ] in these bases satisfies the inequality 

(6) CD (p(t)) < Ca (p(t)). 

Proof. The result (6) is an immediate consequence of the triangle inequality and the 
nonnegativity of the matrix elements Mjk and the bases P and T. It is a straight- 
forward generalization of Theorem 1 in [5], wherein it was couched specifically in 
terms of the Bernstein basis bkn(t) = (n) (I - t)n-ktk for k = 0,... ,n on [0, 1] and 
the power basis {1, t,... , tn}-note that the latter is given by the nonnegative 
combination 

n (kX 

(7) tj - bn(t) for j= ... ., n 
k=j i 

of the former. D 

'It can be shown by backward error analysis [12] that the cumulative effect of floating-point 
arithmetic errors during any computation on given polynomials is equivalent to certain perturba- 
tions of their exact coefficients. 
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The inequality (6) clearly also holds for root condition numbers, since these differ 
from condition numbers for the value only by the magnitude of the derivative at 
the root (which is independent of the choice of basis). 

3. PARTIAL ORDERING OF NONNEGATIVE BASES 

Let Hn be the space of all polynomials of degree < n on the interval [a, b ]. We 
shall denote by Bn the set of nonnegative bases for HI. 

If D = {qbo,... , On and T = {fbo,... ., Vn} are members of Bn, we write 4D T 
if there exists a nonnegative (n + 1) x (n + 1) matrix M such that 

(8) T = M T 

Since the product of two nonnegative matrices is also a nonnegative matrix, the 
relation q evidently satisfies the transitivity condition 

T P and 4 qE =- T E 7 . 

It can easily be verified that a nonnegative matrix has a nonnegative inverse 
if and only if it is the product of a permutation matrix and a positive diagonal 
matrix. Thus, the relations 4D T and T 4D are simultaneously satisfied if and 
only if, under suitable ordering, the elements of 4J are constant positive multiples 
of the elements of T. In such a case, we write 4- T. 

We shall also write 4D -E T if 4 T P but 4D $, P. These relations may be phrased 
as follows. When 4D -< 'I, we say "4 precedes T." If 4D - T, we say "4 is similar 
to P." Finally, J T P is read "4J precedes or is similar to T." 

The relation q induces a partial ordering among the members of B - we say 
the ordering is "partial" since there exist pairs of bases 4J and P in Bn such that 
neither the matrix M defined by (8) nor its inverse is nonnegative; no precedence 
relation can be established between such bases. 

We shall call any nonnegative basis 4D a minimal basis if there is no basis P 
in Bn that satisfies P -E 4b. Note that, since q only partially orders Bn, there 
may be - modulo similarities - more than one minimal basis. The following 
theorem demonstrates that minimal bases are "optimally stable" (in the sense of 
the condition numbers defined in ?2): 

Theorem 1. Any two bases 4 and P in Bn satisfy 

(9) P < IF CI(p(t)) < C (p(t)), 

where the inequality on the right holds for each polynomial p E -n evaluated at 
every value t E [ a, b ]. 

Proof. That 4 T P ?4 CD(p(t)) < Cqp(p(t)) for each p, E Hn and every t E [a,b] 
follows directly from Proposition 1 and the definition of . 

To verify the converse statement, we shall argue by contradiction. Suppose that 
CD(p(t)) < Cqij(p(t)) for each p E Hn and any t E [a, b ], but the relation 4 T P 
does not hold. Then pT = M T, where the matrix M is not nonnegative, i.e., 
among its elements Mij for 0 < i, j < n we have Mkl < 0 for some k, 1. Furthermore, 
since 4D = {q0o, ... ,qOn} and P = {0o,... fin are nonnegative bases, we clearly 
must have Mkr > 0 for some r. 
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Now taking p = V.k and choosing a value t E [a, b] such that both /i (t) > 0 and 
4r(t) > 0, we observe that 

n n 

C41(p(t)) = Z MkjI j(t) > E Mkj Oj(t) 
j=o j=O 

= I/k(t) I =CT (P(t)) 
where we make use of the triangle inequality and the fact that Mkl and Mkr are of 
opposite sign. Since the above contradicts our initial supposition, we must conclude 
that it is false. D1 

Note that, in Theorem 1, 4D I ?. CD(p(t))- C(p(t)) in equation (9) for 
each p E Iln and every t E [ a, b]. 

4. OPTIMAL STABILITY OF THE BERNSTEIN BASIS 

Consider now the Bernstein basis B defined on t E [ a, b ] by 

n 0t (n) (b - t)n-j(t - a)j 
(10) bjk) = (b -a)n for j =O1...,n. 

We will demonstrate that B has optimal stability in Bn. 

Theorem 2. Suppose that P = {bo,... ,n } and @JJ = {bo,... ,On are bases in 
Bn satisfying 

Oji)(a) = 0 for i = ,..,j - I and j = ,... ,n, 

p3W)(b) = 0 for i=0,... ,n-j-1 and j=0,... ,n-1. 

Then, if 4t E Bn satisfies both 4D < P and 4D < P, we have - B. 

Proof. Let Mij for 0 < i, j < n be the elements of the nonnegative matrix M such 
that 
(11) t = M . 

We will prove by induction that the basis 4D may be ordered such that the matrix 
M is lower triangular. Suppose that, for a suitable ordering of 4, there is a row k 
such that 

Mi3= 0 for j> i + 1 and i =0,... , k-1. 
This hypothesis is vacuous if k = 0. Note that it is unaffected by reordering 

Ok, . . . , On. Note also that, for To, .. , k k-i to be linearly independent under this 
hypothesis, we must have Mij > 0 for i = 0,.. ,k-1. Now for k < n-1, 

n 

0 = O/)k(b) = ZMkj Oj (b), 
j=O 

and since Mkj and qOj (b) are nonnegative, we must have Mkj qj (b) = 0 for j = 

0,... ,n. If we were to suppose that Mkj > 0 for j = k,... ,n, then qj$(b) = 0 

for j = k,... ,n. However, since 4j (b) = 0 for j = 0,... ,k - 1, we may infer 
from our hypothesis that qj (b) = 0 for j = 0,... k - 1 also. But the values 

qo (b), , qn (b) cannot all vanish if 4D is a basis for HIn1 Our supposition that 

Mjk > 0 for j = k, ... , n must- therefore be false. Thus, by reordering Ok,... n 
if necessary, we may assume that Mkn = 0. 
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If k = n - 1, the inductive proof is complete. Otherwise, for k < n- 2, we note 

that 
n-1 

(12) 0 = fk(b) = ZMkj $.(b), 
j=o 

and, again, Ej=n Mkj qj (b) =0. Now supposing that Mkj > 0 for j = k, . . 
we have, as before, qj (b) = 0 for j = k,... , n - 1. Since the basis JP is nonnegative 

on [a,b] this implies that qj$(b) < 0 for j = k,... ,n-1. Now jb(b) = %b(b) = 0 
for j = 0 .... , k - 1, and by our hypothesis we also have qj (b) = qj$(b) = 0 for 
j = 0,... , k - 1. To satisfy equation (12) under these conditions, we must have 

qj$(b) = 0 for j = k,... ,n - 1. Hence, 4j(b) = Ojq(b) = 0 for j = 0,... ,n -1, 

i.e., the n polynomials bo, ... ., in- lie in the (n - 1)-dimensional space {p E I-n 

p(b) = p'(b) = 0 }, which contradicts their linear independence. The supposition 
that Mkj > 0 for j = k,... , n - 1 must therefore be false, and on reordering 

Ok ... , q)n-1 if necessary we may assume that Mkn-I = 0. 

Continuing in this manner, one can show that Mkj = 0 for j = k 1..., n, 
and the inductive proof is complete. So we can henceforth assume that (11) holds, 
where M is a nonnegative, lower triangular matrix. 

We shall now prove by induction that 

(13) qj (t) = cj (b-t)n-j (t-a)j 

for nonzero constants c0, ... , cn. As our inductive hypothesis we suppose that, for 
some k between 0 and n, expression (13) holds for j = n - k + 1.... , n. This 

hypothesis is vacuous for k = 0. 
Let pT = N 4)T for some nonnegative matrix N having elements Nij, 0 < i, j < 

n. First, suppose that k < n- 1. Then 
n 

0 = on)-k(a) = Nn-k,j j (a) 
j=O 

and hence Nn-kj qj (a) = 0 for j = 0, ... , n. If we suppose that Nn-k,j > 0 for 

j = 0.. ., n-k, then $j(a) = 0 for j = 0O ..., n-k. But, by our hypothesis, qj 
has the form (13) for j = n-k + 1, ... ,n, andso j(a)=0forj=n-k+1,.., n 
also. However, the values qo (a),... , On (a) cannot all vanish if 4P is a basis for Hn 
so we conclude that the supposition Nnk,j > 0 for j = 0.... , n - k must be false. 
Hence, we must have Nn-kl = 0 for some 1, where 0 < I < n- k. 

Next suppose that k < n-2. Then we have 
n 

(14) 0 = k(a) = -kj (a) 
j=O 

and similarly Ej = - qkj Oj(a) = 0. We suppose that Nn ky > 0 for j = 

0,... ,n-k (j 7l1). Then, as before, qj(a) = 0 for j = 0... ,n-k (j l4 1). Since 

the basis J? is nonnegative on [ a, b ] this implies that Oj$ (a) > 0 for j = 0 ... , n - k 

(j 74 1). Now by our hypothesis, qj has the form (13) for j = n - k ...... ,n, 
and so qj (a) = q$(a) = 0 for j = 0,... ,n - k (j 741). In order to satisfy equation 
(14) under these conditions, we must have q$j(a) = 0 for j = 0,... ,n - k (j 7 1). 
This implies that the set { bj : 0 < j < n, j 7& 1 } of n polynomials lies in the 

(n - 1)-dimensional space {p E InH: p(a) = p'(a) = 0 }, which contradicts their 

linear independence. Thus, the supposition that N-kj > 0 for j = 0, ... , n - k 
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(j 3? 1) is false, and we infer that Nn-k,m = 0 for some m, where 0 < m <n - k 
and m 7 1. 

Continuing in this manner, one can show that only one of the elements Nn-k,j 
for j = 0, ... , n - k is nonzero. Thus, for some r between 0 and n - k, we make 
use of (13) to deduce that 

n 

(15) Vgn-k = Cr Or + S cj(b -t)n--(t-a) 
j=n-k+l 

for some nonnegative constants cr and Cn-k+l,... , Cn. Now since (i) (b) = 0 for 
i = O,... , n - r - 1, the relation (11) - where M is lower triangular - shows that 

q($) (b) = 0 for i = 0, ... , n-r-1 . 

On the other hand, equation (15) and the requirement that +(i)k(a) = 0 for i = 

0... ., n-k-l indicate that 

q(i) (a) = O for i = 0,..., n-k-1 . 

From the above conditions we see that, for qr to not vanish identically, we must 
have r = n - k. Hence we deduce that q$n-k(t) is a constant positive multiple of 
(b - t)k(t - a)n-k. 

Hence (13) is established for j = n - k, and the inductive step is complete. Thus, 
the form (13) holds for j = 0,..., n and we have 4D -B. E 

Corollary 1. The basis B is minimal. 

Proof. Suppose D E Bn is such that 4 B 13. Since the basis 13 satisfies the condi- 
tions on both T and 'I' stipulated in Theorem 2, this theorem implies that - B. 
Thus, there is no basis 4 in Bn such that 4 -< 13. El 

Corollary 1 establishes the optimal stability of the Bernstein basis. We note also 
the following corollaries to Theorem 2: 

Corollary 2. If 4D E Bn satisfies both 4 {1, t - a, ... , (t - a)n} and 1 q {1, 
b - t ... ., (b - n} then ( X3. 

Corollary 3. Suppose that (D E Bn satisfies 4 {1, t -a, ... , (t - a)n} and D is 
symmetric, i.e., D(t) (a + b - t). Then D -3. 

Remark 1. The Bernstein basis is not the only minimal basis. Consider, for exam- 
ple, 

p = {(1-t)2, (2t-1)2, t2} 

as a basis for H2 on t E [0,1]. Suppose that 4D = {qob, q$1, 0$2} E B2 satisfies D T I. 
Then (1 t)2 = aqo + bqi + c$2 with a, b, c > O. Since 

aqo$) (1) + bq$(i)(1) + coi)j(1) = 0 for i = 0,1 

the argument used in the proof of Theorem 2 shows that only one of a, b, c can 
be nonzero. So we may assume qbo(t) = (1 - t)2, and similar arguments lead us to 
conclude that 42(t) = t2. Hence (2t- 1)2 = a(1 t)2 + b4o1 (t) + ct2 with a, b, c > 0. 
Setting t = 1 gives a = c= 0, and hence we have - T. 
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The optimal stability of the Bernstein basis is closely related to another opti- 
mal attribute, recently identified by Carnicer and Pefia [2] namely, its optimal 
shape-preserving properties. They show that any normalized totally positive basis 
may be obtained from the Bernstein basis by multiplication with a totally posi- 
tive transformation matrix (a totally positive matrix is one whose minors are all 
nonnegative; a basis 0o,... , On is totally positive on the interval t E [a, b] if the 
collocation matrix with elements Mjk = Oj (tk), 0 < j, k < n, is totally positive for 
any sequence to,... ,tn E [a,b]). 

Carnicer and Pefia have subsequently considered nonnegative bases, and from 
Theorem 3.9 in their recent paper [3] one can independently infer that the Bern- 
stein basis is minimal with respect to the partial order < among the set of all 
nonnegative bases, and is therefore optimally stable. 

We now give some results that serve to differentiate the Bernstein basis from 
other possible optimally-stable bases. If 0(t) and 0 (t) are polynomials on t E [ a, b] 
we shall write Z(q) C Z(Vb) if the zeros of Vb (with multiplicity) include those of q, 
i.e., if +(i)(T) = O for j = O... ,k for any T E [ab] and k > 0O then (j)(T) = O 
for j = O,... ,k. 

Proposition 2. Suppose 4P E Bn includes two elements Oi and qj (i 74 j) such 
that Z(q$i) C Z(qj). Then 4P is not minimal. 

Proof. Let Ti,... , T, denote all the zeros of s$i, with multiplicity, on [a, b]. Then 
(>i(t) = I(t - T) ...(t - Tr)IPi(t), where pi(t) > 0 for t E [a,b]. So qj (t) = 

I(t - T) ... (t - Tr)I pj (t), where pj (t) > 0 for t E [ a, b ]. Choose c > 0 so that 
c pj (t) < pi (t) for t E [ a, b ]. Then bi (t) -c cj (t) > 0 for t E [ a, b ]. Now define 
P = Noi X in} by Ok = Ok if k 7& i, and i - -cj. ThenNk = Ok for k 7y i, 
and Oi = 0i + cfj. Hence T -< 4E, so 4) is not minimal. a 
Theorem 3. The Bernstein basis (10) is the only minimal basis with no zeros on 
t E (a, b). 

Proof. Let 4P = {qo . , n} be a minimal basis with no zeros on (a, b). Suppose 
that Oi has zeros of multiplicity 4i and ri at t = a and t = b for i = O,.. ., n. 
Suppose further that fi = fj for some i 7& j. If ri < rj, then Z(Oi) C Z(Oj), while 
if rj < ri, then Z(qj) C Z(qi). By Proposition 2, this contradicts 4) being minimal. 
So to,... , fn must be distinct, and we may order the basis such that ?i = i for 
i = 0,... ,n. If, for some i <j, we have ri < rj, then Z(0i) C Z(qj), which again 
contradicts the minimality of 4). So i < j must imply that ri > rj, and hence 
ri = n - i for i = O... ., n. Thus, we have Xi (t) = c (b - t)n-i(t - a)' where ci > 0 
for i = 0O ... , n. a 

A closely related result is Theorem 7 of [5], which states that if the basis 4) = 
{00 o. .. X, On } is such that every root - real or complex - of each basis function 
lies outside the open disk D in the complex plane having the real interval t E (a, b) 
as diameter, then 13 -< (D. 

Remark 2. For any value < a < 1, the following form a minimal basis for H2 on 
t E [0, 1 ] that is a partition of unity, yet is distinct from the Bernstein basis: 

-0M 2t(I - t) 01M =(2a - j)t2 
02_t 

(t - a) 2 

a = ql(t) = a2 ), 2(t) 
- 

a2 
The minimality of this basis can be verified by methods similar to those used in 
Remark 1. 
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5. POWER, BERNSTEIN, AND BALL BASES 

We now illustrate the above ideas in the context of some parametric curve and 
surface representations commonly used in computer-aided geometric design. The 
properties of the Bernstein-Bezier form 

(16) r(t) = SPk bn(t), bn(t) = ()(1 - t) kt 

k=O 

of a degree-n curve defined on t E [,1 ] are well known [4]. Note that n is only an 
upper bound on the true degree of the curve. It is not possible, by mere inspection 
of the Bezier control points Po, ... ,i Pn, to ascertain whether r(t) is, in fact, a lower- 
degree curve "masquerading" as a degree-n curve (the condition for this is that the 
nth forward difference Anpo of the control points should vanish). 

To address this problem, the four functions 

,3(t) = (1 - t)2, i3 (t) = 2(1 - t)2t, i32(t) = 2(1 - t)t2, l33(t) = 

have been proposed [1] as a basis for cubic polynomials. This basis has the advan- 
tage that, when a cubic is described in terms of "Ball control points" bo, bi, b2, b3 
as 

3 

r(t) = bj (t) 
j=O 

a coincidence of the two interior points (b1 = b2) is sufficient and necessary for 
r(t) to degenerate to a quadratic curve, i.e., a parabola segment. 

A generalization of the cubic Ball basis that retains the "degree-reduction prop- 
erty" has been given in [9]. For polynomials of odd degree 

n = 2m+1, 

the generalized Ball basis on t E [0, 1 ] is defined by 

(17) p7n(t) = (+) (1-t7j '11t t= (17) (m + ~~i) (1 - t0m+1 tj = On1 t 

for j = 0, ... ,m. A degree-n curve with control points bo,... ,bn in the basis 
(17) exhibits the convex-hull and variation-diminishing properties in common with 
Bezier curves [7, 8]. Furthermore, a coincidence 

bmr+ = bm-r+2= = bm+r-l = bm+r 

of the 2r "middle" control points induces an r-fold degree reduction, i.e., the curve 
is then of true degree n - r rather than n. The Ball form also offers a recursive 
algorithm [9] for evaluating/subdividing curves that is actually somewhat more 
efficient than the de Casteljau algorithm for Bezier curves. 

For curves of even degree, n = 2m, the Ball basis is defined by (17) for j = 

0 ... , m - 1 while the "central" basis function is given by 

A3n (t) (2m= (1 t)M tm 

The methods outlined above can be readily modified to accommodate even-degree 
curves; see [7, 8, 9, 10] for details. 

While the Ball and Bezier representations share many useful features, we 
will show that the latter is superior in one important respect - it is a "better- 
conditioned" or more stable representation. Since both bases are nonnegative, we 
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see from Theorem 1 that this is equivalent to the Ball basis being expressible as a 
nonnegative combination of the Bernstein basis. 

Furthermore, whereas the Bernstein form is systematically more stable than the 
power form, the Ball representation does not inherit this property. Indeed, since the 
Ball basis is symmetric, Corollary 3 indicates that it cannot be systematically more 
stable than the power basis, i.e., the power basis is not a nonnegative combination 
of the Ball basis. We now proceed to give explicit representations for the Ball basis 
in terms of the Bernstein basis and for the power basis in terms of the Ball basis.2 

5.1. The Ball basis in terms of the Bernstein basis. To express the jth Ball 
basis function of (odd) degree n = 2m + 1 in terms of the degree-n Bernstein basis, 
i.e., to determine the matrix elements Ajk in 

n 

/37(t) = E Ajkbk (t) 
k=O 

we multiply (17) by the binomial expansion of 1 = [(1 -t) + tlm-: 

/37(t) = (mJ)(1-t)m+l tj E ( ) (1 -t)m-j-i t 

(m+ i-) E (m- i)(1 _ t)2m+1l(+i) ti+j 

Setting k = i + j in the above then gives 
m (m+3j) {m-3A 

(18) 37 (t) = E i ( kj) ibkn(t) for j = 0..., m. 
k=j k 

This defines rows j = 0,... ., m of the matrix {Ajk} OI<jkn Analogously, one finds 
that rows j = m + 1,... , n are determined by the expression 

n-j {M+jA m-j 

(19) /3~n~(t) = E 
(mj)(mk m1) bin(t) for j = 0, ...,m 

k=m+l k 

Hence from (18) and (19) we have for j = 0... , m a complete description of the 
basis-conversion matrix as follows: 

0 when O < k < j, 
| M+j {m-jA 

Ajk=Z ( i ) (k-)i when j< k<m A~~k~j (n) 
| k 

t 0 when m < k < n, 

0 when O<k<m+l, 
|M+jA m-jA 

(=J)( i J G-M-l) when m+1<k<n-j, 
A |i={ k 

0 when n-j < k < n. 

2We use the unit interval for simplicity; the arguments generalize readily to an arbitrary 
interval t E F a. b1 if we take 1t t-a, ................ (t -a)' or 1,b -t, ........ , (b- tan for the power basis. 



ON THE OPTIMAL STABILITY OF THE BERNSTEIN BASIS 1563 

The generalized Ball basis of odd degree n = 2m + 1 is thus evidently a nonnegative 
combination3 of the Bernstein basis of the same degree. By similar arguments, it 
can be verified that this result also holds for even-degree Ball and Bernstein bases 
- see, for example, [10]. 

5.2. The power basis in terms of the Ball basis. The most convenient means 
of expressing the power basis 1, t,... , tn in terms of the generalized Ball basis of 
odd degree n = 2m + 1 is to follow the approach used in [9]. We note that the 
polynomial Tn [ f (t) ] of degree n = 2m + 1 that interpolates the values and first m 
derivatives 

f(O),f'(O),f"(O),... ,f(m)(0) and f(1),f'(1),f"(1),...,f(m)(1) 

of a function f (t) at t = 0 and t = 1 can be expressed as 

Tmn(t)\] - Z(1-t)m+ltkl d f(t) 
IflL~U)J 

-k=O k! dtk (I1-t)m+l t= 

+ E (I _t)k tm+(l)ki d f(( ) _ 

k=O ~~~~~k! dtk tm+l t= 

Since Tn [ ti] ti for i = O... ., n, the matrix coefficients F'k that express the first 
n powers of t in terms of the Ball basis of degree n, 

n 

t= Zjk k (t), 
k=O 

are evidently given by 

m! dk ti 

rk= (m + k) ! dtk ( -t)m+l t=O 

Fjn-k = ( 1) (m + k)! dtk tm+l 

for j = O,... , n and k = O,... , m. Further, by use of the Leibniz rule 

dt'r YL Ej dtr-i dti 9 

for the derivatives of the product of functions f and g, it can be verified by straight- 
forward but tedious calculations that these expressions reduce to 

( ~ ~ ~~ O if k < j, 
Fj k = (k- j +1) ..k if k>j 

{(m+k-j+1) .(m+k) k ?j, 

k(j -m-k) .(j-m-1) 
Fj,n-k=(-I) (m+1) (m+ k) 

for j=O,... ,n and k=O,... ,-m. 
From the above it is evident that, while the first m + 1 columns of the matrix 

{frik}o<jk<n have only nonnegative entries, those in the last m + 1 columns are 

3In fact, the matrix that transforms the Bernstein basis into the Ball basis is not only nonneg- 
ative, but totally positive - i.e., all of its minors are nonnegative [8]. 
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not all nonnegative in particular, those elements for which j > m + k and k is 
odd are negative. This can be verified by enumerating a few low-degree examples: 

1 1 1 00,[s3(t) 

K] 

t 
= 10 

1 
1 (t)fl t 

1 1 1 1 1 1 1 o3t 
t 0 0 1/2 1/2 1 i3((t) 
t2 0 0 0 0 1 p 3 (t) 

L P 
J 0 0 0-1/2 1 J 33(t) 

- 1 - -I 1 1 1 1 1 - ,o(t 

t 0 1/3 1/2 1/2 2/3 1 35 (t) 
t2 ? 0 1/6 1/6 1/3 1 53(t) 

Similar results are obtained for even-degree bases. 

6. THE WILKINSON POLYNOMIALS 

Two polynomials, first studied [11] by 3. H. Wilkinson in 1959, have become 
de facto "benchmarks" for assessing the stability of various representations for 
univariate polynomials. Both are of degree 20 and have 20 distinct real roots: in 
the first case the roots are equidistant, while in the second the spacing of the roots 
corresponds to a geometric progression. The stability of the power and Bernstein 
forms of these polynomials was assessed in [5]; here we extend this comparison to 
include the generalized Ball representation. 

6.1. Equidistant roots. The Wilkinson polynomial with equally spaced roots 
n 

P(t) = l (t-k/n), n = 20, 
k=1 

is notoriously ill-conditioned. Figure 1 shows the computed root condition numbers 
for this polynomial in the power, Bernstein, and Ball bases. 

While the power form is extremely unstable, the Bernstein and Ball representa- 
tions both offer a significant improvement. The Ball form is, in fact, only marginally 
worse than the Bernstein form in this case, with condition numbers no more than 
about one order of magnitude greater than the latter. This would typically result in 
the loss of about one decimal digit of accuracy in floating-point root calculations. 

6.2. Geometric sequence of roots. For the Wilkinson polynomial with geomet- 
ri~raiLy spaced roots< 

n 

P(t) = J7(t-2/2k), n = 20, 
k=1 

it can be seen in Figure 2 that the situation is dramatically different. 
While the power and Bernstein forms are exceedigly well-conditioned the 

latter being slightly better than the former the Ball representation is seen to 
be extremely unstable. Indeed, random fractional perturbations of order 10-10 in 
the Ball coefficients of this polynomial can lead to displacements of order unity for 
those roots in the range 0.001 < t < 0.05. 
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1.-0e16 II 

1.0e14 * , 

1.-0e12 
l.OelO_* 

1.0e08 

0 * 0 ? * 0 
1.0e06 0 * 0 

0 0 ~ ~ ~ ~ 0 0 

1.0e04 0 . l 
0 0 

1.0e02 - 

I.OeOO -* power * Bernstein 0 Ball 

1.Oe-2 I l l l l l l 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

FIGURE 1. Root condition numbers for the first Wilkinson polynomial 

1.0e12 I I I I X 

0 0 
1.OelO _0 0 

0 0 
1.0e08 - o 

0 

1.0e06 0 o 
0 

1.0e04 0 0 - 
0 

1.0e02 - . 
0~~~~~~~~~~~~~~~ 

1.OeOO 0 

1.Oe-2- 0 .* 0 

1.Oe-4 e* power * Bernstein o Ball 

1.Oe-6 1.Oe-5 1.Oe-4 1.Oe-3 1.Oe-2 1.Oe-1 1.OeOO 

FIGURE 2. Root condition numbers for the second Wilkinson polynomial 

With standard double-precision arithmetic (corresponding to a resolution of 
about 15 decimal digits), the power and Bernstein forms would allow all roots 
to be computed to 14 or 15 accurate digits, whereas the Ball form would yield only 
about 4 or 5 accurate digits for the most ill-conditioned roots. 

This example offers a convincing illustration of the fact that the Ball form is 
not only systematically less stable than the Bernstein form - it may also be much 
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less stable than the power form. Incidentally, it is interesting to note that the 
Chebyshev basis on t C [0,1] also gives a very unstable representation of this 
polynomial; see Example 4.2' in [6]. Some of the root condition numbers are as 
large as 1055 ! (that's an exclamation mark, not a factorial - 1055 is surely a 
sufficiently impressive number in its own right). 

7. CONCLUDING REMARKS 

The intrinsic stability of the adopted representation scheme is an important issue 
that can profoundly influence the accuracy and reliability of various calculations on 
parametric curves and surfaces. Since such calculations are usually performed in 
floating-point arithmetic, it is proper that new schemes be judged as much upon 
this basis as on purely geometric considerations. We have shown that, in addition to 
its attractive geometric attributes, the Bernstein-Bezier form is "optimally stable" 

it is impossible to formulate alternate representations, based on nonnegative 
basis functions, that yield systematically smaller condition numbers. The power 
and generalized Ball bases, for example, are systematically worse-conditioned than 
the Bernstein basis (often by very large factors, as exemplified by the Wilkinson 
examples). 
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