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RESULTS AND ESTIMATES ON PSEUDOPOWERS 

ERIC BACH, RICHARD LUKES, JEFFREY SHALLIT, AND H. C. WILLIAMS 

ABSTRACT. Let n be a positive integer. We say n looks like a power of 
2 modulo a prime p if there exists an integer ep > 0 such that n =- 2eP 
(mod p). First, we provide a simple proof of the fact that a positive integer 
which looks like a power of 2 modulo all but finitely many primes is in fact a 
power of 2. 

Next, we define an x-pseudopower of the base 2 to be a positive integer n 
that is not a power of 2, but looks like a power of 2 modulo all primes p < x. 
Let P2 (x) denote the least such n. We give an unconditional upper bound on 
P2 (x), a conditional result (on ERH) that gives a lower bound, and a heuristic 
argument suggesting that P2 (x) is about exp(c2x/ log x) for a certain constant 
C2. We compare our heuristic model with numerical data obtained by a sieve. 

Some results for bases other than 2 are also given. 

1. INTRODUCTION 

It is a general, though hardly universal, principle in number theory that if an 
equation is solvable modulo all but finitely many primes p, then it is solvable over 
2, the integers. For example, let a be a positive integer. Then it is well known that 
if a looks like a square mod p (i.e., there exists x such that x 2 a (mod p)) for all 
but finitely many primes p, then a is in fact the square of an integer. For a proof, 
see [6, p. 62]. 

TIost [23] generalized this theorem to higher powers. He proved that if xn- 
a (mod p) has a solution for all but finitely many primes p, then either (i) there 
exists an integer b with a = bn, or (ii) 81 n and a = 2n/8bn. Also see [1, 7]. 

Let n be a positive integer. If n is a nonsquare that looks like an odd square 
modulo all primes < x (i.e., nr 1 (mod 8), and (n) = 1 for all primes p < x), then 
n is said to be an x-pseudosquare. Pseudosquares were first studied by Lehmer, 
Lehmer, and Shanks [10]. Williams et al. [12, 21] have computed the least x- 
pseudosquare for all x < 271. It is possible to show, assuming the Extended 

Riemann Hypothesis (ERH), that the least x-pseudosquare is > e x/2 [25]. 
In this paper, we consider the analogues of these questions for powers of 2 instead 

of squares. 
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We introduce some notation that will be used in this paper. If p is a prime, then 
by vp(n) we mean the exponent of the highest power of p that divides n. We will 
use the familiar convention that sums over indices p and q, such as EpZ< f (p), are 
taken over primes only. Also, we define d(x) = Ep,<x log p, and 0/(x) Epk<x logp, 
where this last sum is over all nontrivial prime powers < x. Finally, if g is a unit 
mod p, we define (g)p to be the multiplicative subgroup of (Z/pZ)* generated by g. 

2. NUMBERS THAT LOOK LIKE POWERS OF 2 

In this section, we prove the following theorem: 

Theorem 1. Let n be a positive integer. Suppose that for all but finitely many 
primes p there exists an integer ep > 0 such that n =_ 2ep (mod p). Then n is a 
power of 2. 

As Armand Brumer kindly pointed out to us (personal communication), this 
theorem is a special case of a more general theorem of Schinzel [17]. (See also [18, 
Thm. 2]; [19, Thm. 2].) Since our proof seems to be simpler than Schinzel's, we 
give it here. 

Proof. We prove the contrapositive. Assume n is not a power of 2. Let q be the 
least prime for which n is not a qth power. Let ( be a primitive qth root of unity, 
and consider the number field K = Q((). Since n is not a power of 2, it has at least 
one odd prime factor, and the extension field L = K(ig/2, ni) has degree q2 over 
K. By the Chebotarev density theorem (e.g., see [9, p. 169]), there are infinitely 
many degree-1 primes P in K's ring of integers such that 

Xq- 2 splits completely (mod P) 

whereas 

Xq- n is irreducible (mod P) 

Each such P lies over an ordinary prime p for which 2 E ((Z/PZ)*)q but n 0 
((Z/p2)*)q. Thus, n is not a power of 2 modulo infinitely many primes. L 

3. BOUNDS ON PSEUDOPOWERS OF 2 

As mentioned in ?1, we define an integer n to be an x-pseudopower of the base 
2 if n is not a power of 2, but looks like a power of 2 modulo all primes < x, i.e., if 
for all primes p < x there exists an integer ep > 0 such that n _ 2ep (mod p). We 
denote the least such x-pseudopower as P2 (x). In this section we obtain upper and 
lower bounds on the size of P2 (x). 

Theorem 2. For x > 3 we have P2(x) < e1 OOOO1x. 

Proof. Suppose n is the smallest x-pseudopower of the base 2. Then n is odd, 
for if not, n/2 would also be an x-pseudopower. Hence, if P1 = 2,P2, .. , Pk are 
the primes < x we know that n is the least non-unit solution in the interval 
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[1, PlP2 Pk] of the following system of congruences: 

n _ 1 (mod 2), 

n -- lor2 (mod3), 

n 1,2A3,or4 (mod5), 

(1) n 1, 2, or 4 (mod 7), 

n E (2)pk (mod Pk). 

Now if x > 3 (i.e., k > 2), then this system clearly has at least one non-unit 
solution, which cannot be a power of 2, since n is odd. Hence we find P2(x) < 

P1P2 ... Pk. The prime number theorem tells us that 

P2(X) < 17 p = e0(X) = ex(1?o(1)). 
p<x 

Furthermore, a result announced by Schoenfeld [20] provides the more explicit upper 
bound el 00008lx. 

We can obtain a lower bound on P2(x) if we assume the ERH: 

Theorem 3. If the Riemann hypothesis holds for Dedekind zeta functions, then 
there is a constant A > 0 such that P2(x) > exp(A,/55/(logx)3). 

Proof. Let n = P2(x), and consider the proof of Theorem 1. There, q was defined 
to be the least prime such that n is not a qth power. Considering the exponents in 
n's prime factorization, we have 

n > 2rlp<qP 2O(q-1) 

From the prime number theorem, we know 0(x) x, and it follows that q = 
O(log log n). Let A be the discriminant of L = K(/, Hi). Using formulas for the 
discriminants of towers [5, Satz 39] and composed fields [22], we have 

log JAl < 4q3 log q + q3 log(2n) = O((logn) (log log n)3). 

If the ERH holds, there is a degree-1 prime P of K modulo which Xq - 2 splits 
completely and Xq -n is irreducible, of norm O((log I Al)2). (See [8].) Taking p 
to be the norm of P, we find as before that n ' (2) mod p. Necessarily, p > x, 
so we have x = O((logn)2(loglogn)6). Recalling that n = P2(x), we obtain the 
result. D 

The estimate of Theorem 3 could be made explicit by using a strong form of the 
generalized Linnik theorem; see [2]. 

4. A HEURISTIC ESTIMATE FOR P2(X) 

Theorem 1 implies that P2(x) -? oo. The theorems of the last two sections give 
us bounds of the form 

Ax /2 < log P2(x) < Bx, 

in which A and B are certain positive constants. (The lower bound relies on 
the ERH.) In this section, we argue that the growth rate of log P2 (x) is close to 
c2x/ log1x, for a certain constant c2. 
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We consider a probabilistic model. The fraction of integers n satisfying the 
system of congruences (1) for p < x is 

1 I 1(2)p 

3<p<x 

If we choose integers at random, the expected number of draws until we find one 
meeting the conditions is 

3<pxI zl2)p 1 2<pIxP 
- I 

(3S<p ( ~)pI) 
We therefore expect the least number satisfying the conditions to be about this 
large. 

By Mertens' theorem, the first factor is asymptotic to ey log x, where 7y is Euler's 
constant. To estimate the second factor, we will have to resort to a heuristic 
argument. We have 

HT 
P -I 

=___loP 

3<p<x 
I 2)p 1 3<p<x 12)p1 

We observe that Z3?p?s log P1( is ir(x) - 1 times the average value of log P 
for odd primes p < x. It is reasonable to believe that this average has a limit c2 as 
x -? xc, and we give two different arguments for this below. Assuming the existence 
of this limit, the expected number of draws is 

(2) eY(logx)(el r(X)l)C2?o(l) = exp((c2 + ?(l)) l 

This suggests an "expected value" for P2(x), but we must also consider possible 
fluctuations about this mean. Let Zk be the number of random samples from 
{1, ... , P1P2 ... Pk} needed to satisfy (1). We recall the Borel-Cantelli lemma, which 
states that if E1l E2.... are events for which Ek Pr[Ek] converges, then almost 
surely only finitely many Ek occur. Let c > 0 be arbitrary, and let Ek be the event 
that Zk > (1 + E)E[Zk] logk. Observing that (1 - 1/E[Zk])E[Zk] < e-1, we have 

Z(1+E) 

log k 

EPr[Ek] < e) < ??. 
k>l k>l 

We can replace log k by log Pk in this argument and get the same result (the two 
are asymptotic to each other). Therefore, the following inequality holds with prob- 
ability 1: 

Zk < ey(logx)l+E(er(x)-l)C2+0(l) = exp((C2 + o(m))l ). 
log x 

(Here we are again assuming the existence of c2, and putting x = Pk-) Based on 
this result, and the fact that E(logZk) = log E(Zk) + 0(1), a consequence of the 
geometric distribution of Zk, we conjecture that 

C2X 
(3) log P2 (x) logx. 

We now consider the problem of computing c2. The simplest idea is that 2 acts 
like a randomly chosen element g of (Z/p2)*. As we will see, this is not quite correct, 
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but it gives a place to start. Let the prime factorization of p- 1 be q`1 ... q, . Then 

log = log1 qe 
l g) I 1<i<r (g)pqj I 

where (g)pq denotes the group generated by g's image in the q-Sylow subgroup of 
(Z/pz)*. (This is the group generated by g(p-l)/q.) 

Let q be one of the prime divisors of p - 1, with qe IIp -1. Then the q-Sylow 
subgroup of (Z/pZ)* has a chain decomposition into cyclic groups of the form 

I C Cq C Cq2 C * * * C Cqe. 

The location of g in this chain determines its order in the q-Sylow group, and if g 
is chosen at random, we find that 

qo q ]= 1 (log l? g q logq2 ? ''+ g q? g +o qe? 

[logtq- E logoI q + 2 + gq (g)p~q q q q2 qel/ qe 

q - ~ i)o ? e log q 

1 <i<e-1 qy q 

So far, we have given a rigorous argument valid for one prime p. Now, we fix 
q and consider all the primes p having q as a prime divisor of p - 1. If e > 1, by 
considering the possible residue classes for p - 1 mod qe+l, we find that the density 
of primes p for which qe p - 1 (relative to all primes) is l/qe. Taking this to be 
the "probability" that qe p - 1, we compute 

qC2EE1il+~ ?l~)Pr[qejjp -1] 
q >2 e >1 ((q 1 < i<e-1 )? )e 

_ v q~qlog q 

Z2(q - 1)2(q+l) 

as the "expected value" of log 1. 
We can compute an accurate value for c in the following way. We first note that 

q _ Ln/2] 

(q -1)2(q + 1) n2qn n>2 

This reduces the computation of c to the evaluation of Eq(log q) /qn for various n. 
Using M6bius inversion, these sums can be rewritten in terms of the logarithmic 
derivative of the zeta function (see (5.1) of [16]). Doing all this, we find that 

c=- EZj(m)E Ln1 7(mn). 
m>1 n>2 

Integer values of the zeta function and its derivative are easy to obtain by Euler- 
Maclaurin summation [4]. Numerically, we have 

c= 0.89846489937400140618. 

This argument assumed a randomly chosen base. We now consider the specific 
base 2. The actual average value of log P1( for odd primes p < 106, is 0.923465. 
On the other hand, the corresponding averages for bases 3,5,6 are all close to c. 
(They are 0.896144, 0.894457, and 0.895721, respectively.) 
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The discrepancy for the base 2 is due to the effect of the quadratic reciprocity 
law, or more precisely, to the quadratic character of 2. (Thanks to Carl Pomerance 
for suggesting this.) We have (2) = +1 if and only if p +1 (mod 8), which means 
that 2 cannot mimic a random element of the 2-Sylow subgroup. If v2(p - 1) = 1, 
there is no problem, but if v2(p - 1) = 2, then p -5 (mod 8), so (2) = -1, and 
the image of 2 generates the 2-Sylow subgroup. Similarly, for V2(p - 1) > 3, the 
image of 2 never generates the 2-Sylow subgroup. If we assume that the order of 2 
is constrained only by these requirements, we see that the contribution for 2 should 
be 

log2 1 / log/2 elog2 1 
2 2 h..J11e3 2i+1 

+ 
2e-1 2e- 

(Note that there is no contribution for e = 2.) The upshot is that we must add 
(log 2)/24 to the value of c for the base 2. The resulting constant is 

C2 = 0.9273460318973324607, 

which is more in line with our observations. 
We close this section with another argument that log P' 1, averaged over odd 

primes < x, has a limiting value. For any given x, we can express the average as 

(4) EA(21 t; x) log t 
t>1 

where A(2, t; x) denotes the fraction of odd p < x with the index of (2) mod p equal 
to t. (Note that this sum is finite.) Lenstra [11] has shown that for every t, the 
limit 

(5) A(2, t) = lim A(2, t; x) 
X-4+00 

exists, assuming the ERH. Thus, it is plausible that the sum in (4) has a limit as 
x -? xc, and that the limit is 

(6) C/ = EA(2, t) log t. 
t>1 

(Murata [14] gives an estimate for the rate of convergence in (5), but it does not 
seem sharp enough to prove this.) 

We can compute c' using results of Wagstaff [24], who expressed A(2, t) as a 
rational number times Artin's constant. For our purposes it is convenient to use 
the following formulas. Let 

g(t) =J2 H 2 

and let 

A (1 - ( 0.373955813619202 

be Artin's constant. Then we have 

{Ag(t), if 4tt; 
A(2, t) = 2/3Ag(t), if 4 11 t; 

t2Ag(t), if 81t. 
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By comparison with the Euler Ma-function, it can be shown that 

g(t) = O((loglogt)/t2), 

so that Et>1 A(2, t) log t converges. 
Using a segmented version of the Sieve of Eratosthenes [3, 15] we were able to 

compute g(t) for t < 109, and obtain the approximation 

2-0.927346 

(correct to six figures). Within the limits of this calculation, we have c/ C2. We 
conjecture that this is actually an equality. 

5. PSEUDOPOWERS OF THE BASE 2 AND NUMERICAL EVIDENCE FOR THE 

HEURISTIC MODEL 

Table 1 gives, for 1 < k < 55, the least positive odd number n > 1 for which 
n looks like a power of 2 modulo the primes P1 = 2,P2,... Pk. The data is only 
provided for the "record-setting" values of k, that is, those k for which P2(Pk) # 
P2(Pk-1). For values of k < 55 that are not listed, P2(Pk) is the last preceding 
value; thus, for example, P2(p6) = 23. 

TABLE 1 

k Pk P2 (Pk) C(k) R~k) 
1 2 3 0.000000 0.192 
2 3 5 0.000000 0.417 
3 5 7 0.000000 0.541 
4 7 11 0.231049 0.807 
5 11 23 0.173287 0.684 
7 17 43 0.231049 0.799 
9 23 127 0.259930 0.784 

11 31 1087 0.387120 0.813 
14 43 2209 0.435612 0.982 
15 47 2837 0.454008 1.042 
20 71 7603 0.371013 1.016 
21 73 115669 0.456435 0.957 
24 89 1062839 0.517447 1.007 
25 97 4007837 0.524768 0.966 
30 113 38863631 0.543879 1.024 
31 127 101665279 0.622095 1.129 
33 137 234556697 0.604875 1.117 
36 151 1848054121 0.618817 1.118 
48 223 3131990286049 0.581310 1.028 
50 229 41398091214971 0.580003 0.979 
51 233 335444151885977 0.609992 0.980 
52 239 663176716985449 0.611623 0.981 
53 241 10600009924847711 0.644141 0.970 
54 251 - 28185732773917153 0.662354 0.987 
55 257 306313044048233909 0.701433 0.998 
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These values were obtained using the Manitoba Scalable Sieve Unit (MSSU), 
a sieve machine designed and built by the fourth author and his colleagues. This 
machine searches for the least integer satisfying a set of congruence conditions, such 
as (1), and is described in detail elsewhere [12, 13]. 

It will be noted that (2) is not a very good predictor of P2(pk) within the 
range of this table. For example, if we take k = 55, so that Pk = 257, then 
en logpk e(k-l)c2 - 6 x 1022, whereas P2(pk) 3 x 1017. We believe that the dis- 
crepancy is mainly caused by slow convergence of the mean values of log AT to 
c2. As an example of this, for odd primes < 257, the true mean value is 0.701433, 
rather less than the presumed asymptotic value of 0.927346. Of course, this error 
is exacerbated by the exponentiation in (2). 

We can check our heuristic assumption that the solutions to (1) behave randomly 
by replacing c2 by C(k), the true mean value of log P- 1 over odd primes < Pk, in 

(2). These values are also listed in Table 1, together with the ratio 

R(k) - Y + log log(pk) + Ck) (k - 1) 
2 - log P2 (k) 

It seems that R(k) 1, which is consistent with (2). 

6. PSEUDOPOWERS FOR OTHER BASES 

One can replace the base 2 by any other number. In this section, we briefly 
discuss how our results extend to other bases, and present empirical data for the 
bases 3 and 5. 

For simplicity we assume that b is prime. As before, we define Pb (x) to be the 
least n > 1 that is not a power of b, but appears to be such a power modulo the 
primes < x. Analogously to (1), we see that Pb(Pk) is the least number greater 
than 1 satisfying n E (b) (mod pi) for i < k, Pi $ b, and n =_ 1 (mod b) (if b < Pk)- 

Therefore, the analog of Theorem 2 holds for x > b. The analogs of Theorems 1 
and 3 remain true (and are proved the same way), with the modification that the 
constant A now depends on b. Using the same heuristic argument as before, we 
expect that 

Pb (x) = (b - 1)e (log x) (er(x)-1 )cb+o(l) 

where Cb is the asymptotic average value of log f'bJl 
Tables 2 and 3 give pseudopowers of 3 and 5, found using the MSSU. As before, 

we only list the record-breaking values of P3 and P5. To compare the data with 
our heuristic predictions, we also tabulated c k), the average value of log P-1 over 
the primes different from b and < Pk, and the ratio 

R(k) C ( (k1) 
b log Pb(k) 

for b = 3, 5. 
We close with some remarks about the likely values of C3 and C5. Wagstaff's 

formula for A(2, t) is a special case of a more general one for A(b, t), the asymptotic 
fraction of primes p for which (b) has index t mod p. (This is also a rational multiple 
of Artin's constant.) Let 

C= A(b,t)logt. 
t>1 
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TABLE 2 

. k Pk P3 (Pk) c3 R3k) 
1 2 5 0.000000 0.562 
2 3 7 0.000000 0.701 
4 7 13 0.000000 0.755 
5 11 31 0.173287 0.826 
6 13 157 0.415888 0.849 
9 23 841 0.346574 0.770 

10 29 859 0.308065 0.778 
12 37 1543 0.315067 0.820 
13 41 6241 0.422931 0.876 
18 61 36481 0.485484 1.041 
19 67 170041 0.519547 1.001 
20 71 241081 0.528684 1.030 
21 73 1515361 0.591837 1.023 
27 103 16226731 0.550833 1.032 
28 107 32913169 0.556104 1.030 
29 109 52078027 0.585753 1.082 
36 151 872200213 0.519796 1.024 
41 179 1327190419 0.506807 1.104 
42 181 8479278889 0.528258 1.075 
44 193 89400402001 0.577596 1.101 
58 271 384810485528569 0.559402 1.039 
63 307 2346816388490401 0.572087 1.087 
65 313 150139363999760521 0.597531 1.043 

TABLE 3 

k Pk P5 (Pk) C5 R5 
1 2 3 0.000000 1.454 
2 3 7 0.000000 1.057 
3 5 11 0.000000 1.017 
5 11 31 0.173287 1.028 
8 19 311 0.354987 0.963 

10 29 961 0.353117 0.925 
11 31 3931 0.548064 1.048 
17 59 32761 0.429183 0.985 
19 67 96721 0.481038 1.050 
20 71 2048071 0.594618 1.012 
22 79 3962941 0.570995 1.016 
24 89 15942061 0.551480 0.974 
34 139 1049824801 0.543683 1.035 
42 181 537343041691 0.592626 1.033 
43 191 6791126548441 0.633339 1.023 
53 241 28764591571409101 0.641573 0.977 
54 251 88428973201069961 0.672913 1.008 
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By summing over t < 109, we found that 

c3, C' 0.898465, 

which is, as far as we know, the same as the constant c defined in ? 4. We conjecture 
that C3 = C3, C5 = C5, and that both of these equal c. 
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