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NON-GALOIS CUBIC FIELDS WHICH ARE EUCLIDEAN BUT 
NOT NORM-EUCLIDEAN 

DAVID A. CLARK 

ABSTRACT. Weinberger in 1973 has shown that under the Generalized Rie- 
mann Hypothesis for Dedekind zeta functions, an algebraic number field with 
infinite unit group is Euclidean if and only if it is a principal ideal domain. 
Using a method recently introduced by us, we give two examples of cubic fields 
which are Euclidean but not norm-Euclidean. 

Let R be the ring of integers of an algebraic number field K. A Euclidean 
algorithm on R is a map q: R -* N such that q(r) :A 0 for r :A 0, and for all 
a, b E R, b #A 0, there exist q, r E R with a = qb + r and q$(r) < q$(b). If q is 
completely multiplicative, that is, 0(ab) = +(a)+(b), then $ can be extended to a 
completely multiplicative function on K. The Euclidean property can be expressed 
as follows: for every x E K there is -y E R such that q(x - -y) < 1. The problem 
which has been studied most often is the determination of those number fields for 
which the absolute value of the norm is a Euclidean algorithm. We refer to this 
function simply as the norm and denote it by N. We call a field norm-Euclidean 
when the norm is a Euclidean algorithm for the field. 

Weinberger [9] showed that, under the assumption of the Generalized Riemann 
Hypothesis for Dedekind zeta functions, if there are infinitely many units in R, 
then R is a Euclidean domain if and only if it is a principal ideal domain. The 
assumption of the Generalized Riemann Hypothesis was removed in [2] and [4] for 
totally real Galois extensions K of Q with degree greater than or equal to 3, with 
the requirement to find sufficiently many nonassociate prime elements ri, .. ., irn of 
R such that the unit group of the ring of integers maps onto (R/(irlir2 7rn )2)* via 
the reduction map. In [3], the ring of integers of Q(( 69) was shown to be Euclidean 
but not norm-Euclidean. This paper may be viewed as an extension of the ideas in 
[3] to cubic fields. We will show that the cubic fields with discriminants -327 and 
1929 are Euclidean but not norm-Euclidean. Taylor [8] and Smith [7], respectively, 
showed that these fields are not norm-Euclidean. 

We outline the method for defining our Euclidean algorithm. First, we determine 
the set B of elements modulo which there exists a coprime residue class which does 
not contain elements of smaller norm. Equivalently, we determine the elements x 
of K such that minyeR N(x - -y) > 1. Now we try to define a new completely 
multiplicative Euclidean algorithm on the ring of integers by setting it equal to 
the norm for primes not dividing elements of B and increasing the value at primes 
which do divide the elements of B. 
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We consider the field of discriminant 1929 which is generated by a root ar of the 
polynomial x3 - X2- Ox + 13. The integral basis is the power basis, so the ring 
of integers is Z[a]. The elements E1 = -3 + ar and 62 = 5 - 5a + a 2 are a pair of 
fundamental units of the field. 

Lemma 1. The only coprime residue classes of Z[a] that do not contain any ele- 
ments which have norm smaller than the norm of the modulus and which are not 
divisible by 9 - a2 are ?(6 - 3a + a 2) modulo the ideal (-4 + a). 

Assuming the lemma, we can carry out the details of the outline mentioned 
above. The element -4 + ae has norm 21 and is divisible by 9 - a 2of norm 7. The 
residue class 6 - 3a + ao2 modulo -4 + ae contains the element 6 - 7a + 2a 2 of 
norm 21 but contains no element of smaller norm. This shows that K is not norm- 
Euclidean. Define a completely multiplicative function $ on the prime elements ir 
of Z [a] by 

q$(ir) =8 if { ) is associate to 9 - a2 

N(,7r) otherwise. 

Lemma 1 implies that every coprime residue class modulo any element of Z[ca] 
contains an element with smaller q-value than the +-value of the modulus. In 
particular, q(-4 + aO) = 24 and q(6 - 7a + 2a 2) = 21. In addition, q(O) = 0 
and q(u) = 1 for u a unit. Hence, because $ is completely multiplicative, $ is a 
Euclidean algorithm. 

Note that any integer greater than 7 could be used in place of 8 in the definition 
of A. One of the referees states that Lenstra [6, p. 28] suggested this sort of function 
as a possible Euclidean algorithm in number fields. 

Proof of Lemma 1. We consider R as a lattice in W3 under the embedding which 
sends x + yca + zca2 to (x, y, z). This lattice has a fundamental domain consisting of 
(X1,X2,X3) with - 1/2 < xi < 1/2. We call a point x = a/b, with a, b E Z[a], in the 
fundamental domain of the lattice of integers of the field "bad" if there exists no 
-y E Z [a] such that N(x - -y) < 1 and 9 _ a2 does not divide a - b-y. We verified by 
computer that the fundamental domain of the lattice of integers of the field can be 
cut into small cubes for which there are two integer translates of the small cubes 
such that the norm is less than one inside both of the translates of the cube and 
such that 9 - a 2 does not divide the difference of the integers by which the cubes 
are translated (with the exceptions noted below). If x is not one of the exceptional 
points and -yl and -y2 are the two integer translates, then at least one of a - b-yl and 
a- b-y2 is not divisible by 9- a2. 

To make the verification, upper and lower bounds for the norm are computed 
in each small cube and its translates. The bounds can be given more generally for 
a ternary form T(x, y, z) = E, avx1l"y2z13, with multi-index v = (V1, V2, i V3), by 
bounding each term separately in the sum defining T(x, y, z). 

These bounds are very poor for large values of x, y, z. Another way to give 
bounds on T(x, y, z) is to check that the first partial derivatives of T are not equal 
to zero within the small cube. The method of the previous paragraph can be used 
for this verification. The upper and lower bounds of T then occur at vertices of the 
cube. 

In the computer program, the fundamental domain was cut into cubes of side- 
length 1/20. The bounds for the norm were checked for translates of the cube 
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by (nln2,n3) E 23 with -2 < ni < 2. If the norm could not be bounded less 
than 0.999 in two of the integer translates, the cube was cut into smaller cubes of 
sidelength 1/200. The bounds for the norm were then checked for translates of the 
cube with -20 < ni < 20. The division of the cube stopped at sidelength 5 x 10-6 
and translates with -50 < ni < 50. The program was written in Fortran and took 
approximately 22 hours of CPU-time on an HP9000-712. 

There are five small regions of the fundamental domain of the lattice of integers 
in which the two desired integer translates were not found; namely, R, 

-0.005 < x < 0.005 

-0.005 < y < 0.005 

-0.005 < z < 0.005, 

R21 

-0.05 < x < -0.045 

0.425 < y < 0.43 

0.475 < z < 0.48, 

R3, 

0.33 < x < 0.335 

-0.005 < y < 0.005 

-0.335 < z < -0.33, 

and the images of these regions under multiplication by -1. 
To determine the bad points in R2, we use a method similar to the one in 

Barnes and Swinnerton-Dyer [1]. As observed above, there is at least one bad point, 
(-6 + 3a - at2)/(-4 + ao) in this region. Embed the field into the real numbers by 
sending ao to the root which is approximately 1.36922. Under this embedding the 
points x + yca + za2 in R2 satisfy the inequality 

1.403 < x + ya + za 2 < 1.466. 

If the elements of R2 are multiplied by the unit E1, then one can check that the 
only integer translate of the five regions found above which intersects the image 
E1R2 is the translate of R2 by -6 + 3a - a2. Suppose that the best bounds on the 
set B of bad points in R2 under the embedding into the real numbers are 

A1 < X+Ya +za2 < A2. 

The image of B under multiplication by El (which is negative under the embedding) 
must satisfy the translate of this inequality, so 

-6 + 3a - a + Al < ?EA2 < ?EAl < -6 + 3a --a + A2. 

This yields 

-6 + 3a - a 2 < E1A2 - Al < ElAl - A2 < -6 + 3a- a 

since E1 + 1 is also negative under the embedding. Thus, 

A1 -A2= 6 + 3a - a 2 
Al = A2 _4 Al 
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In the same way one can show that the only possible bad point in R3 is 

A_ 
-4+ 3a 

1-as 

Since A- = (-4 + 2a + a 2)/(1 - a) has norm less than one and-4 + 2a + a2 iS 

not divisible by 9- ac2, this point is not bad. One can also show that the only bad 
point in R1 is 0. 

Thus, each coprime residue class, except those mentioned in the lemma, contains 
an integer translate not divisible by 9 - a with norm less than the modulus, which 
proves the lemma. 

Another example. Now we consider the cubic field K with discriminant -327. 
This field is generated by a root 3 of the polynomial x3 + x2 - 2x + 3 and has 
fundamental unit 6 = 1 - 2/ _ 32 which is positive under the only embedding of 
the field into the real numbers. The ring of integers is Z[/]. 

Lemma 2. The only coprime residue classes modulo any element of Z[/3] which do 
not contain any elements of smaller norm and which are not divisible by 6 + 1 are 

-(2 -3) and ?(3e - 2) modulo the ideal (E2 - 1). 

Note that 62 - 1 has norm 99 and 6 + 1 has norm 11. The proof of this lemma 
is omitted since it is similar to that given for Lemma 1. The proof that this field is 
Euclidean now follows the proof given above for the field with discriminant 1929. 

Using the methods of this paper, Lemmermeyer [5] has shown that the complex 
cubic fields with discriminants -199 and -351 are Euclidean. 

Real cubic norm-Euclidean fields. Using a method similar to that described 
in the proof of Lemma 1, the author found 31 new examples of real cubic fields 
which are norm-Euclidean. The fields have discriminants 2024, 2057, 2089, 2101, 
2177, 2213, 2228, 2241, 2292, 2296, 2300, 2429, 2505, 2557, 2589, 2636, 2673, 2677, 
2700, 2708, 2713, 2804, 2808, 2917, 2920, 3124, 3132, 3144, 3221, 3229, 3261. In 
addition, the author has shown that the real cubic fields with discriminants 2597, 
2777, 2836, 2857, 3305, and 3889 are not norm-Euclidean. 

Independently, Lemmermeyer [5] has determined all of the real cubic norm- 
Euclidean fields with discriminant less than 4692 and has found several other ex- 
amples with larger discriminants. 
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