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FAST EVALUATION OF THE GAUNT COEFFICIENTS 

YU-LIN XU 

ABSTRACT. Addition theorems for vector spherical harmonics require the de- 
termination of the Gaunt coefficients that appear in a linearization expansion 
of the product of two associated Legendre functions. This paper presents an 
algorithm for the efficient calculation of these coefficients through solving the 
most appropriate (lower triangular) linear system and derives all relevant re- 
currence relations needed in the calculation. This algorithm is also applicable 
to the calculation of the Clebsch-Gordan coefficients that are closely related to 
the Gaunt coefficients and are frequently encountered in the quantum theory 
of angular momentum. The new method described in this paper reduces the 
computing time to 1%, compared to the existing formulation that is widely 
used. This new method can be applied to the calculation of both low- and 
high-degree coefficients, while the existing formulation works well only for low 
degrees. 

1. INTRODUCTION 

Theoretical study of electromagnetic scattering by interacting spheres has been 
an active area during the last few decades [2, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 17, 
18, 19, 20, 21, 23, 26, 27, 28, 29, 31, 33]. The problem requires the use of addition 
theorem'to relocate the vector spherical wave functions from one coordinate system 
centered on a scatterer to other reference systems centered on other scatterers. In 
the derivation of such addition theorems [7, 9, 24] there occurs a product of two 
associated Legendre functions, which can be expressed in terms of the linearization 
expansion 

n+v 

(1) P7n7(cosO)Pv/f(cosO) = a(m)rno ,v,p)Pm+7"(cos 0), 
p=jn-vj 

where a(m, n, t, v, p) is the so-called Gaunt coefficient [14]. Gaunt coefficients are 
closely related to the Clebsch-Gordan coefficients [1, 22] that are extensively used 
in the quantum theory of angular momentum and play an important role in the 
decomposition of reducible representations of a rotation group into irreducible rep- 
resentations. Clebsch-Gordan coefficients are usually expressed in terms of the 
Winger 3jm symbols [8, 30, 34]. Cruzan [7] provided a similar expression for the 
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Gaunt coefficient: 

a(m( n , VI ) =(1)m+(2p + 1) F(n inm)! (vz -)! (p + m-+ t)!1/ 
(2) [(nm)(-)!pmt) 

xK n v p Kn v p 
V 0 0 O J Vm -m -- [IJ 

where the Winger 3jm symbol is defined by [25] 

ml m2 m3 ) - m+m2+m3O(-1)31-32-m3 

F(j3? + l-j2)!(j3 il + j2)!(jl + j2 -j3)!(j3-m3)! (j3 + M3)! 11/2 
(3) x . M 

-0 j+ j2 + + )(il -Ml)! (jl+ Ml)!(j2- M2)! (j2+ M2)! 

(-l)k+j2+m2(j2 + j3-Ml - k)! (j, - ml + k)! 
k k!(-jil+ j2 -k)!(j3 -iM3 -k)!(k+ ji -j2+m3)! 

The summation over k is over all integers for which the factorials are nonnegative. 
In quantum mechanics, the product of two Winger 3jm symbols is associated with 
the coupling of two angular momentum vectors. Some tables of the values of the 
Clebsch-Gordan coefficients exist. These tabulated values are, however, limited 
to only low degrees and hardly suffice for any practical use in the study of the 
multisphere scattering problems. Even if one were able to tabulate all the necessary 
values, any practical computation involving the addition theorems, except for the 
lowest degrees, would require a prohibitively large computer memory. Furthermore, 
using the 3jm formulation for the calculation of the addition coefficients that occur 
in the addition theorems requires a rather cumbersome summation of multitudinous 
factorials. One can appreciate the complexity in trying to compute even a single 
Gaunt coefficient, not to mention the huge number of these coefficients that are 
required in practical problems. Significant efforts have been made towards the 
calculation of high-degree coefficients and the reduction of the computing time 
and computer memory usage. Bruning [5] and Fuller [11] derived some three-term 
recursion relations for the Gaunt coefficients. In his research on the multisphere 
scattering problem, Mackowski [21] developed a technique for implementing the 
addition theorems that completely avoids the evaluation of the Gaunt coefficients. 

In this paper, we present an efficient approach to computing the Gaunt coeffi- 
cients through solving a lower triangular linear system. We also derive the relevant 
recurrence formulae from which all elements of the coefficient matrix and the con- 
stant vector in the linear system can be easily obtained. 

2. EXPANSION OF THE ASSOCIATED LEGENDRE FUNCTION OF THE FIRST KIND 

We recall that the associated Legendre function of the first kind is defined by 

(4) P7n()m 
1 
~(' 27X 

d 
- 

1nn_ dxn+m 

The right-hand side of Eq. (4) is well defined for all integers m satisfying -n < 
m < n. When Iml > n, necessarily Pnm(x) = 0. An alternative definition of the 
associated Legendre function differs from the definition (4) by a factor of (-1)m. 
Any one of the two definitions serves equally well for the purpose of this paper. 
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Considering the binomial series 

(5) (X2 -)n 
- 

Z(_l)k n) X2n-2k 

and noting that 

dn+m (2n-2|k)!Xn-m-2k 2k <n - 
(6) ~ ~ ~ (2n2k) (n-rnm-2k)!X 

I - 

dxn+m to 2k > n-m, 

we infer 

dxn+m - n (2n - 2k)! n-r-2k 

(7) d~~ KX)k ( (n - m - 2k)!X 

from which it follows that 

(8) P (x) 2 ( + )X -mF Pn ~(ri - i)! 1-x7lnnr 

where 

(9)~~ Fmn = F (m-n m -n+l 1 1- 2n 1) (9) 2 2 12 X2) 

is a truncated hypergeometric function and takes only the leading n-rm + 1 terms. 

3. THE GAUNT COEFFICIENT 

The Gaunt coefficient a(m, n, ,u, v, p) is defined by 

(10) a(m,n,v,p) = I +1) (p(P-+n ) +)! Pn(x)P/(x)Pp +"(x)dx 

Such integrals were first given by Gaunt in 1929 in his study of the triplets of 
helium. But the formulas that he gave for their evaluation are of little use in the 
extended cases such as in the multisphere scattering problems when many such 
integrals need to be evaluated simultaneously. 

An alternative definition, equivalent to Eq. (10), has been given above in Eq. 
(1). It is obvious that p on the right-hand side of Eq. (1) should be increased in 
steps of 2 because the power of x in the expansion (8) has an increment of -2. 
Thus, the Gaunt coefficients must vanish whenever p = n + v - 1, n + v - 3,. . ., 
etc. For convenience in practical applications, we reformulate the definition (1) and 
thus write 

qmax 

(11) Pn (x) Pl,,(x) =Eaq+, 2() 
q=Q 

where aq is an abbreviated notation for the Gaunt coefficient a(m, n, [t, v, n+v-2q), 
and qmax is given by 

(12) qmax = min (nv n, +Jm? 12 ) 

While q takes the values of successive natural numbers, i.e., q 0, 1, 2,... qmax, 
the values of (n + v - 2q) change now in steps of -2. 
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4. AN EXPRESSION OF THE GAUNT COEFFICIENTS 

FOR PRACTICAL CALCULATION 

By applying Eq. (8) to PA(x) and pn++v 2q(X), we have 

(13) Pvlb(x) - 2v(( + 1)v 2 L 
(13) Pt (X) ~ -~)!(1 - X )>2 xv-AFI~v 

and 

(14) pm+ () 22q-n-v(n + v-2q + l)n+v-2q ( X2) m'jXn4-2q q (1) n+v- 2q(X (fl - q) 

where n4 = n + v - m - [t, Ft"v and Fq are also truncated hypergeometric series 
given by 

(15) FA' -F (P- / -+1 122 1 

and 

(1-q = n4-+-2q -n4+2q+1 4q+1-2n-2v. 1 
(16) F =F y2, 2 2 '2J 

The number of terms in FA" and Fq is '-A + 1 and n412q + 1, respectively. With 
the use of Eqs. (8), (13) and (14), Eq. (11) gives rise to 

(1) (ni+l)n(V +l1)ivmnFI 
qmax 

4q(n + 1'- 2q + 1)n+v-2q 2q q 
(17) (n - 

m)! (v 
- 

jL)! 
F F" - E 'q=0 (n4 -2q). 

Matching the coefficients of like terms on both sides of Eq. (17), we obtain a general 
expression containing the Gaunt coefficients (ao, aI , ... , aq): 

(18)(n + 1)n(V + )v qmn V 4k(n + v -2k + )n+v-2k k 

n - i)! (v - [)! Ck+ lCq-k+l 
- 

k (n4 - 2k)! q-k+l, 
k=O ~~k=0 

where CkmfnL stands for the coefficient of the power x-2k in the (k + I)st term of the 
hypergeometric series Fmn, and similarly for CAVk+l and cq k+1* Explicitly, these 
three coefficients are given by 

Cmn 4-k(m -rt)2k I 
____- 

(19) ck+ = 4-k + /2< 2 

(20) CAV = 4k-q (P - 'V)2q-2k < q- 
2 ' 

q-k~l (q -k)! (-v +1/2)q-k'2 

(21) Cqk+ 4 k-q 2- 
n24)2q-2kI<k<q (q-k+l (q- k)! (-n-v + 2k + 1/2)qk' 1 <k<q-1, 

respectively, and by definition (9) 
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5. NEW APPROACH TO EVALUATING THE GAUNT COEFFICIENTS 

From Eqs. (18) and (22) we find immediately 

(23) ao (n + 1)n(v + 1), (n + v-m-)! 

We now define "normalized" Gaunt coefficients by 

(24) ak -a 
aO 

In terms of these, Eq. (18) becomes 

(25) ZCnC q 4k(n + v- 2k +1)n 2k(n4)! ck 
k( k+1q-k+l 

- 
ak (n + v + 1)n+v(n4- 2k)! q-k+l 

Using the notations 

4k(n + v - 2k + 1)n+v-2k(n4)! k (26) Aqk -C-~ (n + V + 1)n+v(n4 - 2k)! qk+1 

and 
q 

(27) Bq = bqk, 
k=O 

where 

(28) bqk C mnC/k+lV 

we can rewrite Eq. (25) in the form 
q 

(29) Aqkk = Bq, 0 < q qmax, 

k=O 

which is equivalent to a linear system containing all qmax + 1 nonzero Gaunt coeffi- 
cients for an integer group (m, n, ,, v). This linear system can be written in matrix 
form as 

(30) Aa = B 

where A = (Aij) is lower triangular, a = (&i) and B = (Bj); the order of the 
system is q + 1. 

As seen above, there are qmax +1 Gaunt coefficients for given integers (m, n, [t, v), 
where qmax is given by Eq. (12). To calculate the normalized Gaunt coefficients, one 
must first set up the matrix A and the vector B. Some useful recurrence formulas 
can be derived for the determination of the elements of A and B. Eqs. (21), (22) 
and (26) show that 

(31) Ajo co 

where 

(32) co = 4i ( -n4)2i 
i+1 i!(-n - V + 1/2) ?j7 

This leads to a recurrence relation 

(33) Ajo = Ai-, -(n4 - 2i + 2)(n4 - 2i + 1) ,O 2i(2n + 2v - 2i + 1) 
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Also, from the definition (26), together with Eq. (21), we have 

(34) Ai~~~j = (n + v 2j + 1)n+v-2j (n4)! - 
(34) Aj - 4in -5 

A3- (n + v + 1)n+,(n4 
- 25)! i-j+11 

and 

(35)1)+1 - ij+1 2(iX - 2j)(2n + 2v - 4j-)1)(2n + 2i - 4j - 3) ?,-(j+l)+l I-j+l (n4- 2j) (n4-2j-1)(2n +2v-2i-2j-1)' 
whence 

(36) Ai . 2(j - i-1) :1> 1. (36) A~~~Ij = Aij1 (2n + 2 - 2i -2j + 1)'i 

Similarly, from the expression 

(37) b * _ =mn ,UZJ _ 4-m(m - n)2j -Vl")2i-2j 37 
j+l I-j+1 j! (i - j)! (-n + 1/2)j(-v + 1/2)i-j 

we easily find that 

-(v - p - 2i + 2j + 2)(v - - 2i + 2j + 1) 
(38) bj=bJ 

2(i -5)(2v -2i + 2 +1)< 
and 

_n- m - 2i + 2)(rn - m - 2i + 1) 
(39) bi2 

= bi-ii- ( 
i(2n - 2i + 1) 

These four recurrence relations (33), (36), (38) and (39) are very useful for the 
efficient calculation of the Gaunt coefficients. With all bqk (k 0, 1, 2,... , q) for a 
given q known, Bq, the (q + 1)st element of the column vector B, can be calculated 
by employing Eq. (27) but can be written as 

kmax 

(40) Bq E bqk, 
k=kmin 

where 

(41) kmin = max(0 q - ), kmax =min (q, 2m) 

by noticing that when q > v- and q-k > `L, or k> n2m (for any q), 

(42) bqk 0. 

6. SUMMARY OF THE NEW ALGORITHM 

All qmax + 1 nonzero Gaunt coefficients (ao, a1, a2, . . ., aqmax) for a given integer 
group (m, n, it, v) can be evaluated one by one as follows. 

(i) The first coefficient ao is obtained directly from Eq. (23). 
(ii) The normalized Gaunt coefficients [see Eq. (24)] are therefore 

aq a(m, n, A, , n + z -2q) 
aO a(m, n, A, v, n + v) 

Obviously, io -=1. 
(iii) Starting from 

Aoo =boo = Bo = do = 1, 
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we obtain the normalized Gaunt coefficients (,1 &2,2. . ., qMax) by successively solv- 
ing the linear equations 

(43) aq = 1 Bq - I:Aqkdk q = 1, 2, ... ., qmax- 

All coefficients Aqk (k = 0,1, ... , q) in the linear equation for aq can be calculated 
from the known value of Aqi1,o using the two-term recurrence relations (33) and 
(36). The constant term Bq is computed from Eq. (40) with kmin and kmax deter- 
mined by Eqs. (41), and all bqk (k = kmin, ... , kmax) can be computed from the 
known values of bq-l,k by using the two-term recurrence relation (38) [or (39) with 
k = q]. For example, with the initial values ao = 1 and Aoo = boo = Bo = 1, ai is 
given by 

B1 -A1o 

where 

Alo0 -n4 (n4 - 1) All11 l -2 
Ao=2(2n + 2v -1) ' Al l (2n + 2v -3) ' 

and B1 = b1o + b1l (taking the general case of kmin - 0 and kmax = 1) with 

10- (v - [)(v - I- 1) b -(n -m)(n - m-1 
2(2v - 1) ' b~ = 2(2n-1) 

With aO and ai known, &2 can be calculated by 

-2 B2- A20-A21a 

A22 

where A20, A21 and A22 can be calculated from A1o by the use of Eqs. (33) and 
(36), and B2 can be computed from b1o and b1l by the use of Eqs. (38), (39), (40), 
(41). Generally, with (&o Ii, I.... , &q- 1) known, &q can be easily found by 

(n + v - 2q + 1/2)2q (m-n)2k(-\V)2q-2k aq= -/ m 
(-n4)2q k0 k! (q -k)! (-n + 1/2)k(-V + 1/2)q-k 

(44)q1 
(-n-v + qq+j + 1/2)qj - 

j=0 (q-j)! 
aj. 

(iv) Then, the Gaunt coefficients are restored by aq = aoiq. In fact, only normal- 
ized Gaunt coefficients are involved in practical multisphere scattering calculations. 

7. TIMING TESTS 

Extensive timing and numerical tests have been carried out on an IBM RS6000- 
340 Workstation. Table I gives some comparison for the computational times (in 
seconds) required by our algorithm and Cruzan's 3jm formulation represented by 
Eqs. (2) and (3). In Table I, the first column is the highest degree ninax (lmax) 
reached in the computation; the second column is the total number of nonzero 
Gaunt coefficients computed, which is the number of all possible nonzero Gaunt 
coefficients for all possible combinations of (m, n, ,u, v) from the lowest degree n 
v = 0 to the highest degree nmax = vmax; the next two columns list the CPU 
time spent by the corresponding algorithm. Table I indicates that the required 
computing time for our algorithm is only - 1% of that for Cruzan's algorithm. 
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TABLE I. Timing tests for the calculation of the Gaunt coefficients 

nx a N1 CPU (in seconds) on IBM RS6000-340 Workstation 
flmax(= i/max) N91 Xu2 Cruzan3 

10 69082 1 86 
15 440810 8 725 
20 1697663 34 3479 
25 4903641 97 12631 
30 11757744 239 33667 

1 total number of nonzero Gaunt coefficients calculated. 
2 The calculation used Xu's algorithm, i.e., the new algorithm presented in this paper. 
3 The calculation used Cruzan's 3jm formulation, i.e., Eqs. (2) and (3). 

8. NUMERICAL TESTS 

(i) We performed the first test by comparing the numerical values of the Gaunt 
coefficients determined by our algorithm with those converted from the Clebsch- 
Gordan coefficients tabulated by Varshalovich et al. [32]. Varshalovich et al. defined 
the coefficients by 

(45) CjlM2M2= (-) 2+m3 2j3 ? 1 
(ml 2 -M3 

Thus, the Gaunt coefficient can also be computed by 

(46) a(m, n, A, v,Ip) [(n m)! (v?i ,)! (p + m + ii) 11/2 Cno oVo m?I 

All numerical values of the Gaunt coefficients obtained by these two methods are 
identical, note, however, that the tabulated Clebsch-Gordan coefficients are avail- 
able for low degrees only. 

(ii) The second test consisted of a direct comparison of both sides of Eq. (11). For 
any integer combination (m, n, tu, v) in a range of degrees from n = v to nmax = 

Vmax = 20, we first computed the qmax + 1 nonzero Gaunt coefficients by our 
algorithm, the associated Legendre functions Pm(x), P1(x) and Pnm++2q(X) for all 
q, and then performed the summation check to examine if Eq. (11) holds. For all 
cases we calculated, the results of this test were satisfactory within the precision 
allowed by the computer. 

(iii) The numerical values of the Gaunt coefficients calculated by our algorithm 
were also systematically compared with those calculated by the 3jm formulation. 
This was simultaneously carried out with the timing tests described in ?7. This 
comparison shows that (a) for low degrees from n = v = 0 to n = v = 5, all the 
corresponding numerical values obtained by both methods agree with each other, 
(b) for intermediate degrees, such as n = v = 6 to n = v = 7, both methods 
are still in fairly good agreement, and (c) discrepancies on numerical values of 
some higher-degree Gaunt coefficients are significant; the higher the degree, the 
more severe the discrepancies. To investigate the accuracy of the calculation of 
high-degree coefficients, we first tested the numerical values obtained from the 3jm 
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formulation by the summation check using Eq. (11), similar to what we had done 
for our algorithm in the second test. Usually, these values do not satisfactorily 
fulfil Eq. (11), which indicates that the performance of the 3jm formulation is 
questionable in the case of high degrees. As a second check, we compared the 
numerical values of ao, i.e., a(m, n, ,u, v, n + v), obtained from the 3jm formulation 
with those accurate values evaluated directly from Eq. (23). Table II gives some 
examples for these particular Gaunt coefficients. This check reveals that the high- 
degree Gaunt coefficients computed by the 3jm formulation are inaccurate. The 
reliability of the 3jm formulation is gradually destroyed as the degree increases. 
The error comes from the summation over k [see Eq. (3)]. Table III lists the values 
of all nonzero Gaunt coefficients calculated by both our algorithm and the 3jm 
formulation for an integer group of (m, n, tu, v) = (2, 12,3, 15). In general, when p 
is small, the numerical results from both methods still agree, even for high degrees. 
Similar to the case of increasing degree, the 3jm formulation gradually loses its 
accuracy with increasing p. The reason for this is that the summation (over k) 
required by the 3jm formulation involves delicate cancellations between successive 
terms that alternate in sign. For high degrees or large values of p, the individual 
terms in the summation become much larger than their sum, and all accuracy is 
lost. 

TABLE II. Examples for the numerical values of a(m, n, ,u, v, nov) 
obtained by Eq. (23) and by the 3jm formulation 

m n ,u v a(m, n, ,u, i, n + v) m m [L V ~~~Eq. (23) 3jm 
1 1 -1 1 0.3333333333E+00 0.3333333333E+00 
1 2 -1 2 0.3428571429E+00 0.3428571429E+00 
1 3 -1 3 0.3246753247E+00 0.3246753247E+00 
1 4 -1 4 0.3045843046E+00 0.3045843046E+00 
1 5 -1 5 0.2864318344E+00 0.2864318342E+00 
1 6 -1 6 0.2706234404E+00 0.2706234323E+00 
1 7 -1 7 0.2569085117E+00 0.2569084928E+00 
1 8 -1 8 0.2449469363E+00 0.2449475523E+00 
1 9 -1 9 0.2344333048E+00 0.2344397483E+00 
1 10 -1 10 0.2251171504E+00 0.2253184617E+00 
1 11 -1 11 0.2167981587E+00 0.2212355063E+00 
1 12 -1 12 0.2093167245E+00 0.2205655817E+00 
1 13 -1 13 0.2025451116E+00 -.2678705856E+O1 
1 14 -1 14 0.1963803001E+00 0.5715411956E+03 
1 15 -1 15 0.1907384645E+00 0.3061141117E+06 
1 16 -1 16 0.1855507769E+00 0.4108039018E+08 
1 17 -1 17 0.1807602223E+00 0.1343926421E+ll 
1 18 -1 18 0.1763191724E+00 0.1153973986E+14 
1 19 -1 19 0.1721875249E+00 -.5749672500E+15 
1 20 -1 20 0.1683312636E+00 -.6680238706E+18 

In this table, the highlights (bold style) indicate the discrepancies on 
the numerical values obtained from Eq. (23) and the 3jm formulation. 
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TABLE III. The numerical values of the Gaunt coefficients 
a(2, 12,3, 15,p) obtained by Xu's algorithm and by Cruzan's 3jm 

formulation*t 

** ko k Nk k k N a(2, 12, 3, 15, p) = a(2, 12, 3, 15, 27-2q) 
q min mkax kmin max Xu Cruzan 

0 27 3 27 25 8 30 23 0.80142-6613E-02 -.1792613138E+O0 
1 25 3 25 23 8 28 21 0.5912933102E-02 0.5988949904E-02 
2 23 3 23 21 8 26 19 0.6792070512E-02 0.6782201553E-02 
3 21 3 21 19 8 24 17 0.9061425784E-02 0.9061981214E-02 
4 19 3 19 17 8 22 15 0.1338922267E-01 0.1338916655E-01 
5 17 3 17 15 8 20 13 0.2171985247E-01 0.2171985470E-01 
6 15 3 15 13 8 18 11 0.3890892009E-01 0.3890891997E-01 
7 13 3 13 11 8 16 9 0.7818971201E-01 0.7818971202E-01 
8 11 3 11 9 8 14 7 0.1807173136E+00 0.1807173135E+00 
9 9 3 9 7 8 12 5 0.4952008739E+00 0.4952008738E+00 

10 7 3 7 5 8 10 3 0.1556202544E+01 0.1556202544E+01 
11 5 3 5 3 8 8 1 -.9985632990E+01 -.9985632990E+01 

* In the calculation using Cruzan's 3jm formulation (Eqs. (2) and (3)), the evaluation 
of the first 3jm coefficient, (' ' ), takes a summation over k from k? in to k? ax for a 
total of Nk terms, and the evaluation of the second 3jm coefficient, ( n _ p takes a 
summation over k from kmin to kmax for a total of Nk terms. 
t In this table, the highlights (bold style) indicate the discrepancies on the numerical 
values obtained by Xu's algorithm and Cruzan's 3jm formulation. 
** qmax = 11 when (m, n, ,t, v) = (2, 12, 3, 15). 

9. CONCLUSIONS AND REMARKS 

We have shown that the algorithm presented in this paper greatly reduces the 
computing time for the evaluation of the Gaunt coefficients. Furthermore, this 
algorithm can be applied to both low and high degrees, so that it is applicable to 
the solution of the multisphere scattering problems where both low- and high-degree 
coefficients are required. The formulation summarized in ?6 has been implemented 
in a computer code and successfully used in the practical multisphere scattering 
calculations. 

It is worth noting here that the term "Gaunt coefficient" is not used consistently 
in the literature, and that the closely related Clebsch-Gordan coefficient appears 
much more frequently. Because of the various definitions adopted by different au- 
thors, a systematic comparison of the Gaunt coefficients with the Clebsch-Gordan 
coefficients is cumbersome. Nevertheless, the integral of the triple associated Le- 
gendre functions on the right side of the definition (10) is common to all such 
coefficients. Thus, simple relations for converting one to the other can be found. In 
the preceding section, an example of such a conversion has been shown. As men- 
tioned above, the Clebsch-Gordan coefficients are usually expressed in terms of the 
Winger 3jm symbols and are often tabulated for some low degrees in practical ap- 
plications. The algorithm described in this paper can be analogously applied to the 
calculation of the Clebsch-Gordan coefficients and will provide substantial savings 
on the computing time. Because the algorithm is highly efficient, the coefficients 
needed in the practical applications can be directly computed. Replacing the large 
table by direct calculation will significantly reduce computer memory usage. 
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