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LOCKING-FREE FINITE ELEMENT METHODS FOR SHELLS 

DOUGLAS N. ARNOLD AND FRANCO BREZZI 

ABSTRACT. We propose a new family of finite element methods for the Naghdi 
shell model, one method associated with each nonnegative integer k. The 
methods are based on a nonstandard mixed formulation, and the kth method 
employs triangular Lagrange finite elements of degree k + 2 augmented by bub- 
ble functions of degree k + 3 for both the displacement and rotation variables, 
and discontinuous piecewise polynomials of degree k for the shear and mem- 
brane stresses. This method can be implemented in terms of the displacement 
and rotation variables alone, as the minimization of an altered energy func- 
tional over the space mentioned. The alteration consists of the introduction of 
a weighted local projection into part, but not all, of the shear and membrane 
energy terms of the usual Naghdi energy. The relative error in the method, 
measured in a norm which combines the H1 norm of the displacement and ro- 
tation fields and an appropriate norm of the shear and membrane stress fields, 
converges to zero with order k + 1 uniformly with respect to the shell thickness 
for smooth solutions, at least under the assumption that certain geometrical 
coefficients in the Nagdhi model are replaced by piecewise constants. 

1. INTRODUCTION 

A number of important variational problems of mechanics involve an internal 
energy functional of the form El +6-2E2 with e a parameter that may become small. 
For example, the displacement energy of an isotropic, linearly elastic material has 
this form, where El and E2 give the contributions to the energy due to the deviatoric 
and dilational strains, respectively, and c = /-2v with v the Poisson ratio (so c 
is small for nearly incompressible materials). A second example is provided by the 
Reissner-Mindlin model of plate bending. In this case, El represents the elastic 
energy due to bending and E2 that due to transverse shear. The small parameter 
c is the plate thickness. A third example is given by the Koiter shell model, with 
the decomposition this time corresponding to energy due to bending and that due 
to membrane stresses, and e again representing the thickness. The case considered 
in this paper is the shell model of Naghdi [14], [15]. Here, El again represents 
the elastic energy due to bending while E2 is now the sum of the contributions 
to the energy due to transverse shear and that due to membrane stresses. More 
information on these models can be found in many texts, e.g., [5], [12], [18]. 
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When the finite element method is used to discretize a problem of this sort, 
that is, when the total energy-which is the internal energy plus that due to the 
loading-is minimized over a finite element space, the convergence of the method 
will typically deteriorate as E becomes small. In fact, for many standard choices 
of finite element spaces there is no convergence uniform in E as the mesh is refined 
(although it is certainly true that for any fixed E the discrete solution converges 
to the exact solution). In practice, one sees a large discretization error when E is 
small, even for quite refined meshes. Indeed, in many practical computations it 
may well be impossible to achieve an acceptable level of error using standard finite 
elements. This phenomenon of growing discretization error as E decreases is referred 
to as locking. For the problem of nearly incompressible elasticity, the term Poisson 
locking is used. For the Reissner-Mindlin model, one speaks of shear locking, and 
for the Koiter shell model, membrane locking. In the case of the Naghdi shell model 
studied in this paper both shear and membrane locking enter. 

The usual approaches to circumventing locking are the use of special finite ele- 
ment spaces and/or the alteration of the energy form. These techniques are often 
equivalent to the use of stable elements for a mixed variational reformulation of the 
problem. There is a considerable literature devoted to the development and math- 
ematical justification of locking-free finite elements. For Poisson locking, which 
is closely related to the limiting Stokes problem, many locking-free methods are 
known. Cf. [11] or [7]. For the Reissner-Mindlin plate, several methods have been 
proven to be free of locking in recent years [2], [7, Ch. 7]. However, as far as we 
know, very little mathematical analysis has been done for locking in shell prob- 
lems. In the pioneering paper [16] some methods are analyzed in the special case of 
bending-dominated cylindrical shells. The results are illuminating, but also quite 
discouraging; in particular, for low-order methods convergence is shown only for 
tensor product meshes. In spite of its importance, the problem of finding numerical 
methods for shells that can be mathematically proven to be locking-free is still wide 
open. 

In this paper we present a sequence of mixed finite element methods for the 
Naghdi shell, one for each positive integer order, which we conjecture to be locking- 
free in that the relative error in the numerical solution tends to zero with an order 
limited only by the approximation properties of the finite elements and the smooth- 
ness of the solution, but which is uniform with respect to the shell thickness. While 
we have not proved this in general, we prove it to be the case under the assump- 
tion that the coefficients which enter the internal energy expression are piecewise 
constant functions. This assumption, which is very restrictive, is motivated by our 
technique of analysis. We do not believe that it is necessary. The exact statement 
of the result is given in ?4, where its interpretation is discussed more fully. In par- 
ticular the norm we use to measure the approximation error couples the primitive 
variables of the Naghdi model (displacement and rotation) with auxilliary stress 
variables. It may happen that the relative error in the primitive variables alone 
does not tend to zero with optimal order, uniformly in the plate thickness. As 
discussed in that section, in the case of bending-dominated shell problems, the case 
for which locking is generally considered to be most troublesome, there is uniform 
convergence of the relative error in the primitive variables. However, this may not 
occur for membrane-dominated problems, and so our methods may not be appro- 
priate for such problems. 
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The mixed formulation we introduce is not quite the standard one. It is based 
on a splitting of the shear and membrane energy terms so that part of each of these 
terms is included with the bending energy term before passing to the mixed formu- 
lation. It turns out that this minor alteration to the standard mixed formulation 
renders the development of stable mixed elements much simpler. This idea, which, 
in the limiting case of zero plate thickness, reduces to the use of an augmented 
Lagrangian, has appeared before in many contexts. For scalar second order elliptic 
problems it can be found in [8]. We applied it to the Reissner-Mindlin plate in [1] 
as did Zhou in [17]. For an application to an orthotropic heat flow problem, see [4]. 
In the context of shells, this idea is mentioned in [16]; cf. (4.10) and Remark 4.1 in 
that paper. 

Of course there is a vast literature on the numerical approximation of shells, and 
many works are concerned, either explicitly or implicitly, with the development of 
accurate, locking-free methods, even if no mathematical theory is available. Rather 
than selectively reference that literature, we refer the reader to the books [5], [12], 
[18]. 

The organization of the paper is as follows. In the next section we present the 
Naghdi model and the mixed formulation for it. In ?3 a simple abstract framework 
is presented in preparation for the analysis of ?4. In that section, the finite element 
methods are presented and the uniform convergence in E is proved. 

2. THE NAGHDI SHELL MODEL AND A MIXED FORMULATION 

We employ the convention that Greek indices range over 1 and 2 and Latin indices 
over 1, 2, and 3. Products containing repeated indices (which will always occur as 
a subscript and a superscript) are summed. Thus, for example, b' = a'Obji means 
that bW = ac1bli + ac2b2i for i = 1, 2,3 and ae = 1, 2. We use overarrows to indicate 
3-vectors, undertildes to indicate 2-vectors, and double undertildes to indicate 2 ,x 2 
symmetric tensors. Thus v = (vi), v = (vo,), and A = (Ao) with Ao,j3 = A,. 

For simplicity we suppose that the middle surface of the shell can be represented 
by a single chart. Let Q be a bounded open set in R2 with closure Q and let r be 
a smooth one-to-one mapping of Q into R3, for which the vectors 

9 Or 9 Or 
a O = a2 = 2 

are linearly independent at each point of O. Then for each x E Q, the vectors a, (x) 

and a2(x) define a basis for the tangent space to the midsurface S = r(Q) at the 

point r(x). We also set 

a, X a2 
a3= 

la, xa2l 

which is a unit normal vector at r(x), so that the vectors al(x), a2(x), a3(x) form 

a basis for R3. We let t denote the shell thickness, so that the shell occupies the 
region 

{r(x) + x3a3(x)jx I Q,-t/2 < X < t/2} c R3. 
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The first and second fundamental forms of the midsurface are defined by the 
2 x 2-matrix-valued functions given by 

* 0 * <9~~(92r * 9a,x 0 9a3 
ac= ac ad, b = a3 * c0 = a3* -ace - - 

The last equality follows from the orthogonality of ao, and a3. Note that both 
fundamental forms are symmetric in ae and f. We also define the inverse matrix to 

(a,/3) denoting its components by a3. Setting aa = a a,3, we have a = - a / 3. 

Multiplication by aa/3 raises indices on other tensors as well, so aob, - bo. 
Finally, we let a denote the determinant of the matrix (a,/3), a never-vanishing 
finction on Q, so that if f: S -+ R is any function, then fs f = fQ f(r(x))V/adx. 

For an arbitrary displacement field u = (ui) and rotation field 0 = (Oa) with 

Ui, IOa E H1 (Q), define the change of curvature tensor T, the transverse shear strain 

tensor 4?, and the membrane strain tensor A by 

1 
(1) Tc,$(u, 0) = 2 j0ca1 +Ojj 0p-b (l- bau3) - $ul- ba,u3)] 

= 2[0a,3 + O0,a bc Y 
(u-,y, d- uF6) 

-yb (u,,-a - l6jau6) + b^tb-yu3] - 36, 

(2) 4?c,(u, 0) = u31k, + b^/u^ + Oc, = U3,c, + b^/u^ + Oc,, 

(3) Ac,0 (u) = 2(ualp + u,31.) -ba- = 2 (U,o+ +ui,o) - Ou6-ba,3U3, 

where the Christoffel symbol F := a6 -afl/&xo. 
Set 

(4) a a7 =- _E 2(a ay6 + vaaa Y6), - +( 

with E > 0 and v E (0, 1/2) denoting the Young's modulus and Poisson ratio of 
the material. Let ]d denote a nonempty subset of 9Q and set 

Hrd{d v E H (Q) I vIpd =?}, V = { (v, 10 I vi, f E] Hd} 

The norm in V is given by j1u , b12 = jIVII2 + 11b112. The Naghdi model determines 
ov 

1 
v 

(u, 0) as the minimizer over V of the energy functional 

E(v, b)= EB +ES+EM+EL 

= t2 J 1 Ta13(v, )T,-6(v, 0)V1adx 2 12 

+_ j a A (D)O, (v,)VOd) -D (v,t3) jfa d dx 

+ 2 aa0'6Aa0,(v)A,-y(v) 4a dx - t3 f'vi i/a dx . 
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Here, t fiai denotes the resultant of the applied forces on the middle surface. 
Equivalently, (u, 0) E V is determined by the weak equations 

jQ a T T(u, 0)Ty6(v, ,O)>/adx + t2 j a$ 21 o (U v 

+ t-2 f aNy6 A al3 (u)AY y(v) A/& dz = Jf fui A/i dx for all (v, I/) EV. 

To define a mixed formulation, we set 

= (t-2 _ cO) 
E 

a(u, 0), 
(6) 2(1 +v) 

A= (t - co) 1 2 [A-E6(u) + vazyaa0A,e(u)] 

and seek pairs (u, 0) E V and (q, A) E W :={ (X) l, X e L2(Q) } such that 

(7) A(u, 0; v1,<) + B(v, O; q, A) = F(v) for all (v, < ) C V, 

-~~~ ~t2 1 \ T T 

(8) B(v, 0;7,q,x) - tC(0 ;r,q,X) O for all (1,q,X) E W. 

Here, 

(9) A(u, 0; v, 4) = j a ,3 (u, 0)T (v) Va dx 
12 O V )V'Jd 

+ coj a 2(+ ) (u 0)4a(v, ?Q)V dx 

+ co j A aa(u) A(v)adx, 

(10) B(v, fb; rj, X) = j a qa (v, fb) r//a dx + A a 3 (v)Xa/ djx, 

(11) C(0q, A; = a) j 2 
2+ v') O1o dx + a7a/ aAa,3X6sx, ~~~~~ f' 

(12) F(V) = f fui Va dx. 

Aside from the factor of t-2 -co, 0 and A represent the transverse shear stresses and 

membrane stresses, respectively (note that a"Yaf6Aa,3 = (t2- co)aaflYAao(u)). 
The quantity co, which has the units of reciprocal of the square of length, is an 
arbitrary positive constant, independent of t. It may be chosen, for example, to be 
the reciprocal of the area of the middle surface of the plate. Different values could 
be taken for the two separate occurrences in equation (6). By insisting that co be 
positive, rather than making the more usual choice co = 0, we obtain the following 
result, which greatly simplifies the development of stable mixed finite elements. For 
a proof see [6]. 

Lemma 1. The bilinear form A is an inner product on V and the corresponding 
norm is equivalent to the H1 norm. 
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3. AN ABSTRACT STABILITY RESULT 

In this section, in which the notation is independent of the others, we let V and 
W denote Hilbert spaces, and suppose that we are given three bounded bilinear 
forms 

A:VxV--+R, B:VxW--WR, C:WxW--IR, 

a bounded linear form F: V -* R, and a parameter c E (0, 1). We consider the 
abstract problem: 

Problem A'. Find u E V, p E W such that 

A(u,v) +B(v,p) = F(v) for all v E V, 

B(u, q)-c2C(p, q) =O for all w E W. 

We shall denote the bounds on the bilinear forms by jIAII, JIBII, and 10CI. More- 
over, we shall assume that A and C are positive definite, so there exist positive 
constants c1 and c2 for which A(v,v) > c1ijvj12 and C(w,w) > C2IIW11 2 for all 
v E V and w E W. We define a seminorm on W by 

Illqlll = sup B(v, q) for all q E W, 
OAvEzV Ilvllv 

so that Illqlll < jIBIJjlqllw. The following theorem follows easily from the Lax- 
Milgram lemma applied to the positive definite form 

((u, p), (v, q)) v-3 A(u, v) + B(v, p) - B(u, q) +cE2C(p, q), 
the obvious choice of test functions, and the definition of the seminorm. 

Theorem 2. There exists a unique solution u, p to Problem AE. Moreover, there 
is a constant C depending only on IjAII, IICII, c1 and c2, for which 

IXulJv + IIIPIII + EjjPjjW < CJJFJJv*. 

Now let Vh C V and Wh C W denote finite-dimensional subspaces, and consider 
the discrete problem: 

Problem A'. Find Uh E Vh, Ph E Wh such that 

A(Uh,v) +B(v,ph) = F(v) for all v E Vh, 

B(Uh, q) -2C(ph, q) = 0 for all w E Wh. 

Theorem 3. There exists a unique solution Uh, Ph to Problem A". Moreover, 
there is a constant C depending only on IJAII, jIBIj, IICII, c1 and C2, for which 

11U-Uhlv ?+EIIP-Phllw <C inf (E ||u-vjlv + lllp-qlll +Ellp-qllw). 
qEWh 

Proof. Existence and uniqueness is again a direct consequence of the Lax-Milgram 
lemma. To get the estimate, we note that for any u* E Vh and p* E Wh we have 

(13) A(Uh - u1, v) + B(V,Ph -P) 

=A(u-u*,v)+B(v,p-p*) forallvEVh, 

(14) B(Uh - u*, q) - E2C(Ph - p, q) 

=B(u u*, q) -2C(P-p*, q) for all q E Wh. 



LOCKING-FREE FINITE ELEMENT METHODS FOR SHELLS 7 

Choosing v = Uh - u*, q = Ph - p* and subtracting (14) from (13), we get 

(15) CliiUh _1Ui||V + C2E iiPh_ P* 112 

? IiAIIIlu -U IV iUh - U|Iv + IUh - U*iV||P-P* - 

+ l|B| iiu - U*l V -IPh-Piw + 2IICIIilp-P - iWIIPh*-PIiw 

We easily deduce that 

h|Uh -Ulliv +EIiPh -P*iiw < C(lii-u u*IIV + IIIP-P*iii + eiip-PIIw), 

and then the desired estimate follows from the triangle inequality. O 

Notice that the estimates provided for 'a - uh and p - Ph in Theorem 3 are not 
uniform in e. To obtain uniform estimates, we need a stability hypothesis. Namely, 
we shall assume that there exists -yh' > 0 for which 

(16) sup B (v, q) > -h||Iqj|I for all q E Wh. 
O#VEVh iivliV v 

We then obtain a quasi-optimal estimate uniformly in c. 

Theorem 4. There exists a constant C depending only on ilAII, IiCii, cl, c2, and 
Yh, for which 

IIU-UhiiV + IIIP-Phli| + cIIP-Ph| ii ?C inf (Iiu-viiv + IIIP-qll + clip-qliw)- V CVh 
qCWh 

Proof. With the same choice of test functions as in the proof of the previous theo- 
rem, but treating the term B(u - U*,Ph - p*) differently, we get 

Cl I|Uh ' Ui iv + C22 IlPh Pi iw 

? IiAIIIiu - ui iviiUh -Ui IV + h|Uh - U* iiVIIIP -P* 

+ IU-U |IVillPh -p III + eii1CilIp-P*iiWIIPh-PiiwW 

Further, from (13) and (16) we have 

-YhllPh- P*III < IiAiiiiUh - U|iV + iiAiiiiu - u*llv + IIIP- p*ii, 

and so 

il|Ph -P III < C(IiUh -U*IIV + iU-U *IIV + IIIP-P*111) 

Combining these estimates, we get 

hUh -U*iiV + il|Ph |P*iii +1iiPh -P*iiw 

< C(IIU - U*IIV + IIIP- P*iii + EIIP - P*IIW), 

from which the theorem follows. O 
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4. FINITE ELEMENTS FOR THE NAGHDI SHELL 

Our goal is now to discretize the mixed formulation of the Naghdi shell model 
presented in ?2 and analyze the error in the framework of ?3. We take the spaces 
V and W and the forms A, B, C, and F as defined in ?2 and set E = t/ 1E -c0tY = 
0(t). Clearly, the forms are all bounded and C is positive definite. In light of 
Lemma 1, A is positive definite as well. Hence, Theorem 2 gives the well-posedness 
of the mixed formulation, and for any choice of finite element spaces Vh C V and 
Wh c W, Theorem 3 gives a convergence result. However, we wish to obtain a 
convergence estimate which is uniform in t, and so want to apply Theorem 4. This 
requires that we find finite element spaces satisfying (16) with ayh bounded below 
by a positive constant independent of h. 

To do so, we henceforth assume that Q is a polygon which is triangulated by a 
regular sequence of triangulations Th indexed by the meshsize h. (By regular, we 
mean that there is a positive lower bound for all the angles of all the triangles in 
all the triangulations, but we do not assume quasi-uniformity.) The set T'd where 
Dirichlet boundary conditions are imposed is assumed to be a union of edges of 
triangles in each Th. We use the notation Pk (T) for the set of functions on T which 
are the restrictions of polynomials of degree no greater than k and define 

L'(Th) = {V E Hs(Q) I VIT ? Pk(T) for all T E Th} 

Bk(Th) = {v E L?(Th) Iv E H (T) for all T T Th}. 

For the shell problem we shall take 

Vh ={ (VI, f) E V |Vi, f E L)k+2(Th) + Bk+3(Th) }, 

Wh = {(,mX) E W | a, Xce E LC(Th) }, 

where k is any fixed nonnegative integer (this method shall turn out to converge 
with order k + 1 in H1 for displacement and rotation). That is, we use Lagrange 
finite elements of degree k + 2 augmented by bubble functions of one degree higher 
for the components of the displacement and rotation, and discontinuous piecewise 
polynomials of degree k for the components of the shear and membrane stresses. 
The nodal diagrams for this element choice are shown in Figure 1. 

Before proceeding to the analysis, we discuss briefly the implementation of this 
method. The stress unknowns may be eliminated analytically from the discrete 
equations, giving a finite element method involving only the displacements and 

Ui, c, (a Aa/ Ui, Oa (a, Aao 

FIGURE 1. Degrees of freedom for displacements and rotations and 
for shear stresses and membrane stresses in the cases k = 0 and 
k = 1 
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rotations. Specifically, let 

Ph' E L (Q)} ), I Tic | L' ?(h)} 

denote the orthogonal projection with respect to the inner product 

(qYjl )4 j a3 q$>10 .va dx 

and, similarly, let 

Ph{ X I L(Q)} -X+ {L X I Xa L? (Th)} 

denote the orthogonal projection with respect to the inner product 

(A,) aX- aoa6 Ac,3XO,Vadx. 

From the discrete version of (8) we deduce that 

q5 =(t -co) F h V) PA24(uh, h h (t -co)PA(uh), 
-h ~~2(1 + v) 1h - 

where 

E , 
AZS(uh) = 1 _2 [Ay6(uh) + va?8a AaL4(uh)]. 

It then follows from the discrete version of (7) that (Uh, 0 ) can be determined as 

the minimizer over Vh of the altered energy functional 

E( =P) EB + c0t2Es + (1- Cot2)ES + cot2 Em + (1 _ Cot2 )Em+ EL 

where EB, Es, EM, and EL are defined in (5) and Es and Em are derived from 
Es and EM by replacing 0 and A by Phlq and Ph2A, respectively. The insertion of 

such projections and other reduction operators into energy terms subject to locking 
is known in the engineering literature as "selective reduced integration." Since we 
introduce the projections into only part of the shear and membrane energy terms, 
our method may be described as "partial selective reduced integration." 

We now turn to the major task of this paper, the verification of (16) for the 
elements just introduced. Unfortunately, in order to do so, we need to make an 
assumption on the coefficients entering into the bilinear form B. Namely, we as- 
sume that each of the quantities aaQ, baQ, and Fr belong to LO(Th), that is, they 
are piecewise constant. Of course this assumption is very restrictive. It is intro- 
duced only because it is necessary for the numerical analysis. We conjecture that 
this restriction is a consequence of the technique of proof, and that in fact it is 
unnecessary. With this restriction, we are able to prove our main result. 

Theorem 5. Assume that aQ3, b,0, 16, belong to L?(Th), and let a denote the 
determinant of (a,,3), (ac'3) the inverse matrix, and b - 

a-bA,0. Define forms 
A, B, C, and F by (1)-(4) and (9)-(12), where fi c L2(Q), E > 0, v X (0, 1/2), 
% > 0, and t E (0, 1/,Co). Then there exist unique pairs (u, 0) c V and (0,A) c W 

satisfying (7) and (8), and unique pairs (uh, 0 ) C Vh and (q , A ) E Wh satisfying 



10 DOUGLAS N. ARNOLD AND FRANCO BREZZI 

the same equations with the test functions restricted to Vh and Wh. Moreover, there 
exists a constant C independent of h, t, and f such that 

H|UHUhI ? Hl - 1Hi ? H -0 bA-A HIItII- | l t+A || | A .Ho 

<C inf (||u-vtlll + lH-Vll+lllo-7,A-xlll+tllO-llo + tHlA-xllo)I 
(v,'P)EVh 

(,,X) EWh 

where 

B(v,); ', x) 
III1, xlll : =sup 

(V ~b V( v,OVll 'llv 

Since IIIn, XlII < C(" q" "\ ",) we immediately get kth-order convergence uni- 

form in t for smooth solutions. 

Corollary 6. Under the hypotheses of the theorem we have 

(17) ||u UhH|l ? H hO 10 - ?q h , -h h h 

< Ch +lluHk+2 + 11011k+2 + 1111k+l+ ?|Alk+l), 

where the constant C does not depend on h,, t, or f. 

Before turning to the proof of Theorem 5 and Corollary 6, we discuss their 
interpretation. Let U denote the solution (u, 0, 4, A) and set 

iUI = lHullH + 11011H + HII? 1A, +tllqllo +tllAllo. 

Similarly, define Uh to be the discrete solution. Then IUI is bounded above and be- 
low by positive constants uniformly in t, and, assuming that the solution is smooth 
enough that the norms on the right-hand side of (17) remain bounded uniformly 
in t, the error U - Uhl is uniformly of the order O(hk+l). In particular, the rela- 
tive error IU - Uh / UI tends to zero as fast as is permitted by the approximation 
properties of the finite element spaces used, that is with O(hk+l), uniformly in t. 
In this sense we have indeed shown our method to be free of locking. However, this 
statement may be misleading, so we comment on several aspects of it. 

First, from the point of view of approximation order, our choice of elements 
is unbalanced. The finite element space for displacement and rotation contains 
all Lagrange elements of degree k + 2, and so is capable of approximating the 
displacements and rotations with order k + 2 in H1, but, because of the lower order 
of approximation of the elements used for the stress fields, only convergence of 
order k + 1 is obtained. In fact, the shape functions of degree greater than k + 1 
for displacement and rotation are used to achieve, stability rather than, accurate 
approximation. An analogous situation is the use of quadratic shape functions for 
velocity in the P2-Po Stokes element. A careful reading of the analysis below shows 
that we can reduce the space used for the rotation variables to Li+?1 (T-h) +Bk+2 (Th) 
and still retain stability, but this is not possible for the displacement variables. 
Actually, our choice of elements was made primarily for the relative simplicity of 
the stability analysis which follows. It is likely that with a more sophisticated 
analysis, for example one employing macroelement techniques, better balanced and 
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more economical elements could be shown to be stable for the inixed formulation 
of this paper. 

Second, while the norm II II in which we measure the stresses arises naturally 
from the shell problem, it is not easy to interpret it concretely, and its exact rela- 
tionship to Sobolev norms depends on the geometry of the shell and the boundary 
conditions. Thus, the significance of the t-independent bound on the error in the 
stress variables is unclear. 

Third, while it cannot happen under our scaling that IUI tends to zero with t, it 

may well happen that lull1 ?+ 101 i tends to zero. This is the case of a membrane- 
dominated shell problem. In this case our results, which couple the displacement 
and stress errors, do not establish convergence of the displacement-rotation relative 
error 

llU-Uhlll + 1l?0 ll ll 

Ilull1 + 110111 

uniformly in t. However, locking is generally considered a problem mostly in the 
case of bending-dominated shell problems, i.e., problems for which ilull remains 
bounded away from zero as t tends to zero, and our results do imply uniform 
convergence rates for the displacement and rotation in that case. 

Fourth, the right-hand side of (17) cannot be expected to remain bounded as 
t tends to zero. The analogous quantity for the Reissner-Mindlin plate model 
is known to become unbounded, owing to boundary layers, as has been analyzed 
thoroughly in [3]. No such analysis yet exists for the Naghdi shell model. This lack 
of uniform regularity of the solution will preclude uniform 0(hk+l) convergence 
of the numerical method except under special conditions (e.g., periodic problems). 
This difficulty, however, is quite distinct from the locking problem treated in this 
paper. In any case, Theorem 5 shows that the finite element solution provides 
the best approximation that the regularity of the solution allows, uniformly with 
respect to t. Moreover, when the presence of boundary layers precludes the optimal 
rates of convergence uniform in t, it is still possible that such convergence occurs on 
interior subdomains. Interior convergence results of this sort have been established 
for some Reissner-Mindlin plate elements in [10] and [13]. We also mention that by 
analyzing more carefully the norm Ill 111, instead of simply bounding it by the; L2 
norm, the norm on the solution which appears on the right-hand side of (17) can 
probably be replaced with a weaker one (but generally not by one that is bounded 
uniformly in t). Cf. the use of the Helmholtz Theorem to treat the analogous term 
in the Reissner-Mindlin plate model [2]. 

We now turn to the proof of Theorem 5. In view of Theorem 4, it suffices to 
establish the following lemma. 

Lemma 7. Under the hypotheses of the theorem there exists a positive number-y 
independent of h for which 

B(v,4'; , X) 
(18) sup >Ylllm, XllI for all (, x) E Wh. 

Proof. Suppose that we can construct a linear operator 

(19) lrh Hrd -* Lk+2(Th) n Hd + Bk+3(Th) 
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for which 

(20) LWhVIlli < Cliviti for all v E Hrdl 

with C independent of h and such that 

(21) j(v-7rhv)p ds 

=j(v-rrhv)pdx = O for all e e C h, T e Th, v E Hrd, p cPk(T), 

where SEh denotes the set of all edges of triangles in Th. Note that it follows from 
Green's theorem and (21) that 

j(v-irhV),apdx=O for all T 'Th, v C Hrd, pG Pk(T), 

as well. Therefore, if we define Hlh: V -- Vh by Hh(VI'V) = ((1rhVi), (rhra)), we 
have 

B(Hh(v,+);j, X) -B(v,4f;7,X) for all (71, X) c Wh 

and 

II|h (V, ) llv < CO ||V, f ||V 

with Co independent of h. Then, given (ri, X) c Wh, we may choose (v, c) c V for 
which 

B (v, +b; n, X)1 

fly, 'f1Hv -2 ~1ll xl 

(which is possible by the definition of the seminorm) and bound the left-hand side 
of (18) below by 

B(Ih(v,' );r,,X) _ B(v,?; ,X) B(V,O;r,X) 1 
=__ _ _ _ _ _ _ - 

. . . > lII I n x ll 
jjHh(Vw,b)flV flHh(V,O)IfV CoItv,/flv 2Co 

so the lemma holds with y = 1/(2Co). 
It remains to construct the operator rr satisfying (19)-(21), which we do in four 

steps. First, let 1rT HA - L{ (Th) n Hrd satisfy 

(22) Itv - 7rVIIO,T + hTtIV - 7 hVtIl,T < ChTttvt1t, for all T C Th, v C HAd. 

Here, hT denotes the diameter of the triangle T, and T denotes the union of the 
triangles in Th which meet T. The construction of such an operator is described in 
[9]. Second, define 

h Hrd Lk+2(Th) n Hrd 

by the conditions 7r)v = 0 at all vertices of all triangles in Th and 

(23) j(v - irv)pds =0 for all e C h, V C Hrd, p1E Pk(e)l 

j (v-7r&v)pdx = 0 for all T C Th, v E Hd p C Pk-(T). 
TV ,vr 

11Hr 
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By a straightforward scaling argument we obtain 

(24) 

liv - rIhvIIo,T + hTllV lrhv1,T ? C(iiViiO,T + hTllvll1,T) for all T c Th,v c Hrd 

Third, define 7r2: Hr- Bk+3(Th) by 

(25) j(v - 7rv)pdx = 0 for all T c Th, v C Hrd, p ' Pk(T). 

For this operator, scaling gives 

(26) lv-rhVII0,T + hTlIV-7rhV1,TI1T ? CiV|IIO,T for all T C Th, v G Hrd. 

Finally, we set 

(27) 7rhv = IT0v + 7rI(r- V) + 72 [V_ Vrv- (V_ r V)]. 

From (22), (24), and (26) we deduce that 

1IlrhvIi1,T < CIIVi11,t for all v C Hr I T C Th, 

and (21) follows immediately, while (20) follows from (23), (25), and (27). This 
completes the proof of ILemma 7, and so of Theorem 5. 

REFERENCES 

1. D. N. Arnold and F. Brezzi, Some new elements for the Reissner-Mindlin plate model, Bound- 
ary Value Problems for Partial Differential Equations and Applications (C. Baiocchi and J.-L. 
Lions, eds.), Masson, Paris, 1993, pp. 287-292. MR 94k:73066 

2. D. N. Arnold and R. S. Falk, A uniformly accurate finite element method for the Reissner- 
Mindlin plate, SIAM J. Numer. Anal. 26 (1989), 1276-1290. MR 91c:65068 

3. _ , Asymptotic analysis of the boundary layer for the Reissner-Mindlin plate model, 
SIAM J. Math. Anal. 27 (1996), 486-514. CMP 96:09 

4. I. Babuska and M. Suri, On locking and robustness in the finite element method, SIAM J. 
Numer. Anal. 29 (1992), 1261-1293. MR 94c:65128 

5. K.-J. Bathe and E. Wilson, Numerical methods in finite element analysis, Prentice-Hall, 
Englewood Cliffs, NJ, 1976. 

6. M. Bernadou, P. G. Ciarlet, and B. Miara, Existence theorems for two-dimensional linear 
shell theories, J. Elasticity 34 (1992), 111-138. MR 95f:73050 

7. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer-Verlag, New 
York-Heidelberg-Berlin, 1991. MR 92d:65187 

8. F. Brezzi, M. Fortin, ana D. Marini, Mixed finite element methods with continuous stresses, 
Math. Mod. Methods Appt. Sci. 3 (1993), 275-287. MR 94g:65121 

9. P. Clement, Approxiriation by finite element functions using local regularization, RAIRO, 
Anal. Numer. 9 (1975), 33-76. MR 53:4569 

10. L. Gastaldi, Uniform interior error estimates for the Reissner-Mindlin plate model, Math. 
Comp. 61 (1993), 539-568. MR 94a:65067 

11. V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, Springer- 
Verlag, New York-Heidelberg-Berlin, 1986. MR 88b:65129 

12. T. J. R. Hughes, The finite element method, linear static and dynamic finite element analysis, 
Prentice-Hall, Englewood Cliffs, NJ, 1987. MR 90i:65001 

13. X. Liu, Interior estimates for some mixed finite element methods, Ph.D. thesis, Penn State 
Univ., 1993. 

14. P. M. Naghdi, Foundations of elastic shell theory, Progress in Solid Mechanics, Vol. 4 (I. N. 
Sneddon and R. Hill, eds.), North-Holland, Amsterdam, 1963, pp. 1-90. MR 29:790 

15. P. M. Naghdi, The theory of shells and plates, Handbuch der Physik, Vol. VI a-2, Springer- 
Verlag, New York-Heidelberg-Berlin, 1972, pp. 425-640. 

16. J. Pitkaranta, The problem of membrane locking in finite element analysis of cylindrical 
shells, Numer. Math. 61 (1992), 523-542. MR 93b:65178 



14 DOUGLAS N. ARNOLD AND FRANCO BREZZI 

17. T.-X. Zhou, The partial projection method in the finite element discretization of the Reissner- 
Mindlin plate, J. Comput. Math 13 (1995), 172-191. CMP 95:12 

18. 0. C. Zienkiewicz and R. L. Taylor, The finite element method, McGraw-Hill, New York, NY, 
1989. MR 96c:73069 

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, 

PENNSYLVANIA 16802 
E-mail address: dnafmath.psu.edu 

ISTITUTO DI ANALISI NUMERICA DEL C.N.R., UNIVERSITX DI PAVIA, 27100 PAVIA, ITALY 

E-mail address: brezziAdragon. ian. pv. cnr. it 


