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HOW ACCURATE IS THE STREAMLINE DIFFUSION 
FINITE ELEMENT METHOD? 

GUOHUI ZHOU 

ABSTRACT. We investigate the optimal accuracy of the streamline diffusion 
finite element method applied to convection-dominated problems. For lin- 
ear/bilinear elements the theoretical order of convergence given in the liter- 
ature is either O(h3/2) for quasi-uniform meshes or 0(h2) for some uniform 
meshes. The determination of the optimal order in general was an open pro- 
blem. By studying a special type of meshes, it is shown that the streamline 
diffusion method may actually converge with any order within this range de- 
pending on the characterization of the meshes. 

1. INTRODUCTION 

We consider a model scalar convection-dominated convection-diffusion problem 
of the form 

(l.l.a) ~~-?/\U + USC; + U = f in Q, 
(1.1.b) u = 0 on OQ. 

Here, Q is a bounded domain in R2, e.g., the unit square, with boundary OQ, while 
O < <K 1 is a small diffusion parameter. 

The streamline diffusion finite element method (SDFEM) was proposed by 
Hughes et al. [2] and Johnson et al. [4] in order to cope with the usual insta- 
bilities caused by the convection term. It is capable of damping possible over- and 
undershootings of the discrete solution near the discontinuities while preserving 
higher order of convergence in regions where the solution is smooth. In fact, the 
SDFEM with linear or bilinear elements converges in L2 with an order of O(h3/2) 
on general quasi-uniform meshes (see Johnson [3]), while the standard upwinding 
finite element method gives only 0(h). 

A local pointwise error estimate of order 0(h5/4) was given by Johnson et al. [5], 
which was later on improved by Niijima [7] to the order 0(h11/8). Recently, it 
was shown in Zhou and Rannacher [13] that on streamline-oriented meshes the 
SDFEM even has the pointwise order of convergence 0(h21 log hi). The situation 
appeared somewhat confusing, as several test computations showed an unexpected 
0(h2)-convergence, even on fairly general meshes. 

Received by the editor June 1, 1995. 
1991 Mathematics Subject Classification. Primary 65N30, 65B05, 76M10. 
Key words and phrases. Convection-diffusion problems, streamline diffusion finite element 

method, structured meshes, superconvergence. 
This work was supported by the Deutsche Forschungsgemeinschaft, SFB 359, Universitat Hei- 

delberg, Germany. 

(?)1997 American Mathematical Society 

31 



32 GUOHUI ZHOU 

In this paper, we try to clarify this question by studying the SDFEM on a 
special type of triangular meshes, which was introduced by Peterson [8] in the 
context of the discontinuous Galerkin method. He showed that on such meshes 
the order of convergence of the discontinuous Galerkin method is actually limited 
to 0(h3/2). By our analysis it turns out that a similar effect occurs also for the 
SDFEM. We find an order of convergence in L2 that may vary between 0(h3/2) 
and 0(h2) depending on a certain mesh parameter, while the pointwise error is 
bounded by 0(h3/2) independent of the mesh parameter. These phenomena are 
confirmed by numerical tests. However, the extension of this result to quadrilateral 
meshes remains open. 

2. REVIEW OF SOME CONVERGENCE RESULTS 

First, we formulate the SDFEM and recall some well-known error estimates. Let 
Hh = {e} be quasi-uniform partitions of the polygonal domain Q into triangles or 
(convex) quadrilaterals, where the largest diameter of all elements is denoted by h. 
Here, "quasi-uniform" means that the area of each element is bounded from below 
by Ch2 with some constant C independent of h. On these meshes we define the 
finite element spaces 

Vh {W C H' (Q), WIe is linear for a triangle or bilinear for a quadrilateral}, 

where the term "bilinear" is to be understood in the usual isoparametric sense. 
The SDFEM may be viewed as a modification of the standard Galerkin finite 

element method by using test functions of the form V + 6V,, with some small 
parameter 6 of order 0(h). Accordingly, the discrete problem reads: Find U E Vh 
such that 

(2.1) E(VUi VV) + (Ux + U, V + Vx) =(f, V + ? Vx),V VV E Vh. 

The term (,-AU, &Vx) is neglected in our case. Since the parameter ? is usually 
very small or even zero, the bilinear form defined by the left-hand side of (2.1) is 
only weakly positive definite, which causes problems in the local error analysis. To 
overcome this difficulty, Johnson et al. [5] proposed to replace e by an artificial 
diffusion coefficient Em of size 0(h3/2) to 0(h2). Defining the bilinear form 

(2.2) B(U, V) = 6(UxI Vx) + Em(VU, VV) + (1 - 6)(Ux, V) + (U, V), 

and the linear, functional 

(2.3) L(V) = (f, V + 6Vx), 

we write the SDFEM in the compact form 

(2.4) B(U, V) = L(V), V V E Vh. 

The energy form B(., ) is positive definite, 

(2.5) B(V, V) > .IllVl 2, V V E Ho(Q) 

with respect to the energy norm given by 

(2.6) |IIIV1112 = (Em + 6)IIVX112 + Em|IIVyI + ||V|| . 

This implies that the discrete problem (2.4) possesses a unique solution U E Vh 
and that the stability of the scheme is guaranteed. 
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Further, we have the quasi-orthogonality relation 

(2.7) B(u-U, V) = Per(u, V), VV E Vh, 

with the truncation error 

Per(u, V) = (e1Au, 8V.) + (?m - e)(Vu, VV). 

To obtain global L2-error estimates, we use the standard argument for finite 
elements and introduce the linear/bilinear nodal interpolant Ihu of the solution u. 
Clearly, there holds 

U _- IhUIlI < C (11/2h + c1/2h + h2) IV2uII. 

Setting V = Ihu -U E Vh and using (2.5) and (2.7), we obtain 

III V112 < B(V, V) = B(Ihu - u, V) + B(u - U, V) = B(Ihu - u, V) + Per(u, V). 

F'urther, using the estimates 

(2.8) B(Ihu-u, V) < (IlIIhu-uIII + 8-1/2II u-UII) IjIVIII 

C C (61/2h + S1/2h + 8-1/2h2) IIV2uflIllVIII, 

and 

Per(u, V) <? (81/C 'CIIuxx + IC- CmI\IUI) IIIVJJi, 

we conclude that 

U - Ull < C (61/2h + 61/2h + h2 + 6-1/2h2) IIV2u1 

+C (61/2 IIxx + I|-? |mIIIAUII) 

From this error estimate, we can infer that the optimal choice of 6 is 6 = 0(h) 
and that the artificial diffusion em should satisfy Em < Ch3!2 to avoid a loss of 
accuracy. Then, we have the error estimate 

(2.9) Illu - Ulll < Ch3/2 IIV2uII, 

where the constant C does not depend on the diffusion coefficient e. From this 
result for the energy norm, we immediately obtain also the 0(h3/2)-convergence 
for the L2-norm IIu- Ull. The usual improvement of this to the optimal order 
of 0(h2) by using a duality argument does not seem possible here, owing,to the 
singular perturbation character of the problem. This leaves a gap of 0(h1/2) in the 
order of' convergence in the L2-norm. 

In view of the above discussion, it seems that on general meshes the SDFEM 
has the maximal order of convergence of 0(h3/2). However, this may be improved 
on certain structured meshes. For instance, let a quadrilateral mesh be oriented 
in the streamline direction, i.e., parallel to the coordinate axes. For this, we recall 
the error expansion for the bilinear interpolation in Lin [6]. For an element e, we 
set E(x) = I 

((X - X,)2 - h (e)), F(y) = I 
((y _ ye)2 - h2(e)), where (xe, Ye) is 

the center of the element and 2hx (e) and 2hy (e) are the edge lengths in the x- and 
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y-direction, respectively. Then, for V = Ihu - U there holds 

6((Ihu-U)x,Vx) = 6 eh{FV - (F )Vy}UxyyYdxdy 

< C hy J(x I + hy I Vxy I) uxyy dxdy 
eErIhe 

< C8112h 2IuxYIIIIIVIII, 

and similarly, 

?m((IhU - u) y Vy) ! CE "/2h2 | Uxxy II III VIII. 

For estimating the convection term, we further require the mesh to be (almost) 
uniform in the streamline direction. Then, there holds 

((IhU-U)x, V) = , f (E(E2)xVx - -hzV) uxxx dxdy 

+ E je (~F(V - ExVx)I (F 2)y(V - ExVxy) uxyy dxdy 
?eErlh( 

? Ch 2 IuxIx 11 IIVII + Chy IIUxYY II IIVII 

< C( y+h)(IXX1 + IIUXYYI11I IIVII. 

Further, 

(IhU- U, V) <5 C (h2IllUxx 11 + h2luyl IIUIl 

Using these estimates, instead of (2.8), we now have 

(2.10) B({Ihu l- u, V) < Ch2 (61/2 + + I) (II V2uII + IIV3uII IIVIII. 
This gives us the estimate 

IIIIhU - Ulll < Ch2 (61/2 + + I) (11V2UII + IIV3UII) 

+C (6eIIxxx II + I- --MI II|UID|), 
from which we infer, for any choice of 8 and for e < em = Ch2, that 

(2.11) IIu - Ul < IIu - Ihull + IllIhu - Ul < Ch2 IIUIIH3(Q). 
We note that for this global error estimate, no lower bounds for 6 and 6m are 

needed. But for estimating the local L2-error or the pointwise error, the sizes of 
6 and em have to satisfy 6 O(hx) and 6m = O(h2), see [13]. Such a supercon- 
vergence result can also be established for three-directional triangular.meshes by 
using the techniques proposed in Blum et al. [1]. For, the discontinuous Galerkin 
method, similar superconvergence results were also achieved in Richter [91 under 
some mesh conditions. 

The first local pointwise error estimate for the SDFEM was given in [5], 

(2.12) (u -U) (xo, yo) I < ChI/14 1log h13/2 IIUII H,QO I :V 

for quasi-uniform meshes and for any u > 2, where 

Q0 ={(x,y) : x-xo < Chl log hl, Iy-yoI < Ch3/4 loghl}. 
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The proof is based on local bounds for the discrete Green functions. This pointwise 
convergence result was later improved in [7] to 

(2.13) (u- U) (xo, yo) I < Ch1l/8l log hl iiUiiH2(Q) + Chv. 

Already in [5], it was conjectured that the SDFEM should converge pointwise with 
the order 0(h3/2) or even 0(h2). This could be confirmed in [13], at least on certain 
structured meshes. On streamline-oriented and uniform meshes, the estimate (2.13) 
was improved to 

(2.14) (u- U)(xo, yo)l < Ch2i1 log hl 11Ui1H3(Q0) + Chv, 

with 

Qo={(x,Y):x-xo<Chlloghl, Iy-yoI<Chiloghl} 

This result not only improved on the order of convergence, but also reduced the 
width of the dependence subdomain Qo. The reduction of the crosswind smear to 

0(hI log hi) was also given in [10] by a stencil analysis. 
In [13], the SDFEM has been tested for various model problems on different 

types of meshes. Surprisingly, in almost all cases an 0(h2)-convergence was ob- 
served, even though the uniformity condition on the mesh was violated. This led 
to the impression that the SDFEM would indeed converge with the optimal order 
of 0(h2) on general quasi-uniform meshes. However, this was finally disproved by 
a test calculation on a very special triangular mesh introduced in [8] for an in- 
vestigation of the convergence property of the discontinuous Galerkin method for 
convection problems. This special mesh violates the mesh condition proposed by 
Richter [9]. This pathological mesh will be described in the next section and a 
detailed theoretical analysis will be given, which explains the reason for the order 
reduction in the SDFEM. 

3. THE SDFEM ON A SPECIAL MESH 

We now investigate the convergence of the SDFEM on the special meshes pro- 
posed in [8]. We start with a simple convection problem, a similar form of which 
was also considered in [8], 

(3.1.a) uY+u = x2 inQ, 

(3.1.b) u(x, 0) = x2 for 0 < x <. 

The exact solution is u(x, y) = x2. The SDFEM is applied to this problem on 
meshes as shown in Figure 1, where additional vertical lines are inserted, with 
varying number m h-, 0 < ? < 1. For the mesh size h = 2-N, Table 1 shows 
an unexpected reduction of the convergence order in L2, depending on the exponent 
U. 

Remark 1. The computational results shown in Table 1 suggest that the order of 
convergence should depend on the number a of inserted lines like 

(3.2) lltb-Ull < { Ch2-2a/3 for 0 < a < 3 1U111 
~Ch2 for ?< a<1. 

In Table 2, the corresponding order of convergence in L? seems independent 
of m. The order of pointwise convergence is reduced to 0(h3/2) even if only one 
vertical line is inserted. However, in both cases, the superconvergence is again 
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FIGURE 1. The original mesh and two modified meshes with m = 3 
and m= h-= 

TABLE 1. The L2-error and convergence order for problem (3.1) 

N 3 4 5 6 7 8 9 
m h-1 4.12e-3 1.07e-3 2.73e-4 6.88e-5 1.73e-5 4.33e-6 1.08e-6 

order 1.95 1.97 1.99 1.99 2.00 2.00 
m 0.25h-1 4.91e-3 1.48e-3 4.59e-4 1.55e-4 5.1Oe-5 1.52e-5 4.20e-6 

order 1.73 1.69 1.57 1.60 1.75 1.86 

m h-3/4 4.40e-3 1.36e-3 3.96e-4 1.32e-4 4.34e-5 1.52e-5 5.39e-5 
order 1.69 1.78 1.58 1.60 1.51 1.50 

m h- 12 4.98e-3 1.48e-3 4.28e-4 1.18e-4 3.55e-5 1.13e-5 3.63e-6 
order 1.75 1.79 1.86 1.73 1.65 1.64 

m h-2/5 4.91e-2 1.38e-3 3.67e-4 1.04e-4 3.06e-5 9.04e-6 2.75e-6 
order 1.83 1.91 1.82 1.76 1.76 1.72 

m= 1 4.62e-3 1.21e-3 3.1le-4 8.00e-5 2.06e-5 5.32e-6 1.38e-5 
order 1.93 1.96 1.96 1.96 1.95 1.95 

TABLE 2. The maximum error and convergence order for problem (3.1) 

N 3 4 5 6 7 8 9 
m = h-1 6.41e-3 1.64e-3 4.16e-4 1.05e-4 2.63e-5 6.58e-6 1.65e-6 

order 1.97 1.98 1.99 2.00 2.00 2.00 

m 0.25h-' 9.85e-3 3.06e-3 9.32e-4 3.60e-4 1.21e-4 3.69e-5 1.04e-5 
order 1.69 1.72 1.37 1.57 1.71 1.83 

m h -374 1.00e-2 2.64e-3 9.01e-4 3.08e-4 1.01e-4 3.69e-5 1.35e-5 
order 1.92 1.55 1.55 1.61 1.45 1.45 

m h-1/2 9.63e-4 3.06e-3 9.06e-4 3.42e-4 1.32e-4 5.05e-5 1.87e-5 
order 1.65 1.76 1.41 1.37 1.39 1.43 

m h-2/5 9.85e-4 2.78e-3 8.17e-4 3.38e-4 1.32e-4 5.04e-5 1.87e-5 
order 1.83 1.77 1.27 1.36 1.39 1.43 

m= 1 8.73e-4 2.47e-3 8.17e-4 3.38e-4 1.33e-4 5.04e-5 1.87e-5 
order 1.82 1.60 1.27 1.35 1.40 1.43 

recovered for the extreme case m = h-1. Note that this mesh is still not a complete 
crisscross mesh. Figure 2 shows the error behavior for problem (3.1). 
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- r''lul# 

FIGURE 2. The error behavior of the SDFEM with m = 3 and 
m = h-1 for problem (3.1) 

The above effect crucially depends on the orientation of the mesh. To demon- 
strate this, we consider another "rotated" proiblem on the same meshes, 

(3.3.a) UX+U = y2 in Q, 

(3.3.b) u(O,y) = y2 for O < y <1, 

with the exact solution u(x, y) = y2. The computational results show that in this 
case the error is not affected by the inserted lines and the convergence order is 
0(h2) in both norms. In the next section, we will try to explain the reasons for 
these phenomena. 

4. ERROR ANALYSIS FOR THE SPECIAL MESHES 

From the previous section, we see for V = Ihu - U that 

VIIV2 < B(V, V) = B(Ihu - u, V) + B(u - U, V) = B(Ihu - u, V) + Per(u, V). 

Therefore, the error estimate for the SDFEM essentially reduces to the estimate 
for the interpolation error term B(Ihu - u, V). To estimate the convection term, 
we need an error expansion lemma from Zhou and Lin [11]. 

Lemma 1. Let Ihu be the linear nodal interpolant of the function u on a triangular 
element e and let V be any function in H1 (e). There holds the expansion estimate 

(4.1) 

(u - Ihu)Vy dxdy = -2 I (E A 2D2u) Vrts ds ? 0 (h2HUIIH3(e) I Vile) 

where Di denotes the directional derivative along the side si of e whose length is 
hi = Aih. 

Summing the expansion (4.1) over all elements, we obtain 

Y) 24 E .ta ( ~~~~~~~~~~~~~E Ai D?u) V ny ds + O (h2 u 311Vl (4.2) ((u - Ihu), Vy) = -~ - 
5EDuVtyd 0I(hIlUlH311VII) 

24eEr1h' 

Consider now one level of elements in the mesh shown in Figure 3, Yn -h < 
Y < Yn + 'h. Suppose that a vertical line is inserted at x = xm. There are only 
6 different types of elements to be analyzed, which are numbered by 1 to 6. By k 
and 1, we denote the directions (-1, 1) and (1, 1), respectively. For element e, we 
denote by 9el, 9ek, &ex and &ey the sides parallel to the indexed directions. 
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Xm 

FIGURE 3. One level of elements 

First, let us analyze the error in elements e1,... , e6. It is easy to see that on 
elements e5 and e6 there holds 

3 

(4.3) ,AD2Mu = u,, +? U11 + -Ukk = Uxx + -\u 
(4.3)=Zl2 2 2 

where we used the fact that the Laplace operator is invariant under rotations. On 
elements ei and e4, we have 

(4.4) A,D, U = 2Uxx + ? ?yy + -Ukk = -jAU + -Ukk, 
i=41 

and on elements e2 and e3, 

(4.5) A2D2Du = 2juxx + ? tb + - t = ? uUl. 
i=l 

Since the integrands on elements e9 and e10 are the same, the line integral on 
the edge between elements e9 and eio is zero. By the same argument, the line 
integrals on the edges between e9 and e5 and between e10 and e6 vanish, too. In 
other words, away from the inserted vertical lines, all line integrals disappear. Now, 
we investigate the effect of the inserted vertical lines. For simplicity of notation, we 
set T(Xm, yn) = U4 ei, &T1 = el n e5, &T2 = e2 ne6, &T3 = e3 ne7, &T4 = e4 ne8, 

(T12= el n e2, &T34 = e3 n e4, &T13 = el n e3, 9T24 = e2 n e4. 
First, let us look at the line integral on the edge 9T1. By subtracting (4.4) from 

(4.3), this integral becomes 

X/~ IT (UX + - u ukk) ds Vd > (uxx + quXY )Vds. 

It is not difficult to see that the line integral on the edge &T4 has the same integrand 
as the above, but with negative sign. Subtracting (4.3) from (4.5), we have the line 
integral on the edge 9T2, 

U 
A(u + ull2 V ds f Uar ( 4 ) V'_ IT2 (4 ?2 V12 JT2 4 x 

The line integral on the edge 9T3 has the same form, but with opposite sign. On 
the line &T12, we have 

IT|2 (Ukk - ull)V ds =- uYV ds 
AT12 ATI2 
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while on &T34 the integral just changes sign. Finally, we have ny = 0 along the 
vertical line. Summing over all the elements, we thus obtain 

(4.6) ((u-Ihu), Vy) = -1i+ ( j j J )UxxV ds 
2 4 V2 T AT1 T2 AT3 AT4 

96 v 
T(f2 ,1 fTT2 

T3 
fT4 d 

24 T12 T34) 

+0 (h2IlulIH3 11V11) 

where here and below the summation for T runs over all crisscross elements T 
defined above. 

Now, we consider a special case with uxy 0. The second and the third term on 
the right-hand side of the above expansion vanish. Next, we consider the crisscross 
strip at x = xm. The pieces of line integrals of type &T1 and &T2 go zigzag from the 
bottom to the top, with changing signs. Setting P2j = (Xm, Y2j) for j = O,... , N 
and P2j+l = (Xm - 1h,Y2j+1), for j = 0, ... , N- 1, we use the trapezoidal rule on 
the equidistant intervals (Pi, Pi+,) to get 

2N-1 ~ (-1)'uxx V ds ? - 2 (1)i (UX (Pi) V(Pi) ? uxx (Pi+i1) V(Pi+1)) 

2= Ii=O J I Ii=O 
2N-1 Pi+1 

+Ch2 J I (uxxV)ssI ds 
i=o P 

rP2 N 

< Ch2J (IuxxS I IVs I + luxxss I IVI) ds, 

where Po and P2N are located on the boundary &Q at which V vanishes. The same 
can be done for the line integrals of type &T3 and &T4. Using the inverse property, 
we simplify the estimate: 

((u - IhU), Vy) ?< Ch3 ZJ UN ( + hluxxss I) IV ds + Ch2 2IuIIH3 IIVII 

(4-7) < C (h 2|U11H3 
? h3 IUIIH4)II|VII. 

Similarly, we can expand the error 

((U - IhU), Vx)= +~( ? jj )xxV ds 
24V2 E (Jx a2 JT a4 

(4.8) 96V'~ E (JTT, -aT2 ?aT3 -aT4) 

~ (I~j'i3 - j~) UxyV ds 
24 T(JT13 JT24) 

w 0 (h2IlulIH3I1VII) 
If we assume in this case that uxx- 0, we can prove in the same way that 

(4.9) |((u - Ihu), Vx)I < C (h21IU11H3 + h31Iu11H4) |IVII. 
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Remark 2. The error estimates (4.7) and (4.9) show that the standard finite ele- 
ment method for convection problems converges in the L2-norm with the order of 
0(h2) on Peterson's meshes for any number of inserted lines, even though it lacks 
stability in the energy norm. A novice reader may be reminded that the standard 
FEM is useless if there are boundary layers. Test computations also confirm this 
superconvergence property. On the other hand, the test computations also show 
that the condition u,y _ 0 or uxx 0 is not necessary for the above results. 

To estimate the diffusion terms ((u - Ihu)x, Vx) and ((u - Ihu)y, Vy), we need 
an error expansion result from [1], which is summarized in the following lemma. 

Lemma 2. Let Ihu be the linear nodal interpolant of the function u on a triangular 
element e and V be any function in Vh(e). There holds the error expansion 

(4.10) 

j(Ihu-u) V. dxdy 

= 24A kE f14 DiV (A4 lni+lni+lD 2 u -3 VAi+2n %n i+2D2U) ds 
24A L]DV i+1 j+i-i+fp)vU 

+ 24A E}_ V (A4 2nr+2rnt+2DiD ,+2 u-AAi+jn`nr Di+iD?u) ds 

h AjA2A3 3 
? AnA2 L n Dl D2D3Diu V dxdy 

+ 0 (h 2IUIH4(e)jVHje) 

where A denotes the area of the element e and-Di denotes the directional derivative 
along the side si whose length is hi = Aih and on which the /l-component (x or y) 
of the outer normal is n>. The index i + 1 is used mod (3). 

Using this expansion, we obtain through careful calculations that 

(4.11) ((u - IhU)x, Vx) 2 
- E - f vxuxx dx 

+C||V|I (hl|uIIH3 + Ch2 |U||H4) 

Combining this with the expansion (4.9), we have proved the following theorem. 

Theorem 1. For the problem 

(4.12.a) -EAu + ux + u = f in Q, 

(4.12.b) u = g on ffl, 

with uxx- 0, the Peterson meshes do not affect the superconvergence of the SD- 
FEM: 

(4.13) ||u- Ul < Ch (||UIIH3 + hIUIHH4). 

Remark 3. As before, the test computations show that the condition uxx =0 is 
not necessary for the superconvergence, it is only used for technical reasons. 
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Now, we consider another model problem, 

(4.14.a) -E\u+ u? + u = f in Q, 

(4.14.b) u = g on 

with E > 0. In the SDFEM we take 6 = Ch and Em = Ch' with 3 <'e < 2. The 
associated energy norm is 

IIIV1112 = lyl2 IIaV l2+lVI = hIIVyH ? hoHvX112 ? IvH12. 
Exchanging x with y in (4.10), we can get by a lengthy analysis 

(4.15) ((U-IhU)u,Vx) 8 (JIfT) dy 

(f24 Vx(3ux UY)x 
4T T12 fT34) 

+C||V| (hl |uIIH3 ? h2 IHuH H4) 

Since Vy is theoretically not continuous at the nodal point, we cannot use the 
trapezoidal rule as before. We estimate as follows: 

6 ((u-Ihu)y, Vy)I < Oh2 E (j Vy dxdy + j Vx I 13u -uyy I dxdy) 

+CHV| (h 2IIUIIH3 + h3 IIUIIH4) 

By Q, we denote all the strips containing the inserted vertical lines. Noting that 
each strip is only of width h, we have for a number m h- of vertical lines 

meas(Qj) = hm = Ch1l-. 

Using this, we obtain 

- ((U-IhU)y, Vy) 

< Ch(5 )/(2IVyII IIUXXIIL-(Qj) + IIVXI 113uxx -UyyllL- (Qj)) 

(4.16) + C|V|| (hIIuIH3 + Ch ||U||H4) 

< C (h 2/2 IIUXXIILo(Ql) ? h5 -)/2 11H3uxx- UYYIILOO(Q ) IVI 

+C(h 2I|UIHH3 ?Ch IIUIIH4) VII. 

Together with the estimate (4.7), we have the following: 

Theorem 2. For the model problem (4.14) with uxy O, the SDFEM on Peterson's 
meshes admits the following error estimate: 

(4.17) ||u- Ul < Ch 2IIUIIH3 + Ch IIUIIH4) 

?0mC { Sh2-V/2UH + h(5-o-c)/223ux UYYLOO(Q ) + h'lluyy1) } 

h3/2 11,72UIIJ 

Remark 4. Test computations show that the SDFEM for problem (4.14) has the 
superconvergence of order 0(h2) if 3uxx -uyy _ 0. This means that the first term 
on the right-hand side of (4.15) should have a better convergence order. In view 
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of the error behavior for the model problems, V, is continuous (which could not 
be proven). Then one can indeed use the trapezoidal rule to get an estimate like 
0(h 211VII11U11H4)- 

Remark 5. Based on the consideration of the above remark, we can optimize the 
choice of the artificial diffusion by taking ae = (5 - a)/3. Then we can rewrite the 
convergence result as 

(4.18) O~~~~h (5-o,/3 for O<o<, 
(4.18) iiu- Ull < C3/2 ) fo?< <2 1U11~~ Ch3 ~ for 1<r1 

2- - 

Now, we consider a special mesh for a = 1 in which m = h-1 exactly holds, i.e., 
we insert a vertical line at every nodal point on the x-axis in the original mesh. In 
this case, we rewrite the expansion formula (4.15) (assuming that uy, = 0) 

((U -IhU)~,yVy) =-~ Ej fT Vxuxx dxj - Iuxx dy) 8T (JT12 JT13) 

T(T24 Y d fT34 dx) 

+C||V|| (hIuIIH3 + h 2IIUIIH4) 

On integrating by parts in the x- and y-direction, respectively, and on noting that 
Vuxx is continuous at the nodal points, the nodal value V(xm, Yn)Uxx (Xm yYn) aris- 
ing from the integration disappears (see Figure 3 for notation). Thus, we obtain 

((U -Ih U)y, Vy) = 8 (14VUxx)k ds -J (VUxx)k ds) 
8T (JT4 JT1 

8 z(f -J ) Vuzy -(fy -- ) Vuxxx dx 
T T13 T24 T12 T34 

+ CIIV|| (hIIuIIH3 ? h 2IU11H4) - 

hom Figure 1 for m = h- we see that all the sloping segments of type 9T1 and &T4 
make a line from boundary to boundary. Therefore, the first sum above disappears. 
The second sum has the same estimate as the third term. Combined with the 
estimate (4.7), this theoretically confirms the recovery of the superconvergence 
property of the SDFEM. 

Figure 4 shows the dependence of the convergence order in the L2-norm on the 
mesh parameter a for the numerical tests and for the theoretical analysis. 

2 2 2 2 

33 3 3 
2 2 2 2 

1 3 1 3 
2 4 1 u 2 4 1 a 

conv. order of tests conv. order of analysis 

FIGURE 4. Convergence order in the numerical tests and in the 
theoretical analysis 
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Finally, let us consider the pointwise error estimates. For each point (xo, yo) E Q, 
we define the discrete Green function G E V? by 

B(V, G) = V(xo, yo), V V E V?h. 

Setting V Ihu - U, we have 

V(xo, yo) = B(V, G) = B(Ihu - u, G) + Per(u, G). 

By virtue of a sharper estimate of the Green function G given in [13] and the 
error expansions (4.8) and (4.11), we derive the following theorem. 

Theorem 3. The SDFEM for problem (4.12) with ux_ 0 admits the error esti- 
mate 

(4.19) IIu - UK1 < Oh2. 

For problem (4.14), we define 

(4.20) Qo= {(x,y): y-yo <Khlloghi, Ix-xoI <Khlloghi}. 

The following results can be obtained from the error expansions (4.7) and (4.15) 
by using the localizing technique in [13]. 

Theorem 4. For any a} > 2, we can specify the constant K = K(v) in (4.20) to fix 
Qo. Suppose that the number of inserted vertical lines is m > 1 and that the exact 
solution of problem (4.14) satisfies 

uxy=O0, u E W4,0(oA) 

For (xo, yo) away from any of the vertical lines, the SDFEM admits the error esti- 
mate 

j(u- U)(xo, yo)j < Ch2I1log hlIlulljW4,,(Q0) + Chv, 

and, for (xo, yo) near the vertical lines, 

I (u-U)(xo,yo)I < Ch /21 loghl( IuxxIjLoo(QQ) ? o 113uxx uYYllLOO(Qo)) 

+Ch21 log hi IluII W4,o (Q0) + Ch" v 
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