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AN APPLICATION OF DIOPHANTINE APPROXIMATION 
TO THE CONSTRUCTION OF RANK-1 LATTICE 

QUADRATURE RULES 

T. N. LANGTRY 

ABSTRACT. Lattice quadrature rules were introduced by Frolov (1977), Sloan 
(1985) and Sloan and Kachoyan (1987). They are quasi-Monte Carlo rules for 
the approximation of integrals over the unit cube in RIt and are generalizations 
of 'number-theoretic' rules introduced by Korobov (1959) and Hlawka (1962)- 
themselves generalizations, in a sense, of rectangle rules for approximating 
one-dimensional integrals, and trapezoidal rules for periodic integrands. 

Error bounds for rank-1 rules are known for a variety of classes of inte- 
grands. For periodic integrands with unit period in each variable, these bounds 
are conveniently characterized by the figure of merit p, which was originally 
introduced in the context of number-theoretic rules. The problem of finding 
good rules of order N (that is, having N nodes) then becomes that of finding 
rules with large values of p. This paper presents a new approach, based on the 
theory of simultaneous Diophantine approximation, which uses a generalized 
continued fraction algorithm to construct rank-1 rules of high order. 

1. INTRODUCTION 

Lattice rules for multiple integrals were introduced by Frolov [12], Sloan [37] and 
Sloan and Kachoyan [40]. These are quasi-Monte Carlo rules which are tuned to 
a particular class of functions and region of integration, namely, periodic functions 
over a hypercube. Their range of applicability may be extended by a variety of 
techniques (see, for example, [2], [15], [33], [34], [48]). Lattice rules generalize an 
earlier type of quasi-Monte Carlo method, the so-called 'method of good lattice 
points', introduced by Korobov [19], [20], Bakhvalov [1] and Hlawka [14]. The 
abscissa set is determined, in the method of good lattice points, by the choice of one 
fixed rational vector, say g/N, where gcd(gi,... , g., N) = 1, called the generator 
of the rule. The number N of nodes is called the order of the rule. The accuracy 
achievable by the integration rule depends directly on the particular combination 
of g and N chosen (see, for example, [14], [29], [47]). Lattice rules generalize this 
method by allowing the choice of more than a single generator. Surveys of the 
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theory of lattice rules have recently been given by Niederreiter [30], Sloan [38] and 
Sloan and Joe [39]. 

An integration lattice in RS is a discrete additive subgroup L of RS which contains 
ES. The points of an integration lattice L are rational vectors. An s-dimensional 
lattice rule is an equal-weight quadrature rule QL defined on the half-open unit 
cube 

US = [0, 1) x [0, 1) x ...x [0, 1) . 

s factors 

It may be expressed in the form 

(Mel) ~~~~~QL(f)= f (x) 
xEA(QL) 

where A(QL) = LnU is the set of quadrature points and N is the order of the rule. 
Sloan and Lyness [41] observed that, for any lattice rule, A(QL) is a finite Abelian 
group under addition modulo ZE and consequently that QL can be expressed in a 
nonrepetitive canonical form: 

no-1 nm-1 / m.A\ 

QL(f)= E Z E "I. 
Nj1=O jm=O i=1 

n 

where m < s the vectors gj, , gm are fixed integral vectors, N = r172 ni , and 
n~i+ I ni for i = 1,... , m - 1, with nm > 1. The braces in (1.2) indicate that 
addition is modulo ZE which, in the case that f is 1-periodic in each variable, is 
clearly equivalent to using the usual addition operation in IRS. 

In (1.2) the parameters m, ,. . . nm are uniquely determined for a given rule, 
and are called the rank (m) and invariants (nl,... , nm) of the rule. The vectors 
gi/ni are not uniquely determined-they form a generator set for A(QL). Sloan 
and Lyness [41] also pointed out that lattice rules may be classified according to 
their ranks and invariants. Methods for determining the rank, invariants and a 
canonical form of a lattice rule have been described briefly by Worley [46] and in 
more detail by Langtry [23] and Lyness and Keast [24]. 

How well a particular rule approximates the integral 

I(f)= J f(x)dV, 

where dV is the volume element in US, depends upon the underlying choice of 
A(QL), and thus upon the generator set. Bounds on the absolute approximation 
error 1I(f) - QL(f)l are known for a variety of classes of rules and a variety of 
classes of functions (see, for example, [9], [10], [30], [31], [32], [43]). Intuitively, a 
rule is 'good' if this bound is small compared with the average error of rules of the 
same order. 

For functions f which are 1-periodic in each variable the rule defined by (1.1) 
is the s-dimensional analogue of the one-dimensional trapezoidal rule, which is 
known to perform very well for periodic functions. In this paper we consider the 
determination of good s-dimensional rank-i lattice rules for 1-periodic continuous 
functions with absolutely and uniformly convergent Fourier series. Such functions 
may be classified according to the bounds satisfied by their Fourier coefficients. 
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Define 

(1.3) r(h) = fimax{1, Ihj1} 
j=1 

for h E Z5, and denote by f(h) the Fourier coefficient at h of f: JR8 -* R, that is, 

f(h) = f(x)e xdV, 

where i denotes the usual imaginary unit. For c > 0 and a, s > 1, let 

(1.4) Es(c)= {f: If(h)? [(h)]ah E Zs -{}} 

Then for f E Es (c) it is known that 

IQL(f)1- (f)Ic S 
hELJ-'-1 [-({ )] 

where L is generated by {gj/nj,... , gm/nm} U Z' and L' = {h E Z V Vx E 

L, x h E Z}. The integer lattice L' is called the dual of L. 
For f E Es (c), three quantities used as indicators of the quality of a rule QL 

are: the figure of merit p defined by 

p(L) = min{r(h) : h E L' - 10}}, 

the Zaremba index 
(log N) s-2 

(1.5) z= p N 

and, for a > 1, the error 

(1.6) P 1 
hELJ--10 

r h) 

for the 'worst' function in the class Ec (1), incurred by using QL (f) as an approx- 
imation to the required integral. For a discussion of the use of p and PC, see [30], 
[39] and for a discussion of z, see [25], [26], [27]. 

For the class Es (c) we may characterize as good those lattices which have large 
values of p relative to N (and hence large values of z,), or small values of P.>. There 
have been two approaches used to find good rank-1 rules: 

(a) nonexhaustive and exhaustive searches of various classes of generators (e.g. 

[3], [13], [17], [28], [35]), and 
(b) construction of approximations to integral bases of algebraic number fields, 

or other irrational vectors (e.g. [15], [49]). 

The rank-1 rules obtained by exhaustive searches have been of relatively low 
order, owing to the computational complexity of the search procedures used and the 
fact that this complexity increases rapidly with both dimension and order. Those 
obtained by nonexhaustive searches or by the constructions of Hua and Wang [15] 
have values of z, much less than the best possible, as is evident from comparison 
with the numerical results presented in ?6. The approach used by Zinterhof [49] 
appears to yield values of P2 which are usually (not always) slightly inferior to those 
given in the tables of Maisonneuve [28] and Hua and Wang [15]. 
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More recently, various constructions and searches of higher-rank rules have been 
carried out. As in the rank-i case, the constructions that have been suggested (e.g. 
Worley [46]) have produced results that are generally much less satisfactory than 
those of the search procedures. Of particular interest are the searches of Sloan 
and Walsh [42], Lyness and S0revik [25], [26] and [27], and especially Disney and 
Sloan [11] which, as well as providing some very good rules, serve as a benchmark 
against which other approaches may be judged. In this paper we consider the class 
of rank-I rules, originally introduced by Korobov [19], [20] and Hlawka [14], from 
the perspective of Diophantine approximation theory. For this class of rules there 
is theoretical (for s = 2, see [47]) and numerical (for s > 2) evidence which suggests 
that the majority of good rules may be generated by lattice points g having one 
coordinate with value 1. Such rules are called simple. In the two-dimensional case 
Bakhvalov [1] and Zaremba [47] identified sequences of simple rules for which the 
values of Z2 = p/N are best possible, in the sense that every rule with N > 5 in 
these sequences has a value of p exceeding that of any rule with the same number 
of points, or fewer, which is not a member of one of these sequences. In particular, 
the sequences are defined by 

(1.7a) gk = (1,Fk-1), Nk = Fk, Pk = Fk-2, 

(1.7b) g9 = (1, 2Fk-1), Nk = 2Fk, Pk = 2Fk-2, 

for k > 3,- where {Fk} is the Fibonacci sequence 1, 1, 2, 3, 5, . 
The identification of the sequences of rules given by (1.7a) and (1.7b) as being the 

'best', in the sense described above, relies on the machinery of continued fractions 
and its role in Diophantine approximation theory. In effect, for s = 2 the principal 
convergents of one of the worst approximable (in a sense which is made explicit in 
?4) irrational numbers produce the best possible rank-i lattice rules. No analogous 
'best possible' constructions in higher dimensions appear to be known. However, 
what appear to be 'good' constructions may be obtained by generalizing to higher 
dimensions aspects of the approach used by Zaremba [47] in dimension s = 2. 
In particular, we suggest that good choices of generators may be found amongst 
those vectors (1, 92, . . . , g,)/N such that (92, . . . , g,)/N is not well approximated 
by rational vectors of lower denominator. Section 2 provides motivation for this 
suggestion from the two-dimensional case. In ?3 a connection is established between 
generators for higher-dimensional rank-i rules which are good with respect to p, 
and rational vectors v which are badly approximated by rational vectors of lower 
denominator. It is then shown that the best approximating rational vectors to 
such vectors v have denominators which are not widely separated. In ?4 it is 
shown that sequences of such vectors v may be found amongst approximations 
to certain badly approximable irrational vectors, via results of Lagarias [22]. More 
generally, similar, although weaker, results are obtained for rational vectors v which 
are good approximations (in the sense of Definition 4.3), but not necessarily best 
approximations, to these irrational vectors. 

Little appears to be known about fast methods for constructing best approxima- 
tions to a given v, for dimension t > 2. However, in practice the multidimensional 
continued fraction algorithms of Szekeres [44] and Brentjes [4] appear to construct 
good rational approximations for given v. In ?5 it is shown that the Szekeres algo- 
rithm may be adapted to produce a convergent sequence of rational vectors whose 
successive denominators grow slowly. In ?6 we provide numerical evidence that the 
adapted algorithms can be used to produce good rank-i lattice rules of high order. 
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Notation. It is assumed in the following that N > 1, s is an integer greater than 
or equal to 2, that t = s-1, that g has the form g = (1,g2,... ,gs) E Zs where 
gj > 0, and that g = (g2,.- - gs)- It is also assumed that v is a positive real 
number and that v = (Vi, .I. .,Vt) E Rtjt We shall use the notation p = p(L), where 
L = L(g/N) is the integration lattice generated by Zs U {g/N}. The continued 
fraction expansion of a positive real number, say x, is denoted by 

x= [ao;al,a2,... ,ak,...] 

with the obvious modification for a terminating continued fraction in the case that 
x is rational: x = [ao; ai, a2, ... , ak]. Clearly, in this case it may always be assumed 
that ak > 1 when k > 1, since [ao;ai,... ,ak,1] = [ao;a,,... ,ak + 1]. Frequent 
reference will be made to the theory of simple continued fractions. A suitable 
introduction to this theory may be found in Khinchin [18]. 

2. MOTIVATION IN THE TWO-DIMENSIONAL CASE 

Let QL be a rank-i simple rule in two dimensions generated by a vector of 
the form g/N, where g = (1,g2), gcd(g2, N) = 1 and g2/N = [0; a,, a2,... , ak]- 

Zaremba [47, Propositions 2.1 and 2.2] showed that the value of p is subject to the 
bounds 

(2.1) P-< ' 

where M = maxiE{1,...,k} (ai). In particular, the proof of the lower bound relies on 
showing that p is achieved at a vector h E L' for which Ih2l < N. Zaremba then 
showed that, by definition of L', there exists an integer A satisfying h1 +g2h2 = AN 
such that, letting hi = max(l, |hij), 

p hi1- 92 - 

=- h2 > | - Al h2 > 
N N - NM+2)2 

where the final inequality follows from the application of a well-known approxima- 
tion result from the theory of continued fractions (see [18, Theorem 13]). For more 
details, the reader is referred to [47]. The bounds expressed in (2.1) characterize the 
value of p in terms of the continued fraction for g2/N and suggest choices of gen- 
erators which may yield desirable values of p. However, the author is not aware of 
any higher-dimensional generalization of the continued fraction algorithm for which 
an analogous approximation theorem is known, nor does it appear that Zaremba's 
results have hitherto been generalized to higher dimensions. In the remainder of 
this section we show that the choices of generator g/N suggested by the bounds in 
(2.1) can also be characterized by the related properties that: 

(i) g2/N is badly approximated by rationals of lower denominator, in the sense 
described later in this section, and 

(ii) the denominators of best rational approximations to g2/N are not widely 
separated. 

The following facts will be required. Let v be a positive real number. Then, 

(a) the rational p/q, where p,q are coprime, is a best approximation of v if: 
(i) jqv -Pi = minp~'z jqv -p'l, and (ii) jq'v -p'l > jqv -Pi for all 0 < q' < q 
and all p' E Z, 
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(b) the principal convergents of the continued fraction for v are nonnegative and, 
except possibly for the first one, are precisely the best approximations of v in 
order of increasing denominator, and 

(c) the numerators and denominators of the principal convergents for v = [ao; 
a1, ... ] satisfy the following recurrence relations. Define P-1 = 1 and q1 = 0. 
Then po = ao, q0 = 1 and, for i > 1, 

(2.2a) Pi = aipi- + Pi-2, 

(2.2b) qi = aiqi- + qi-2, 

where the recurrence terminates after a finite number of terms in the case 
that v is rational. 

In the remainder of this section we assume that g2/N = [0; ai, , ak], pj/qi will 
denote the ith convergent of g2/N, and we shall denote 

m= min (ai) and M= max (ai). 
iE{1. -,k} iE{1,.-,k} 

It is known (see, for example, [18, Theorem 9]) that, for each i E {1, ... , k - I 

921 
|N qi-P |< 

1 

From (2.2b) it then follows that 

(2.3) I2N ai+1qi+ 1 ai+1qi mqi 

Clearly, a small value of m yields, for each qi, a large upper bound on 1(g2/N)qi -pj 
in (2.3). It is also known (for example, [18, Theorem 13]) that, for each i, 

Yg2 11 92 
iPil > 

I 

and again it follows from (2.2b) that 

(2.4) 12 P 
1 1 

N v 
ai+lqi + qi + ql - (ai+1 + 2)qi -(M + 2)q 

It follows from (2.4) that for each qi, that is, for each best approximation, a small 
value of M yields a large lower bound on 1(g2/N)qi - Pi. Combining (2.3) and 
(2.4), we obtain 

(2.5) (M+2)q < < 
(M + 2)q i-PN mqi 

In effect, these bounds on j(g2/N)qi -pi J= I(g2/N) -pi/qi /(l/qi) give estimates 
of the error of approximation of g2/N by pi/qi, relative to l/qi. In this sense, the 
first inequality in (2.5) states that a number g2/N for which M is small is badly 
approximated by rationals of lower denominator. The following result demonstrates 
that the denominator qi of the ith convergent is subject to upper and lower bounds 
which are monotonic increasing with respect to M and m, respectively. Conse- 
quently, for a given value of i, small values of M yield small denominators qi and 
small differences between successive denominators. 

Lemma 2.1. With the notation introduced above, 
(i) (m + 1)(i-1)/2 <qi for i E {2, ... , k}, and 

(ii) qi < (M +1)i for i E to, ... I kJ. 
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The proof of (i) with m = 1 may be found in [18, Theorem 12] and that of 
(ii) consists of a straightforward inductive argument, whose details are left to the 
interested reader. 

It follows immediately from Lemma 2.1 that the difference between denominators 
of successive convergents is bounded by 

qj+1 - qi < (M + 1)(i+1) - (m + 1)(i-l)/2 

where the expression on the right-hand side of the inequality is monotonic increasing 
with respect to M. Hence we may expect this difference to be small for small M. 

In the two-dimensional case, then, Zaremba's results lead to the suggestion that 
vectors g/N having large values of p may be found amongst those possessing the 
related properties that g2/N is badly approximated by rationals of lower denomi- 
nator, and that the best rational approximations to g2/N have denominators which 
are not widely separated. 

- 3. BADLY APPROXIMABLE VECTORS AND RANK-I RULES 

In this section a lower bound is established on p(L(g/N)) in terms of the close- 
ness of the approximation to the vector k/N given by its best approximating 
rational vectors of lower denominator, that is, its best simultaneous approxima- 
tions. One interpretation of this result is that good choices of g and N may be 
found amongst vectors having the property that k/N is poorly approximated by its 
best simultaneous approximations, in the sense that, for any given q, the value of 

minpEt IIqg/N-pjIjo is large. We then show that vectors k/N having this property 
may also be characterized as having best simultaneous approximation denominators 
(BSADs) which are not widely separated. 

In deriving these results, the following definitions and results from the theory of 
simultaneous Diophantine approximation will be required. For further details, the 
interested reader is referred to Cassels [6, Chapter 5] and Lagarias [21]. 

Definition 3.1 (Lagarias). Let v E Rt and for q E N define 

(3.1) /3q(v) = min{jjqv - pl: p E VI, 

where 11 11 is a given norm on Rt. The best simultaneous approximation denominators 
(BSADs) qk, where k E N, for v with respect to 11 jj are defined by 

(3.2) qi = 1, qk= min{q E N: q > qk-1 dfq < lqk-l } 

The best simultaneous approximations (BSAs) of v are the vectors Vk = Pk/qk E Qt 

for which Pk = (p(k), ., k)) achieves the minimum /3 in (3.1). 

Note that different norms on Rt may yield different BSADs and BSAs. Also note 
that if v is rational, then it has at most a finite number of best approximations 

Pi1/q, ... , Pk/qk, say, where Pk /qk = V. 

Theorem 3.2 (Dirichlet). Let v E Rt and Q E R satisfy Q > 1. Then there exists 
an integer q and a vector p E Vt such that 1 < q < Q and 

jjqv - Plioc < Q-1/t. 

Corollary 3.3. Let p/q be a BSA of v. Then Oq(v) < q-/t 
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Theorem 3.4. Let 
m n 

Rj(x) = Ojixi, Si(u) = EOjiuj, 
i=1 j=1 

for 1 < i < m and 1 j < n, where Oji E R. Suppose that there is an integer 
vector x 7& 0 in Rm and constants C and X such that 0 < C < 1 < X, lxi00 < X 
and, for each j E {1,... , n4, 

min Rj(x) - zI < C. 
zE7L 

Then there is an integer vector u 7& 0 in Rn such that for each i E {1, ... , m} 

min IS (u)-zI < D 
zE7L, 

and 1ulKoo < U, where 

D = (1 -)X(1-n)/(1-1)Cn/(1-1) 

U = ( - 1)Xm/(1-1)C(1-m)/(I-1), 

1 = m+n. 

These results may be used to obtain the following higher-dimensional general- 
izations of some of the results described in ?2. 

Theorem 3.5. Let Pl/ql,... , Pk-1/qk-1 be the successive best approximations of 
k/N, excluding k/N itself. Then 

p(L(g/N)) > (s - 1)(s1) max 8(32 min(N3qi,,qi)), 
iE{1,..k-1} 

1q 

where !qj = IIqi /N - pilI0. 

Proof. Let t = s - 1, as usual, and let 

B = t-t max t(37 min(N/3q,,qi)). 
iE{1,..k-1} 

O 

We consider two cases. First, an argument by contradiction shows that, for h E 
L- {O} such that h 7 0, for each i E {1,.... , k - 1} we cannot have lh Oo < 
qi,3qt7lt-t and Ih 1 < N!3qt-t simultaneously, and hence that r(h) > B, where r is 
defined in (1.3). Secondly, we show that, if h 7& 0 and h = 0, then r(h) > B. The 
result then follows. 

Case (i). Let h E L' and h Y& 0. Since h E L' there exists an integer A such 
that 

g* h = 1h1 +g h= AN. 

Assume that there exists an integer i E {1,.. , k - 1} such that both 

|N N |<i3t and |Hllh0o < qi,3tltt, 

simultaneously. Now if qit-lt-t < 1, then 1hHOO = 0, which contradicts h y& 0. 

Thus we must have qi3-l~ t-t > 1. By Corollary 3.3 we have !3q, < ql/t and thus 
/3q < q-1. Consequently, we also have 

d Kt < qlt t < 1 
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since qj > 1 and t > 1, and, by Theorem 3.4, with 

n=1, m=t, Oi=#i/N, x=h, 

C = O'.t < 1, 1 < X < qij3-lt-t 

there exists an integer q' such that 

jq'I < U < t(qj0qi-t-t)(p3t t-t)(1-t)/t = qj 

and 

p~izn ||q -P||< D = t(p3t t-t) 1/t = p3q min q -p 

that is, /q' <? 3qi. This, however, contradicts the statement that qj is a BSAD of 
g/N. Consequently, for all i E {1, ... I, k-1}, we must have either 

Jjhjjco > q/3q`.t-t or Ih1l > N/ t -tt 

and, since r(h) > max(llhllHo, 1h,1) > min(q3q-l"t-t, N!q3tt-t) for i E {1, ... . k-111 
we thus have 

(3.3) r(h) > tt max (lq 1 min(qj, Nlqj)) = B. 
iE{ 1...k-1} Oq 

Case (ii). Now let Ihlj = 0. Then, since h E L'-{O}, we have r(h) = h1j = AN, 
for some positive integer A. However, Corollary 3.3 implies that /3q, < 1, and hence 
that B < N, from (3.3). Thus r(h) > B. 

Combining cases (i) and (ii), we observe that r(h) > B for all h E L- {O}. 
The result now follows immediately. D 

- It is also possible to extract an upper bound on p from Theorem 3.4. 

Theorem 3.6. In the notation of Theorem 3.5, 

p(L(g/N)) < min-} (max((s-_ lqi,(s-1) Nql~sqi )) 

Proof. As in the proof of Theorem 3.5, we have /qi < 1 for i E {1, ... , k - 1}. For 
each value of i, on applying Theorem 3.4 with 

m= 1, n=t, 03=?i3/N, x= (qj), C=qi, X =qi, 

we see that there exists an integer vector h 7 0 such that 

(3.4) min |N h-z <D and llhllho < U, 

where 

D = tq1t)/Ot/t - 
tq~1-t)/t/qi, 

U = tq O/t/ = tqi/t ? 1. 

Hence, 

(3.5) r(h) ?< jhilt < ttq%. 

Now, choose A to be the integer which achieves the minimum in (3.4) and let 

hi = AN- h. Then, by (3.4), h1/NI < D -tqj OqiI that is, 

(3-6) ~~~~~~~~~~~Ih L < 1~1t)/ 3,9 N. 
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TABLE 3.1. Bounds on p(L(g/N)). Columns A and B contain 
respectively the lower and upper bounds given by Theorems 3.5 
and 3.6. Columns C and D contain respectively the lower and 
upper bounds given by Zaremba [47, Propositions 2.1 and 2.2] 

s g/N p A B C D 

2 (10946) 6765 89 6765 5903.7 17711 

2 14489 144 89 144 142.0 144.9 
3 (13581,7739) 392 2.6 5.7709 x 104 - - 

17991 

4 (14160,9926,5229) 32 40.1 5.8427 x 105 - _ 
1 1 7 5 8 0 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Computing the product of the bounds on r(h) and jhij in (3.5) and (3.6), respec- 
tively, we then obtain 

r(h) = max(1, IhjI)r(h) < max(ttqitt+1Nqi /tfqi). 

Since such a vector h can be constructed for each qi, it follows that 

p(L(g/N)) < min (max(ttqi, tt+1Nq/Idqi)), 

and the result follows immediately. L 

Example 3.7. The BSAs of ^/N may be determined by the simple, if slow, pro- 
cedure of enumerating the vectors p/q, for q E {1, ... ,N - 1}, which minimize 
jq'1N - pIIo. Table 3.1 summarizes the bounds on p(L(g/N)) given by Theorems 

3.5 and 3.6, which result from applying this algorithm to a number of choices of 
k/N. In the s = 2 case we note that the upper bound on p given by Theorem 
3.6 is tight, for both choices of k/N considered. In the case of higher dimensions, 
however, the bounds given by these theorems rapidly become looser since they are 
based primarily on estimates of Ih 1 and IIhjIjo = maxiE2,... ,Ih I only, rather than 
taking into account the contribution to r(h) from each component of h. 

Theorems 3.5 and 3.6 provide upper and lower bounds on p(L(g/N)) in terms 
of the BSADs q1,... , qk-1 of g/N and the errors of approximation AIr,... ,Iqk-1 

of '/N by its BSAs. One interpretation of the results is that it may be possible to 
obtain large values of p from choices of g and N which have the property that the 
values of !3q, and qi q/i-2 are large, for 1 < i < k - 1. Clearly, a vector k/N having 
the property that 3ql,... ,I /qk are large is not well approximated by rational 
vectors of lower denominator. It seems reasonable to suggest, therefore, that it 
may be possible to obtain large values of p from vectors g/N for which k/N is not 
well approximated by rational vectors of lower denominator. One interpretation 
(see Theorem 3.10) of the following result suggests that such vectors '/N also 
possess the property that consecutive BSADs, say qi and qi+i, are not widely 
separated, in a particular sense. The proof of Theorem 3.8 is closely based upon 
the proof by Lagarias [22, proof of Theorem 5.1] of a related result concerning badly 
ninnroyimiihl irrtfional vecfors. 
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Theorem 3.8. Let N1 = N/ gcd(g2, . , g, N), in the notation of Theorem 3.5, 
and let 

6(-/N) min 3 qq/t 

(3.7)--q{mm (m(it q p 
qEf 1, ..N-l} -1pEZt ( ..... |N 0lo) 

Then 6 8= (g/N) < 1 and, for i E {1,.. , k-1}, 

(i) qj< ?Z-1 8-tj (8ti - i)/(8t - 1), and 

(ii) i - qi < 8-ti 

Proof. (i) Clearly we have 6 > 0, since q < N1 in (3.7). Also, by Corollary 3.3, 
8<1. For i E {l,-.. , k-} we must have qj < N1, since qi is a BSAD of '/N in 
its reduced form, and so, from the definition of 6, 

(3.8) 8q- /t < q-l/t/qiql/t = 

Now, -by definition we have q, = 1. Thus for i > 1 we have qi+1 > 2, or qi+i-1 > 1. 
Applying Theorem 3.2 with Q = q+1 - 1 and v = '/N, we see that there exists a 
positive integer q and an integer vector p such that 1 < q < qj+1 - 1 and 

-3q = jjqk/N - plic, < (qi+l - )-1/t 

In turn it follows that if 3q, > (qi+l - I)-1/t, then !3q < /3q, and thus q must be 
a BSAD of g/N. Furthermore, we must have qj < q < qij+ - 1. However, this 
contradicts the fact that qi and qi+1 are consecutive BSADs, and therefore we must 
have 

!3qi < (qi+i-l)1-/t 

Hence, by (3.8), 

6qi- 1/ < (qi+l - )-l/t 

and hence 

(3.9) qi+1 < 8-tq% + 1. 

The bound on qi can now be established by a simple inductive argument. We have 

q, = 1 and thus q2 < 1 + 6-t, by (3.9). Now assume that qj < E-lo 6-tj, for some 
value of i. Then, again by (3.9), 

qi+1 <1 + )- t - = 
8-t-i 

j=O j=O 

as required. 
(ii) Subtracting qj from both sides of the inequality (3.9) and using the result 

obtained in (i), we have 

qi+i-qi < (6-t -)qi +1 < (6-t - 1)8 + ?I=&ti. 8-t - 1 

Vectors '/N for which /q is large, relative to 1/q, for each q E {1, ... ., N1-1}, 
that is, vectors which are uniformly poorly approximated by rational vectors of 
lower denominator, yield large values of 8. Since 6 > 0 and t > 0 it follows that 
6-t is a decreasing function of 6, and so large values of 6 yield small values of 6-t. 
Consequently, it follows from Theorem 3.8 that the ith BSAD of a rational vector 
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which is uniformly poorly approximated by rational vectors of lower denominator 
is small. In this sense, Theorem 3.8 is a higher-dimensional analogue of Lemma 
2.1. It also follows from Theorem 3.8 that consecutive BSADs of vectors which are 
uniformly poorly approximated are not widely separated. The approximability, by 
rational vectors of lower denominator, of two rational vectors may be compared in 
terms of the following definition. 

Definition 3.9. Let N > 0 and p, p' c E. Let p, p' satisfy 

gcd(pi, ... ,Pt, N) = gcd(p,... ,p PtN) = 1. 

Then p/N is uniformly worse approximable than p'/N if for each q E {1, . ... , N-1} 
we have either 

(i) 3q(p'/N) </3q(p/N), or 
(ii) /3qi(p'/N) < /q(p/N), for some 0 < q' < q. 

Theorem 3.10. Let p/N, p'/N E Qt and let 

gcd(pi,... , Pt. N) = gcd(p',*** , P/N) = 1. 

Define 

6(p/N) minm q(p/N)ql/t, 
qE{1 ,..., N-1} 

6(p'/N) minm q(pf/N)ql/t. 
qE{1,..N-1} 

If p/N is uniformly worse approximable than p'/N, then 6(p'/N) < 6(p/N). 

Proof. Let p/N be uniformly worse approximable than p'/N. Then for each q E 
{1, ... , N - 1} we have either 3q (p'/N) < iq (p/N) or /q, (p'/N) < ? q (p/N), 
for some 0 < q' < q. If the first condition holds for a given value of q, then 
clearly 3q(p'/N)q1/t < /q(p/N)q1/t. If, on the other hand, the second condition 

holds, then we have 1q,(p'/N)q'i/t < fqi(p'/N)q1/t <? /q(p'/N)q1/t, for some 
q' < q. Thus, for each q E {1, ... I,N-1} we have, for some q' {1,... ,N-1}, 

!3q,(p1/N)q/1/t < 3q(p/N)q1/t, from which it follows that 6(p'/N) < 8(p/N). O 

Rom Theorem 3.10 it follows that if ^/N is uniformly worse approximable than 
g'/N, then Theorem 3.8 yields a smaller upper bound on the difference between 
consecutive BSADs of '/N than is the case for g'/N. 

In the t = 1 case, it follows from (2.2b) that 92/N = [0; a,,... ,ak] is uni- 
formly poorly approximated by rationals of lower denominator if and only if M = 

maxE{l....k-1} (ai) is small. Thus, Zaremba's results [47, Propositions 2.1 and 2.2] 
may be interpreted as asserting that a two-dimensional rank-i simple rule QL(g/N) 

is good with respect to p if and only if ^/N is uniformly poorly approximated by 
rationals of lower denominator. 

4. SEQUENCES OF RULES CONSTRUCTED FROM SEQUENCES 

OF APPROXIMATIONS 

If v ( IRt is irrational and is badly approximated by rational vectors, then so are 
all but possibly the first few of its BSAs. This is a consequence of the following 
theorem, due to Lagarias [22, Lemma 4.1]. 

Theorem 4.1 (Lagarias). Let v E IRt and let jj 1 be a norm on Rt such that 

(1) if p E Zt - {O}, then IIPII > 1, 
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(2) there exists p E Zt such that IIpII = 1. 

Let S be a finite set of BSAs (with respect to 11 11) of v whose largest BSAD is qk 
and suppose that 3q < 1/2 for all elements of S. Then there is an 6 > 0, depending 
only on v, t, Ij jj, such that if v' satisfies IjIV -vIN < 6, then the elements of S are 
also BSAs (with respect to jj * jj) of v'. 

Corollary 4.2. Let limig vi = v in (Rt, II. ,,). Then for each BSA (with respect 
to 11 * jcoo) of v, say p/q, such that q > 2', there is an M E N such that p/q is a 
BSA of vi for all i > M. 

Proof. Since q > 2t, so q-l/t < 1/2, and hence by Corollary 3.3 we have flq(v) < 
1/2. By Theorem 4.1 there is an 6(v, t) > 0 such that 1jvi- vjjc < 6 implies that 
p/q is a BSA of vi, from which the result follows. El 

Let {pi/qi: 0 < qi < qi+1} be the sequence of BSAs of v/N; then it follows from 
Corollary 4.2 that each vector pi/qi is also a BSA of later terms in the sequence that 
have sufficiently large denominators. This suggests that, if '/N is a BSA of a badly 
approximable vector, then it is itself likely to be badly approximated by rational 
vectors of lower denominator, and so are all but possibly the first few of its BSAs. 
This is a slightly weakened higher-dimensional analogue of the properties that, in 
the case where t = 1 (that is, in the one-dimensional approximation problem), 

(1) the best approximations to a rational number v = [aO; a,,... , ak], where ak > 

1, are the principal convergents po/qopPi/q, ... ,Pk/qk, except for possibly 
the first convergent po/qo, 

(2) the best approximations to each convergent pi/qi are (with the possible ex- 
ception of po/qo) the preceding convergents , and 

(3) if v is badly approximated by rationals of lower denominator, and in particular 
by its convergents, then the relationship between the continued fraction for 
v and the continued fractions for its convergents clearly implies that each of 
the principal convergents of v is itself poorly approximated. 

Theorem 4.1 does not restrict v to be a rational vector, and thus the observations 
that derive from it may also be applied to irrational vectors, with the obvious 
modification that such vectors have infinitely many rational BSAs. In the t = 
1 case this observation, together with Zaremba's results, shows how an infinite 
sequence of good rank-1 lattice rules may be constructed from the sequence of best 
approximations to the irrational limit of a suitably chosen convergent continued 
fraction. The well-known Fibonacci rules described by (1.7a) and (1.7b) form just 
such sequences. The observations of this section raise the question of whether 
sequences of good rules can be constructed in higher dimensions from the BSAs of 
irrational vectors which are badly approximated by rational vectors. 

Informally, an irrational vector v is badly approximated by rational vectors if the 
error of approximation by any rational vector p/q is large relative to 1/q, except for 
at most a finite number (depending on v) of such approximations. More precisely, 
it is known that for each t > 0 there are vectors v E Rt with the property that there 
exists a c > 0 such that limq-,o inf{q1/tIIqv - pIO: p E V I > c. Such vectors are 
said to be badly approximable, and we may compare the approximability, in this 
sense, of two such vectors, v1 and v2 say, by comparing 8(v1) and 8(v2), where 

8(v) = lim inf fqql/t > 0. 
q--oo 
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For t = 1 the chain of largest values of 6(v) in IR and the continued fractions 
for the corresponding values of v are well known (see, for example, [8]). There is a 
substantial literature devoted to the open problem of determining, for given t > 1, 
the largest such constant 6 (see, for example, [45]). Theorems 3.5, 3.6 and 3.10 
suggest, however, that our interest should lie not in the asymptotic badness of the 
approximability of v1 and v2, but rather in the comparative badness of their initial 
BSAs. For this reason, not every badly approximable vector yields good choices of 
g and N, at least for small values of N. Thus, we choose 6(v) as defined in (3.7), 
rather than 6(v), as a guide to choosing v, reflecting an emphasis on uniformly bad 
approximation rather than asymptotic bad approximability. 

In the one-dimensional case, numbers that are badly approximable are character- 
ized as having continued fraction expansions with bounded elements. Furthermore, 
the continued fraction algorithm itself yields a convenient method for computing 
best approximations to numbers which are known to be poorly approximated, with- 
out knowing these numbers a priori. In higher dimensions, it is known that certain 
types of vectors are poorly approximated by rationals-for example, vectors whose 
components constitute an integral basis for a real algebraic field (see, for example, 
[36, Chapter 2, Theorem 4a]). However, the author is not aware of any characteriza- 
tion of badly approximable vectors of arbitrary dimension which yields a convenient 
method for computing their BSAs. 

In a related result, Hua and Wang [15, Lemmas 7.5 and 7.6] assert that good ra- 
tional approximations to certain integral bases for real algebraic fields may be used 
to construct rules with a particular lower bound on p. The results of Hua and Wang 
deal with 'good' approximations to integral bases, not with best approximations. 
This raises the more general questions of whether sequences of good rules may be 
constructed from good approximations to given badly approximable vectors, and 
of how we may compute a priori good rational approximations to vectors which are 
likely to be badly approximable. To answer the first of these questions, we first for- 
malize the notion of 'good approximation' and then prove a 'transference' property 
for good approximations that is analogous to that expressed by Corollary 4.2 for 
BSAs. We defer consideration of the second question until ?5. 

Definition 4.3. Let v E IR', p E Zt, q E N and let v be a positive real number. 
Then p/q is a v-good approximation to v if 

liv - p/qIIOO < vq-(1+1/t). 

We may use arguments similar to those used to establish Theorem 4.1 and Corol- 
lary 4.2 to obtain the following, somewhat weaker, results for v-good approxima- 
tions. 

Theorem 4.4. Let v E (IRt, *) and let p/q be a v-good approximation to v. 
Then there exists an e > 0, depending only on v, t, v, q, such that if liv - v'1Io <aE 
then p/q is a v-good approximation to v'. 

Proof. Let d= jjqv-pIIoc; then d< vq-l/t. Let w=v'-v; then jjq(v+w)-pjoo 
llqv - pjO + jjqwIlOO < vq-1/t, when liwi1Ko < (vq-l/t - d)/q. Choosing e = 

(vq-l/t-d)/q, we observe that, if Ijv-v'IkOc < 6, then p/q is a v-good approximation 
to v'. 0 
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Corollary 4.5. Let limig,0 vi = v in (It, 11 . I ). For each v-good approximation, 
say p/q, to v there exists an M E N such that p/q is a v-good approximation of vi 
for all i > M. 

If {pi/ql, p2/q2,... } is a sequence of v-good approximations to a vector v with 
qi > 0 and qi < qi+,, then it follows from Corollary 4.5 that each vector pi/qi is 
also a v-good approximation to later terms in the sequence that have sufficiently 
large denominators. Clearly, it also follows that if v is poorly approximated by 
rational vectors, then so are its v-good approximations, for sufficiently large de- 
nominators and sufficiently small v. Since, as we have already noted, it is known 
that a vector v whose elements form an integral basis for a real algebraic field is 
badly approximable, this observation provides some justification for the suggestion 
that sequences of 'good' approximations to such vectors might be used to construct 
sequences of good rank-1 lattice rules. As previously noted, however, the results of 
?3 suggest that the choice of v must be made with some care to ensure that it is 
uniformly badly approximable, in the sense that 6(v) = inf{ 3qql/t : q > O} < 1 is 
large. 

Lemmas 7.5 and 7.6 of Hua and Wang [15] state lower bounds for p in the case 
of certain 1-good approximations to integral bases for two particular fields. The 
numerical results reported in the tables of [15] and our own preliminary investi- 
gations (see Tables 6.1, 6.2 and Tables A.1-A.6 of the appendix on the microfiche 
card attached to this issue) reveal that, in practice, the quality of rules constructed 
from a sequence of approximations to any single such vector may vary considerably 
with respect to the parameter z8 defined in (1.5), which provides a measure of the 
quality of p with respect to the size of N. Thus, we may hope to obtain better 
rules on average by compiling a list of the best rules obtained by considering ap- 
proximations to many badly approximable vectors, rather than by considering the 
approximations to only a few such vectors. 

The results of this section indicate that we may find best and v-good approxi- 
mations to badly approximable irrational vectors amongst those of rational vectors 
sufficiently close to them-that is, the properties of badly approximable irrational 
vectors in which we are interested are, in a sense, inherited by their best and, to a 
lesser extent, their v-good rational approximations. Similarly, the limit of a con- 
vergent sequence of rational vectors, the terms of which are best approximations 
or v-good approximations to later terms and which share the properties of being 
poorly approximated by rational vectors of lower denominator and having consec- 
utive BSADs which are not widely separated, will itself inherit these properties. 
In this sense, Theorem 3.5 suggests the possibility of a computational scheme for 
searching for good choices of ^/N amongst good approximations to a number of 
uniformly poorly approximable (rational or irrational) vectors. Such a scheme may 
be constructed from: 

(i) a characterization of such vectors in terms of a computationally convenient 
criterion, and 

(ii) an efficient method for computing good approximations to the vectors chosen, 
or constructed, according to this criterion. 

Theorem 3.8 answers the first requirement in terms of the spacing between suc- 
cessive BSADs. As we have already noted, it suggests that we should consider 
vectors whose successive BSADs are not widely separated. In the following section 
we present a partial answer to the second requirement. 
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5. ADAPTATION OF THE SZEKERES CONTINUED FRACTION ALGORITHM 

Convenient methods for computing sequences of good rational approximations 
to known v E IR'i are afforded by the methods of Szekeres [44] and Brentjes [4]. 
Various descriptions of the Szekeres algorithm are available ([4], [7], [44]). The 
Brentjes algorithm is described in depth for the special case t = 2 in [5]. Lagarias 
[21] observes that the Szekeres algorithm performs, in general, very well, although 
it does not find all uniform-norm best approximations for arbitrary v-both he and 
Brentjes [4] exhibit counterexamples. Cusick [7] showed that the Szekeres algorithm 
finds all best approximations to zero by the linear form x0 + xI ()2 - 1) + X2 (q - 1), 
where 4 = 2cos(2,r/7) generates the real cyclotomic field 9V of degree three, and 
{1, 42 - 1, - 1} is an integral basis of 93 . Brentjes [5] proved that his algorithm 
finds all Euclidean-norm best approximations in two dimensions, using a modified 
definition of the notion of 'best approximation'. In this work, we are concerned 
only with Szekeres' algorithm and in the remainder of this section we largely follow 
his notation. 

Given v E R' and an initial (t + 1) x (t + 1) matrix %o, the Szekeres algorithm 
determines a sequence {ek } of binary-valued switching flags (there is a switch from 
the current approximation direction to a new direction if and only if ek+I = 1), 

a sequence {Sm} of switching values, the elements of which are the values of k at 
which Ek = 1, and a sequence of integer elements {bm}, which correspond to the 
elements of a one-dimensional simple continued fraction, given by 

(5.1) bi = sI, bm = sm - sm-1, m > 1. 

The elements bi, b2, ... represent the numbers of approximation steps between 
successive switching points. Given an initial matrix Q0, the algorithm also deter- 
mines a sequence of (t + 1) x (t + 1) approximation matrices 2Ak, whose rows and 
columns are indexed from 0 to t. We denote by AW (k, j) the entry in row i and 
column j of tk. For each approximation matrix a column (labelled by the index 
[) is selected. The entries in that column of the succeeding approximation matrix 
form the next approximation vector, represented by the pair (Bk, Ak) say, where 
Bk = A() (k,1 (k - 1)) and Ak = (A(1) (k, [(k - 1)), ... , A(t) (k, (k - 1))). The 
vector Ak/Bk is the approximation to v. The vectors (Qm, Pm), where 

(5.2) QM = A(?)(sm, 0) and Pm = (A(M)(sm, 0), ... , A(t)(sm, 0)), 

are called principal approximation vectors. The last principal approximation vec- 
tor found at the kth stage of the algorithm is stored in the initial column of Qk 
(labelled with index 0). The algorithm is designed so that the principal approx- 
imations should contain the best approximations, in a particular sense, that it 
finds-the values of ek are chosen precisely to ensure that the successive best ap- 
proximations found by the algorithm are 'switched' into the initial column at the 
appropriate points during processing. The symbol [b1, b2, ... , bm] represents the 
principal approximation vector (Qm, Pm) and is called the t-fraction for (Qm, Pm). 
The symbol [b1, b2, ... ] represents the corresponding sequence of principal approx- 
imation vectors and is called the t-fraction for v = limm ,0 Pm/Qm. The reader 
is referred to [44] for further details. 
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Successive approximation matrices are computed according to the equations 

(5.3) A(') (k + 1,0 ) = (1- Ek+1)A(')(k,0 ) + Ek+lA(i)(kp (k)), 

(5.4) A(') (k + 1, ,u(k)) = Ai (k, 0) + A(') (k, ,u(k)), 

(5.5) A()(k+ 1,j) = A()(k,j), 1 < j < t, j 7& p(k)) 

for i = 0, 1, ... , t. The kth approximation vector is chosen from the columns of Qk 

according to the selection rule: 

(5.6) ,a(k) = max{j: 1 < j < t, lIEj 31oo > ?jEj, IE'o for all j' = 1, 2, ... I, 4 

where Ej = Mj/A(0)(kj) - Ak/Bk and Mj = (A(1)(kj), ... , A(t)(k, j)). 
It is evident from this description that the calculation of Qk depends on the value 

Of Ek having been determined. In Szekeres' formulation of the algorithm, this value 
is determined on the basis of knowledge of both v and 2k-1- In our case, however, 
v is presumed unknown. Nevertheless, if an infinite sequence of elements {bm} 
and an initial matrix 2o are given, then sequences {Sm} and {Ek} are determined 
by (5.1) and a sequence of vectors {Pm/Qm} is determined by (5.2)-(5.6) which 
converges, by the argument of Szekeres [44, Theorems 4], [8], to some v E RI. If 
2o is an integer matrix, then Ak/Bk is a rational vector, for each k E N. 

It remains to identify a set of t-fractions which are likely to converge to badly ap- 
proximable vectors. In practice, the set of principal approximations of a t-fraction 
which converges to v, say, contains those uniform-norm best approximations to v 
found by the Szekeres algorithm (see the examples in [21] and [44]). It would ap- 
pear, therefore, that the simplest criterion to apply in identifying a suitable set of 
t-fractions is that the denominators of successive principal approximations should 
increase slowly. The relationship between successive principal approximations de- 
fined by (5.1)-(5.6) leads to the following result. 

Theorem 5.1. Let the t-fraction [b1, b2, ... ] have initial matrix %0, where 

( 'j { 
fi>jl 

and let bm < M for all m E N. Then for all m E N, the denominator Qm of the 
mth principal approximation vector satisfies 

(5.7) Qm < (M + 1)M. 

Proof. We consider the derivation of (Qm, Pm) from (Qm-i, Pm-i) via (5.1)-(5.6). 
Define so = 0; then from (5.1) we have Sm = sm-1 + bm for m > 1. Also, for 
k = 1,2, ... I bm - 1, we have 6em-i+k = 0 and equations (5.3)-(5.5) yield 

A(') (sm-i + k, O) = Ai) (Sm-, + k - 1, ), 

A(')(sm1 + k, ,(Smi1 + k - 1)) = A(')(smi1 + k - 1, 0) 

+ A(')(sm-i + k -1, it(Sm-i + k - 1)), 

A(')(sm-i + k,j) = A(')(sm-i + k-1, j), j # /Ji(Sm-i + k-1), 

for i = 0 1, ..., t. Thus, for k=1, ... I bm-1, 

(5.8) % Sm-i+k = (Sm-i+k1Em,k , 
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where Em,k is the elementary matrix which, when postmultiplying QLmi+k1i, 

adds the column 0 to the column ,U(sm-1 + k - 1). For k = bm, we recall that 
Sm-i + k = Sm and ESm = 1, whence we obtain, from (5.3)-(5.5), 

A(')(sm,O) = A()(sm - 1,t(sm -1)), 

A(') (Smm I(Sm-1)) = A() (Sm - 1, 0) + A() (Sm - 1, u(sm - 1)), 

A(') (sm, j) = A(') (sm -1, j), 1 < i < t, p &,(sm -1), 

for i=0 1, ... ,t. It follows that 

(5.9) %Sm = %sm- Em,bm FmX 

where Em,bm is defined in a manner analogous to Em,k for k < bm, and 

-1 0 ... 0 
0 

Fm 1 It 
0 

0 

where the unit elements in the initial column occur in rows 0 and p,(sm -1), and 
It is the t x t identity matrix. It now follows from (5.8) and (5.9) that 

(5.10) %Sm = %,smiCmFmi 

where Cm = HI1bm Em,k has the form 

m 1 Cm,= Cm, 2 . Cmt 

0 1 0 ... 0 

C 0 0 1 * 0- 

with cm,j > 0 and Et mj = bm. We thus obtain 

A(?)(sm,O) = A(0)(smi1/t((sm-1)) + (cmq&(sm-l)- 1)A(?)(sm-1,0), 

and, for 1 < j < t, 

A(?) (Sm, j) = cmj A(?) (sm- 1,0 ) + A(M) (SM 1,i) 

An inductive argument now yields the result-in particular, we establish that 

(5.11) A(?) (Sm, j) < (M + 1)m 

for 0 <j < t. For m= 1, we observe that 

A(?) (s1, j) = {Ci i)for j-= 
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and, since cij < M, (5.11) holds. In general, if (5.11) holds for m = n, say, then 
for 1 < j < t, 

A (?) (Sn+ I = cn+ 1 A(0) (Sn, 0) + A(0) (Snj) 

< M(M + 1)n + (M + 1)n = (M + 1)n+l, 

and, for j = 0, 

AM(?(sn+l, ) = A(0) (snu(s8- n+1)) + (cn+l,A(sn+l-) - i)A(?)(sn 0) 

< (M + 1)n + M(M + 1)n = (M + 1)n+l. 

The inequality (5.7) now follows immediately, which completes the proof. D 

In light of the remarks in ??3 and 4, Theorem 5.1 provides some justification 
for searching for generators of good rank-1 lattice rules amongst the approximation 
vectors generated by finite t-fractions whose elements satisfy a small upper bound. 
In the following section we present the results of a number of such search strategies. 
In these searches the Euclidean norm, rather than the uniform norm, was used in 
the selection rule ,u as defined by (5.6), since slightly better results were obtained 
in preliminary studies using this norm. 

6. NUMERICAL RESULTS 

As we have noted in ?1, in the case of two-dimensional lattice rules it is known 
[47] that the Fibonacci rules specified by (1.7) are the best possible rank-1 rules, in 
the sense that, for k > 5, the values of Z2 exceed 10/29, whereas the maximum value 
Of Z2 attained by any other two-dimensional rank-1 lattice rule is 10/29. Further 
investigation of the two-dimensional case reveals that, at least for N < 10000, every 
rank-1 simple lattice rule QL(g/N) such that, if order(QL') < N, then p(L') < p(L), 
also has the property that M < 2, where M is the maximum element in the 
continued fraction for g2/N. As noted in ?1, a number of authors also use P, as a 
figure of merit, and for these reasons we introduce the following terms. 

Definition 6.1. An s-dimensional lattice rule QL of order N will be called bestP2 
with respect to a set S of lattice rules if, for every QL' E S: 

(1) if order(QL') < N, then P2(QL') > P2(QL), and 
(2) if order(QL') = N, then P2(QL') > P2(QL). 

Definition 6.2. An s-dimensional lattice rule QL of order N will be called bestp 
with respect to a set S of lattice rules if, when QL' E S: 

(1) if order(QL') < N, then p(L') < p(L), and 
(2) if order(QL') = N, then p(L') < p(L). 

There are a number of important differences between the two-dimensional case 
and that of higher dimensions. First, for s > 2, the worst approximable vector 
in RI-' is not known, and secondly, there is no complete analogue of the one- 
dimensional continued fraction algorithm (cf. [21]). Indeed, it seems probable that 
there is not, in general, a single vector v amongst whose good approximations 
are to be found rational vectors ^/N producing lattice generators g/N which are 
uniformly best possible, in the sense of having z8-values exceeding those of other 
rank-1 simple lattice rules. 

For brevity, we shall say that, if ^/N is a Szekeres approximation fraction for 
v I8-', then the s-dimensional lattice rule QL is induced by the (s-l)-fraction v. 
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Let V1 and V2 denote the sets of three-dimensional rank-i simple rules induced by 
Szekeres approximations of v, = [1, 1,... ] and v2 = (4q2 1, 24 - 1), respectively, 
where 4 = cos(27r/7) is the generator of the real cyclotomic field 9W of degree three 
used to obtain the last two entries in Table 2 of Hua and Wang [15]. Tables 6.1 
and 6.2 list the bestP2 rules (with respect to V1 and V2, respectively) of order not 
exceeding 1000000. It is conjectured by Szekeres [45] that ?Y3 contains the worst 
approximable pairs of irrationals. Nevertheless, it is apparent that neither sequence 
of rules is uniformly superior to the other with respect to Z3, and in both cases the 
values of Z3 obtained vary considerably with N. 

The three-dimensional rules listed in Table 6.1 for v, do, however, compare favor- 
ably with those obtained by Hua and Wang [15, Table 2] from their approximations 
to v2, although they obtain better results than some of those obtained by applying 
the Szekeres algorithm directly to v2. In particular, they obtain rules for which 
p = 1411, P2 = 3.33 x 10-6 and Z3 = 0.119 at N = 140052, and p = 2696, 
P2 = 1.23 x 10-6 and Z3 = 0.108 at N = 314694, whereas for v, we obtain p = 1974, 
P2 = 2.09 x 10-6 and Z3 = 0.180 at N = 128801; p = 3710, P2= 1.04 x 10-6 and 
Z3 = 0.262 at N = 170625; and p = 3428, P2 = 5.30 x 10-7 and Z3 = 0.144 at 
N = 299426. For v2 we obtain p = 1086, P2 = 5.89 x 10-6 and Z3 = 0.094 at 
N = 137068; p = 1086, P2 = 4.62 x 10-6 and Z3 = 0.077 at N = 170921; p = 2628, 
P2= 1.35 x 10-6 andZ3 = 1.32 at N = 246988; and p = 2438, P2 = 1.11 x 10-6 
and Z3 = 0.082 at N = 384056. Comparison of the rules in Tables 6.1 and 6.2 with 
the 3-D Fibonacci and A, N-type rules in Worley [46] reveals that, for large orders, 
those in Tables 6.1 and 6.2 are markedly better with respect to both p and P2. 

Similar comparisons may be made between the results obtained via the methods 
of Hua and Wang [15] and those obtained by constructing lattice generators from 
approximations to the Szekeres (s - l)-fraction [1, 1,... ] for s > 3. Tables A.1-A.6 
of the Appendix list the bestP2 rules obtained in this way for dimensions 4 to 9. 
For 3 < s < 9 the rules obtained by the method of Hua and Wang and marked 
in their Tables 3-8 by an asterisk (*) are superior, with respect to P2, to those 
induced by the (s - l)-fraction [1, 1,... , 1], except in the cases s = 3 and s = 5. 
Nevertheless, the fluctuation in the values of z, for the latter rules suggests that 
better results might be obtained by compiling a list of the best rules induced by 
approximations to some larger set of vectors. 

The method of Hua and Wang does not lend itself easily to such a scheme, since it 
is not obvious how to characterize a suitable set of vectors. However, the discussion 
in ?5 suggests that a suitable set may consist of vectors with (s - l)-fractions having 
elements subject to a small upper bound. Let S denote the set of three-dimensional 
rules of order not exceeding 1000 induced by 2-fractions [b, I b2, ... , b20] satisfying 
bi < 2. Table 6.3 lists those rules which are bestp with respect to S-note that, 
following the convention of earlier authors, only rules which are not geometrically 
equivalent, that is, are not obtainable from other rules in the list by a symmetry 
of the cube U', are listed. Comparison with Table 9 of Maisonneuve [28] reveals 
that those which appear with an asterisk in Table 6.3 are also bestp with respect to 
the set of all rank-i simple three-dimensional rules. Indeed, an exhaustive search 
of all (including nonsimple) rank-i, three-dimensional lattice rules indicates that 
the rules with N = 66, 650, 737 and 882 are bestp with respect to this larger set 
as well. 

At least in dimension three, then, (s - l)-fractions with elements subject to 
a small upper bound M, say, induce some very good rules. Even with M = 2, 
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TABLE 6.1. BestP2 rules derived from approximations to v, = 

[1,1, ... ] E R5 S= 3 

N p Zs P2 P4 g 
9 2 4.88e-01 6.97e+00 8.80e-01 1 7 4 
12 2 4.14e-01 5.06e+00 6.02e-01 1 9 5 
16 2 3.47e-01 3.60e+00 3.54e-01 1 12 7 
21 2 2.90e-01 2.50e+00 2.OOe-01 1 16 9 
28 3 3.57e-01 1.62e+00 6.54e-02 1 21 12 
37 4 3.90e-01 1.12e+00 3.20e-02 1 28 16 
49 4 3.18e-01 7.24e-01 1.44e-02 1 37 21 
65 4 2.57e-01 5.26e-01 1.08e-02 1 49 28 
86 7 3.63e-01 3.16e-01 2.30e-03 1 65 37 
114 7 2.91e-01 2.19e-01 1.61e-03 1 86 49 
151 12 3.99e-01 1.28e-01 3.16e-04 1 114 65 
200 14 3.71e-01 8.85e-02 1.82e-04 1 151 86 
265 14 2.95e-01 5.84e-02 9.48e-05 1 200 114 
351 14 2.34e-01 4.05e-02 6.95e-05 1 265 151 
465 14 1.85e-01 2.97e-02 6.13e-05 1 351 200 
616 14 1.46e-01 2.30e-02 5.85e-05 1 465 265 
816 14 1.15e-01 1.97e-02 5.77e-05 1 616 351 
1081 25 1.62e-01 9.36e-03 8.52e-06 1 816 465 
1432 25 1.27e-01 8.26e-03 8.46e-06 1 1081 616 
1897 42 1.67e-01 3.38e-03 9.86e-07 1 1432 816 
2513 50 1.56e-01 2.41e-03 5.38e-07 1 1897 1081 
3329 70 1.71e-01 1.36e-03 1.51e-07 1 2513 1432 
4410 98 1.86e-01 7.83e-04 4.35e-08 1 3329 1897 
5842 125 1.86e-01 4.96e-04 1.69e-08 1 4410 2513 
7739 168 1.94e-01 2.84e-04 4.95e-09 1 5842 3329 
10252 224 2.02e-01 1.85e-04 1.83e-09 1 7739 4410 
13581 294 2.06e-01 1.03e-04 5.59e-10 1 10252 5842 
17991 392 2.13e-01 7.38e-05 2.45e-10 1 13581 7739 
23833 518 2.19e-01 3.58e-05 5.95e-11 1 17991 10252 
31572 686 2.25e-01 2.44e-05 2.48e-11 1 23833 13581 
41824 910 2.32e-01 1.25e-05 6.36e-12 1 31572 17991 
55405 1204 2.37e-01 7.71e-06 2.19e-12 1 41824 23833 
73396 1596 2.44e-01 4.43e-06 6.93e-13 1 55405 31572 
97229 2114 2.50e-01 2.92e-06 2.96e-13 1 73396 41824 
128801 1974 1.80e-01 2.09e-06 1.97e-13 1 97229 55405 
170625 3710 2.62e-01 1.04e-06 4.42e-14 1 128801 73396 
299426 3428 1.44e-01 5.30e-07 5.33e-15 1 226030 128801 
525456 6014 1.5le-01 2.35e-07 5.33e-15 1 396655 226030 
922111 3428 5.11e-02 2.32e-07 2.OOe-14 1 696081 396655 
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TABLE 6.2. BestP2 rules in R 3 derived from approximations to 
V2 = (4q2 - 1, 2q - 1) generated by the Szekeres algorithm with 
0 = cos 2i 

N p Zs P2 P4 g 
9 2 4.88e-01, 6.97e+00 8.80e-01 1 5 2 
11 2 4.36e-01, 5.48e+00 6.26e-01 1 6 3 
16 2 3.47e-01, 3.60e+00 3.54e-01 1 9 4 
20 2 3.00e-01, 2.90e+00 3.00e-01 1 11 5 
25 2 2.58e-01, 2.03e+00 1.65e-01 1 14 6 
36 4 3.98e-01, 1.20e+00 3.84e-02 1 20 9 
45 4 3.38e-01, 9.85e-01 3.15e-02 1 25 11 
65 4 2.57e-01, 5.95e-01 1.46e-02 1 36 16 
81 4 2.17e-01, 4.29e-01 9.79e-03 1 45 20 
101 4 1.83e-01, 3.47e-01 8.90e-03 1 56 25 
146 8 2.73e-01, 1.72e-01 1.05e-03 1 81 36 
182 8 2.29e-01, 1.33e-01 8.90e-04 1 101 45 
227 9 2.15e-01, 9.34e-02 4.55e-04 1 126 56 
328 16 2.83e-01, 4.84e-02 8.00e-05 1 182 81 
409 18 2.65e-01, 3.76e-02 5.64e-05 1 227 101 
591 18 1.94e-01, 2.24e-02 2.81e-05 1 328 146 
737 18 1.61e-01, 1.72e-02 2.27e-05 1 409 182 
919 18 1.34e-01, 1.40e-02 2.10e-05 1 510 227 
1328 18 9.75e-02, 1.09e-02 2.01e-05 1 737 328 
1656 18 8.06e-02, 9.62e-03 1.99e-05 1 919 409 
2065 18 6.65e-02, 8.83e-03 1.98e-05 1 1146 510 
2984 36 9.65e-02, 3.57e-03 1.91e-06 1 1656 737 
3721 36 7.95e-02, 3.24e-03 1.90e-06 1 2065 919 
4640 41 7.46e-02, 2.27e-03 9.47e-07 1 2575 1146 
6705 72 9.46e-02, 8.82e-04 1. 19e-07 1 3721 1656 
8361 82 8.86e-02, 6.78e-04 7.50e-08 1 4640 2065 
12082 123 9.57e-02, 3.26e-04 1.67e-08 1 6705 2984 
15066 162 1.03e-01, 2.02e-04 5.71e-09 1 8361 3721 
18787 198 1.04e-01, 1.33e-04 2.45e-09 1 10426 4640 
27148 287 1.08e-01, 6.86e-05 5.97e-10 1 15066 6705 
33853 360 1.1le-01, 4.67e-05 2.37e-10 1 18787 8361 
42214 450 1.14e-01, 3.08e-05 1.05e-10 1 23427 10426 
61001 648 1.17e-01, 1.61e-05 2.44e-11 1 33853 15066 
76067 810 1.20e-01, 1.06e-05 9.95e-12 1 42214 18787 
94854 1008 1.22e-01, 8.15e-06 5.55e-12 1 52640 23427 
137068 1086 9.37e-02, 5.89e-06 2.50e-12 1 76067 33853 
170921 1086 7.66e-02, 4.62e-06 1.96e-12 1 94854 42214 
246988 2628 1.32e-01, 1.35e-06 1.lle-13 1 137068 61001 
384056 2438 8.16e-02, 1.lle-06 3.44e-14 1 213135 94854 
554977 5130 1.22e-01, 4.27e-07 6.20e-14 1 307989 137068 
862966 6759 1.07e-01, 2.21e-07 4.22e-15 1 478910 213135 
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TABLE 6.3. Bestp three-dimensional rules induced by Szekeres 2- 
fractions with elements bounded by M = 2 and order not exceeding 
1000. Entries for which the value of N appears with an asterisk 
describe rules which are bestp with respect to the set of rank 1 
simple three-dimensional rules. 

N p Zs P2 P4 g 

9 2 4.88e-01 6.97e+00 8.80e-01 1 5 2 
21 * 3 4.35e-01 2.33e+00 1.17e-01 1 13 3 
30 4 4.53e-01 1.39e+00 3.62e-02 1 16 9 
41 5 4.53e-01 8.77e-01 1.40e-02 1 22 13 
47 6 4.92e-01 7.13e-01 9.14e-03 1 25 9 
66 * 8 5.08e-01 4.29e-01 2.94e-03 1 43 9 
89 9 4.54e-01 2.81e-01 1.39e-03 1 53 23 
101 10 4.57e-01 2.33e-01 9.85e-04 1 61 26 
111 12 5.09e-01 1.98e-01 6.53e-04 1 61 35 
136 13 4.70e-01 1.48e-01 3.76e-04 1 81 35 
153 15 4.93e-01 1. 19e-01 2.19e-04 1 97 23 
167 16 4.90e-01 1.03e-01 1.56e-04 1 106 25 
183 18 5.12e-01 8.90e-02 1.12e-04 1 119 25 
231 20 4.71e-01 6.42e-02 7.30e-05 1 121 47 
241 21 4.78e-01 5.63e-02 4.39e-05 1 142 63 
273 26 5.34e-01 4.73e-02 3.15e-05 1 150 86 
327 28 4.96e-01 3.52e-02 1.77e-05 1 185 79 
374 30 4.75e-01 2.84e-02 1.24e-05 1 195 77 
375 32 5.06e-01 2.78e-02 1.Ole-05 1 238 56 
419 33 4.76e-01 2.48e-02 9.70e-06 1 243 98 
422 34 4.87e-01 2.40e-02 8.99e-06 1 255 109 
426 35 4.97e-01 2.32e-02 8.08e-06 1 257 49 
466 36 4.75e-01 2.07e-02 6.82e-06 1 302 91 
469 40 5.25e-01 1.95e-02 5.42e-06 1 283 54 
512 42 5.12e-01 1.70e-02 4.29e-06 1 309 59 
543 48 5.57e-01 1.45e-02 2.22e-06 1 320 142 
613 51 5.34e-01 1.25e-02 2.02e-06 1 337 193 
650 * 57 5.68e-01 1.09e-02 1.35e-06 1 383 170 
737 * 64 5.73e-01 8.71e-03 8.OOe-07 1 417 178 
809 65 5.38e-01 8.17e-03 8.91e-07 1 488 93 
882 * 76 5.84e-01 6.58e-03 4.80e-07 1 499 213 
919 80 5.94e-01 6.09e-03 3.79e-07 1 520 222 
979 81 5.70e-01 5.55e-03 3.18e-07 1 577 256 

however, the complexity of enumerating all candidate (s - 1)-fractions of length 
k, say, is exponential in k-the number of such fractions is 2k. Thus, large-scale 
search procedures such as that used to generate Table 6.3 are infeasible for high- 
order rules. However, smaller-scale searches over sample sets of (s - 1)-fractions 
with elements subject to such bounds are feasible. Tables A.7-A.12 of the Appendix 
contain the results of searches in three 'windows'-similar to those used by Sloan 
and Walsh [42] and Disney and Sloan [11]-over a set of (s - 1)-fractions. These 
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FIGURE 6.1. Ratios of best P2 values obtained in the 1000-point window 

searches were conducted on a Silicon Graphics workstation running Unix System 
V.3. The sample sets of (s- 1)-fractions were generated as follows: for each fraction, 
the upper bound M E {2,3} was chosen, using the system pseudorandom number 
generator. Each integer in the set R = {1, . ., M} was then assigned an integer 
weight, also in R, again using the system pseudorandom number generator. Finally, 
the elements of the (s - 1)-fraction were chosen from R according to the probability 
distribution determined by the set of weights. Figures 6.1-6.3 present a comparison 
in each window, in dimensions 3 to 8, of the ratios of the best P2 error obtained by 
the use of Szekeres (s - 1)-fractions with those reported for Korobov-type rank-1 
rules in Tables 1-6 of Maisonneuve [28], those obtained in the searches by Sloan 
and Walsh of rank-1 simple rules and rank-2 Korobov-type rules with n = 2 (in 
their terminology), and those obtained in the maximal-rank searches of Disney and 
Sloan. 

When interpreting Figures 6.1-6.3, it should be noted that the numbers of rules 
considered in each search window are not the same for each of the search pro- 
cedures. The windows used were: 948 < N < 1052 (the 1000-point window), 
9972 < N < 10764 (the 10000-point window) and 99500 < N < 100500 (the 
100000-point window). In each of the three windows, Disney and Sloan consider 
at most 50 rules in each dimension. On the other hand, in the 1000-point window 
Sloan and Walsh consider 14 values of N and, for each value, N values of g in their 
search of rank-1 simple Korobov-type rules for comparison with rank-2 rules having 
n= 2. In their searches for rules of the latter type, they consider 5239 rules in 
JR, 10458 in R , 17430 in R , 27888 in R6, 40089 in R7 and 55776 in R8. In the 
10000-point window, for each dimension, Sloan and Walsh consider 10364 rules in 
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FIGURE 6.2. Ratios of best P2 values obtained in the 10000-point window 

their 'reduced' rank-2 search with n = 2, and 41472 rank-1 simple rules. In the 
100000-point window Sloan and Walsh conducted only reduced searches for rank-2 
rules with n = 2, for a single value of N in each dimension. The searches in ]R3 to 
R5 were conducted over samples of 1250 and 125 rules. Those in R 6 to R8 were all 

conducted over samples of 125 rules. 
Sloan and Walsh [42, ?5] report that their best rank-2 rules with n = 2 generally 

perform better than their best rank-1 rules and rank-2 rules with n = 3. In the 
1000-point window they report [42, p. 293], a slight predominance of Korobov- 
type rank-2 rules amongst the best rank-2 rules with n = 2. For these reasons the 
present author conducted searches over samples of the same sizes as those used by 
Sloan and Walsh in the case of rank-2 Korobov-type rules with n = 2. 

Figure 6.1 indicates that our bestP2 rules are, in the 1000-point window, con- 
sistently better than those reported by Maisonneuve [28], as indicated by a ratio 
exceeding one. However, they are, at best, slightly inferior to those found by the 
methods of Sloan and Walsh [42] and Disney and Sloan [11], and this comparison 
becomes much less favorable as the dimension increases, particularly with respect 
to the results of Disney and Sloan. Figure 6.2 indicates that, in the 10000-point 
window, our results are again consistently better than those reported by Maison- 
neuve and that, at least in dimension three, they are at least comparable with those 
of Disney and Sloan and the rank-1 results of Sloan and Walsh. Again, this compar- 
ison with the higher-rank rules becomes less favorable as the dimension increases. 
Figure 6.3 shows that, in the 100000-point window, our results are again better 
with respect to P2 than those presented in Maisonneuve, except in dimension 8. 
Furthermore, our results are now at least comparable with those of both Sloan and 
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Walsh (rank-2 rules only-no rank-1 data are available) and Disney and Sloan in 
dimension three, and with those of Sloan and Walsh in dimension four. Again, the 
comparison deteriorates markedly as the dimension increases. 

7. CONCLUDING REMARKS 

In this paper we have suggested a connection between badly approximable vec- 
tors and lattice rules. Further, we have shown that a technique originating in the 
theory of simultaneous Diophantine approximation may be adapted to provide a 
convenient method for constructing rank-1 simple lattice rules, and that the best 
rules so constructed compare, for low dimensions, not unfavorably with those that 
have been obtained by other authors. The numerical results described in ?6 cor- 
roborate the theoretical results of Disney and Sloan [11] and Joe and Disney [16], 
which indicate that certain maximal-rank rules may be competitive with rules of 
lower rank but comparable order. 
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