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ANALYSIS AND CONVERGENCE OF A COVOLUME METHOD 
FOR THE GENERALIZED STOKES PROBLEM 

S. H. CHOU 

ABSTRACT. We introduce a covolume or MAC-like method for approximating 
the generalized Stokes problem. Two grids are needed in the discretization; a 
triangular one for the continuity equation and a quadrilateral one for the mo- 
mentum equation. The velocity is approximated using nonconforming piece- 
wise linears and the pressure piecewise constants. Error in the L2 norm for the 
pressure and error in a mesh dependent H1 norm as well as in the L2 norm for 
the velocity are shown to be of first order, provided that the exact velocity is 
in H2 and the true pressure in H1. We also introduce the concept of a network 
model into the discretized linear system so that an efficient pressure-recovering 
technique can be used to simplify a great deal the computational work involved 
in the augmented Lagrangian method. Given is a very general.decomposition 
condition under which this technique is applicable to other fluid problems that 
can be formulated as a saddle-point problem. 

1. INTRODUCTION 

The fundamental field equations of fluid mechanics are expressed in terms of a set 
of PDEs in the physical unknowns such as pressure, velocity, and/or an appropriate 
energy variable. Finite element, finite difference, and finite volume methods have 
been employed to numerically solve them. In particular, the MAC (marker and 
cell) method of Harlow and Welch [14] on rectangular grids and its variants on 
unstructured. grids have been very popular among the practitioners of the finite 
volume method due to their proven reliability and robustness in dealing with heat 
transfer problems. However, unlike in the finite element method the theoretical 
analysis of a MAC-like method is usually ad hoc. One reason for this might be that 
the velocity approximants sought in a MAC-like method is often only the normal 
components of velocities at the interelements or cell interfaces of the partition of the 
flow domain. Another reason might be that the starting discretization procedure 
is usually done on the governing PDEs instead of a weak formulation in terms of 
inner products. A consistent relation between the problem domain partition(s) 
and the discretization is often not so obvious as in the finite element methodology. 
Attempts to improve this situation were made in [18, 19] and [4, 5] in which the 
dual network model approach was adopted to solve two phase fluid problems. The 
emphasis of these papers was on a conservation of mass or energy through the 
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design of primal and dual partitions. However, no convergence analysis was done 
for the full discretized systems. Another approach was taken in [15, 16] where 
rigorous analysis was given to the so-called covolume methods. The partitions used 
were the Delaunay-Voronoi mesh systems, which differ from those used in the above 
papers. Nicolaides's approach represents a major advance since the usual vector 
operators (div, curl, laplacian, etc.) were generalized to irregular networks. (See 
also [6]. As for the implementation issues resulting from his methodology, Hall et 
al. [12, 13] have demonstrated covolume methods can be effectively implemented 
by their dual variable method (DVM) [1]. For the status of the covolume methods, 
see the review article by Nicolaides, Porsching, and Hall [17]. 

The purpose of this paper is to introduce and analyze a covolume method on 
unstructured triangular grids, along the line mentioned in the first approach above. 
The primal and dual partitions are a special case of those used in [4, 19]. The 
corresponding covolume method on unstructured distorted rectangular grids will 
be reported in a forthcoming paper. We also introduce the concept of a network 
model into the discretized linear system so that an efficient pressure-recovering 
technique can be used along with the augmented Lagrangian method (Fortin and 
Glowinski [8]. Although our methodology is applicable to a wide range of heat 
transfer problems, in this paper we concentrate on the generalized Stokes problem. 

The generalized Stokes problem in two dimensions for steady flow of a heavily 
viscous fluid is 

(1.1) oaou-vA\u + Vp = f in Q c R2, 

(1.2) div u=0, 

(1.3) u = 0 on O, 

where oao > 0, v > 0. When a0o = 0 we have the Stokes problem, and the case of 
oao # 0 usually arises as part of the solution process for the Navier-Stokes equation. 
We shall assume v = 1 in this paper, as vu can be used as a transformed variable. 
Let Ho (Q) be the space of weakly differentiable functions with zero trace, H (Q), i = 
1,2, be the usual Sobolev spaces, and L 2(Q) be the set of all L2 functions over Q 
with zero integral mean. Define the bilinear forms 

(1.4) 

a(u, v) := ( a9ui, aai ) + aog(u, v), u, v E H' :=H' (Q2, 

(1.5) b(v, q) -(q,divv), v C Ho)qE Lo) 

where (-,) is the L2 inner product. The weak formulation associated with (1.1)- 
(1.3) is: Find (u,p) E H' x Lo such that 

(1.6) ii(u,v) + b(v,p)=(f,v) Vv (Ho) 

(1.7) b(u,q)=0 VqEL 2o. 

The approximation of this system using the mixed finite element method is well 
documented in [2]. We now describe a MAC-like method. The method is motivated 
by the MAC technique for incompressible flow problems and will be viewed as a 
Petrov-Galerkin method as far as error analysis is concerned. First we need to 
partition the problem domain, which for simplicity, will be assumed to be polygonal. 
Referring to Fig. 1, let Th = UKB be a partition of the domain Q into a union of 
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A1 

A4 

FIGURE 1. Triangulation and its dual 

triangular elements, where KB stands for the triangle whose barycenter is B. (The 
choice of barycenters is used only once in Lemma 2.3 to show the coerciveness of 
the bilinear form A of Eq. (1.22).) The nodes of an element are the midpoints of 
its sides. We denote by P1, P2,... , PNS those nodes belonging to the interior of Q 
and PNs+1,,... PN those on the boundary. The trial function space Hh associated 
with the approximation to the fluid velocity space Ho is defined as 

(1.8) 

Hh = {Vh: VhIK E F1(K)2 VK E Th;Vh= 0 at all boundary nodes; 

Vh is continuous at all nodes}, 

where P1 (K) denotes the space of linears on K. The choice of the degrees of free- 
dom is motivated by the fact that in a MAC-like method the velocity approximant 
is usually associated with the midpoints of interelements. The choice of a non- 
conforming space is justified by the fact that the only divergence-free, continuous 
(conforming) piecewise linear polynomial is the zero vector function [3, p. 208]. 
Next we construct the dual partition Th* and the test function space. The dual 
grid is a union of interior quadrilaterals and border triangles. Referring to Fig. 1, 
the interior node P3 belongs to the common side of the triangles KB1 = AAA2A3 
and KB2 = AA1A3A5, and the quadrilateral A1B2A3B1 is the dual element with 
node at P3. For a boundary node like P6 the associated dual element is a triangle 
(A\A5B3A4 in this case). Physically one can view the dual element based along 
a common side as a flow subregion where the fluid information is imparted to the 
interelement or the common side. Obviously carrying out the construction for every 
node generates a dual partition for the domain. We shall denote the dual partition 
as Th= U K* and associate with it the test function space Yh, the space of certain 
piecewise constant vector functions. That is 
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Yh = {q E (L'(Q)) : qjKp is a constant vector, 

and qjKp = 0 on any boundary dual element KP}. 

Denote by X, the scalar characteristic function associated with the dual element 
K, j=1, .. .,NS. We see that for any Vh E Yh 

Ns 

(1.9) Vh(X) = ZVh(Pj)X*(X) Vx E Q. 

j=1 

As for the approximate pressure space Lh C Lo (Q), we define it to be the set of all 
piecewise constants with respect to the primal partition since in MAC-like methods 
the pressure is assigned at the centers,-of triangular elements. Finally, our test 
and trial function spaces should refleif the fact that in a MAC-like method the 
momentum equation (1.1) is integrated over the dual element and the continuity 
equation (1.2) over the primal element. This is indeed the case. Define 

Ns al 

(1.10) aS (Uh, Vh) =-E J an Vh da 
Af OUh~U 

(1 .11 l ) =-Z Vh (Pi) ' dc, 

Eq. (1.10) is motivated by integrating the second term of (1.1) against a test 
function and then formally applying the second Green's identity. Let NT denote 
the number of triangles in the primal partition. 

(1.12) aN (uh, vh) o O(Uh, Vh), 

(1.13) a(Uh, Vh) aS (Uh, Vh) + a N(Uh, Vh), 

Ns 

(1.14) b(vh,ph) ZVh(Pi) * Phndu, 
i=l1P 

NT 

(1.15) C(Uh, qh) -Eqh(Bk) / div uh dx, 
k=1 KBk 

NS 

(1.16) (f,v) =Vh(Pi) fdx. 
i=1 KPi 

The weak formulation of the approximate problem to Eqs. (1.6)-(1.7) is: Find 
(Uh,Ph) E Hh x Lh such that 

(1.17) a(Uh,Vh) + b(Vh, ph) = (f,vh) VVh E Yh, 

(1.18) C(Uh, qh) = 0 Vqh E Lh. 

Note that there are as many unknowns as equations; the;nurmber of unknowns being 
2NS + NT. (We did not count the zero-mean pressure condition.) 

It turns out we can reformulate this system into a saddle-point problem as Eqs. 
(1.6)-(1.7). Convergence analysis can thus be done in the frame of the nonconform- 
ing mixed finite element method. We outline how the convergence analysis is done. 
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Introduce the one to one transfer operator ayh from Hh onto Yh by 
Ns 

(1.19) YhUh(X) ZUh(Pj)X*(X) VX e -. 
j=1 

Define the following bilinear forms: 

(1.20) AS(Zh, Wh) := a(Zh,7hWh) VZh,WhE Hh, 

(1.21) AN (Zh, Wh) := aN(zh,yhwh) VZh,Wh E Hh, 

(1.22) A(Zh, Wh) := AS(Zh, Wh) + AN(Zh, Wh), 

(1.23) B(wh, qh) : -b(yhwh, qh) VWh E Hh; VqhE Leh 

It is shown in Section 2 that the bilinear form As is symmetric and that the two 
bilinear forms B and c are identical. Hence the approximation problem (1.17)-(1.18) 
becomes: Find (Uh, ph) E Hh x Lh such that 

(1.24) A(uh, wh) + B(wh, ph) = (f v yhwh) VWh e Hh, 

(1.25) B(Uh, qh) =0 VqhE Lh- 

Since Hh is nonconforming, the gradient and divergence operator on it must be 
defined piecewise: 

(VhWh)IK := V(WhIK), 

(diVh Wh) IK := div(WhIK). 

On the space Hh we define 

(1.26) lWhI1,h := (Vhwh, VhWh) = Z(VWh,VWh)K, 
K 

and 
2 

(Vwh,VZh)K := Z(DiWh, DiZh)K, 

i=l 

where (', )K is the L2(K)2 inner product, and Di denotes the partial derivatives 
on K; 

IIWhl,h := IWhIIO + IWh 11,h 

Lemma 2.2 shows 

AS(wh, Zh) = (Vhwh,Vhzh). 

Therefore our covolume method resembles the Crouzeix-Raviart nonconforming 
method [7] in the case of oeo = 0; the difference being in the right-hand side of 
(1.24). For nonzero ao, the AN term further introduces a nonsymmetric term. Ex- 
ploiting this similarity and adopting a known error estimate in [7], we derive the 
main error estimate result in Theorem 3.1, which states that there exists a constant 
C > 0 independent of h such that 

hUh -UI11,h + II P-Ph1lo < Ch(I1U|12 + IIPI11 + 1), 

provided that u E H2 (Q) and p C H1(Q) and that the triangulation family is 
quasi-uniform. 

This is an improvement, as in the literature the velocity of the covolume schemes 
is assumed as a constant over each triangle and first order error estimates in the 
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velocity are given only in some discrete L2 norms with quasi-uniformity restriction 
on the primal triangulation and more demanding regularity assumptions on the 
exact velocity and pressure. The same optimal order error estimates also hold for 
a symmetric version of (1.24)-(1.25). See the remark following Theorem 3.1. 

In Section 4, we introduce a "P-recovering" technique for solving the general 
saddle-point linear system in the unknown {U, P} of the form 

(1.27) AU + BtP = F, 

(1.28) BU = 0, 

where A c R2NS X2NS is symmetric positive definite, B E RNT X2NS, dim ker Bt > 1, 
and B has the decomposition 

(1.29) B = AD for some A E RNTXNS D E RNSX2NS 

The dimension of ker Bt is usually one in fluid mechanics applications in which P is 
the pressure and hence determined up to a constant vector of identical components. 
If Ker Bt = {0}, the most basic method for solving such a system is the so-called 
pressure-matrix method and its preconditioned variants. In the pressure-matrix 
method we write the above system as 

bA-ibtp = BA-1F, 

U = A-'(F - Btp), 

and solve for P and then for U. Obviously the pressure matrix R := BA-lBt 
is only semidefinite since Bt in (1.27) is not of full rank. Thus the conjugate 
gradient method cannot be applied without caution. Of course we could add the 
zero integral-mean pressure condition to the above system. But that would destroy 
the symmetric structure of the system. The zero-mean pressure condition for finite 
element, finite volume or finite difference methods, unlike in the spectral method, is 
not a lowest Fourier coefficient condition and hence inconvenient to be incorporated 
into the algebraic system. On the other hand, the augmented Lagrangian method 
(pp. 49-51, [11]) works well for nonzero Ker Bt space and produces a sequence of 
Uk convergent to U and pk convergent to the minimum norm pressure PM. By 
interpreting system (1.27)-(1.28) as a network model, we show how to recover the 
P once the solution U and AtP are known. The augmented Lagrangian method 
applied to (1.27)-(1.28) reads: Given Po c RNT, with pn known, calculate Un, 
then pn, by 

(1.30) (A + rBtB) Unt+ btpn = F 

(1.31) pn = ptm + pnBUtmX 

where r and Pn are two parameters. In Theorem 4.1 we show that so long as the 
definition of B is used in discretizing the divergence-free condition and the pressure- 
gradient term, the decomposition B = AD holds where A is the incidence matrix 
[cf. (4.10)], and D is rectangular and consists of two diagonal matrices. Upon 
using the decomposition and introducing a new variable AtP, the pressure drops, 
(1.30)-(1.31) reads: Given PO E RNs, with Pn known, calculate Un, then Ptn+l, by 

(1.32) (A + rBtB) Un?+ DtPmn F 

(1.33) P pn = pt + Pn (AtA)DUt 
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Since A, AtA are sparse and D is "diagonal", this saves work due to the DtPhn and 
DUn terms. We can delay recovering the solution P untill the last step when we 
have obtained an acceptable P = AtP. 

2. SADDLE-POINT FORM AND INF-SUP CONDITION 

In this section we prove several important properties of the following bilinear 
forms: 

(2.1) f O~~~~N 0Zh 
(2.1) a'S(Zh, Vh) =-ZVh(Pi) J OK n dn 

NS~~~K i_1 oKPi 

(2.2) b(Vh,p9h) = ZVh (Pi)] Phfnldu, 
i1~~~~~P 

N 

(2.3) C(Zh, qh) = -E qh(Bk)J divzh dx, 

k=1 KBk 

N. 

(2.4) (f,v) = ZVh(Pi) ] f dx. 
i=1 P 

The following simple lemma of line integral conversion will be used often throughout 
the paper. 

Lemma 2.1. Suppose we subdivide each triangular element into three subtriangles 
as in Fig. 2. Let g be a continuous function in the interior of each subtriangle and 
let N be the number of sides of the triangles in the triangulation. Then 

N 

(2.5) Z J (x) du = E IK, 
ilaPi KETh 

where 

IK = I g(x)du + J g(x)d'a + J g(x)du 
A2BA1 A3BA2 A1BA3 

3 

= E J sg(x)du. 
_=1 j+1 BA3 

A1 

P1P 
B 3 

A2"I, 

P2 3 

FIGURE 2. Integration conversion from dual elements to triangular ones 



92 S. H. CHOU 

Here and below we adopt the convention Qj+3 = Qj, j = 1, 2, 3, when a subindex is 
out of bound. 

Proof. The proof is straightforward. C] 

Lemma 2.2. The bilinear form AS(zh, Wh). = aS(zh, yhWh) is symmetric: 

(2.6) AS(Zh, Wh) = AS(Wh, Zh) = (VhZh, VhWh) VZh, Wh E Hh- 

Proof. By (2.1), Lemma 2.1, and the fact that wh vanishes at the boundary nodes, 

aS(Zh,yhWh)= E IK, 
KETh 

where 
3 Of Zhd. 

IK =EWh(Pj) dK* An 

j=1 K*O 

Letting n = (ni , n2), using n1dc = dx2, n2dc = -dx1 and the index convention at 
the end of Lemma 2.1, we have 

(2.7) 

K -Wh(P ) (/ Zh d+d/+ZhJ 
I\E Wh(Pj) BAj ox, Xd j+1BAj 2 

[Wh(P h (Pj ) hX2 dA- f hi) 
,= 7 j=lBAj OJAlBA3 O2 

39Zh 
3 

,J=1 

&Zh 
3 

where we have used the fact that the partial derivatives of Zh are constant within 
each K. Let Ai, i = 1,... , 3, denote the Lagrange nodal basis functions associated 
with the vertices of K i.e., the barycentric coordinate functions on K. It is easy to 
see then that the local nodal basis function associated with Pi is 5Oi = Ai + Ai+1 - 
Ai+2, i = 1, * , 3, and qi(Pj) = &ij. Hence for a piecewise linear function Wh, 

3 

WhIK = EWh(Pi)(Ai + Ai+1 -Ai+2), 
i=l 

and 

(2.8) DjWhIK 
= 5Wh(Pi)Dj(Ai + Ai+1 - Ai+2), (Dj = 

i=1 &xj 
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Replacing the two xi(Aj) - xi(Aj+1) expressions in the right side of (2.7) using 

0Aj X X2(Ajl) -X2(Aj+2) 

ax1 21KI 

Aj - xi (Aj+1) -xi (Aj+2) 

&X2 21K1 

and then (2.8), we have 

IK = ' Dlzh Dlwhh+ D2zh D2WhdX. 

Thus 

aS(Zh,-YhWh) = E I VhZh *VhWhdX 

KGTh 

= (VhZh, VhWh) . D 

Remark 2.1. The result of this lemma is not unexpected since an analogous result 
holds in the covolume solution of Poisson's equation when conforming elements are 
used (p. 45, [15]). 

Lemma 2.3. The bilinear form A is coercive: there exists a positive constant C 
independent of h such that 

A(Wh, Wh) > ClWh l l h 

Also, there exists a constant Ci > 0 independent of h such that 

(2.9) CllwhIIl ? (wh Yhwh) VWh E Hh. 

Proof. We prove the coercivity first. By Lemma 2.2, it suffices to show 

(2.10) A (Wh,Wh) = aO(Wh,YhWh) > 0. 

Referring to Fig. 2, 

(Wh, yhWh) = SIK, 
K 

where 

IK = J Wh * 7hWhdX 

3 

=E Wh(x)dxA* Wh(Pj). 
j=1 - Aj A3 +,B 

But wh is linear and hence 

L|A, Wh(x)dX = - [Wh(Pj) + Wh(mAjB) + Wh(mAj+1B)1 JAAjAj +?BI, 

where mAjB is the midpoint of side Aj B, j = 1, 2, 3. Noting that for j = 1, 2, 3 
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Wh(mA3B) = -Wh(B) + -Wh(Aj), 2 2 
1 

Wh(Pj) = -(wh(Aj) + Wh(Aj+1)), 2 

and 

IAAjAj+1Bl= 3IAAlA2A31= = IKII 33 

we have 

Wh(X)dX = I-I [4Wh(Aj) + 4Wh(Aj+) + Wh(Aj+2)]- 
tAjAj+,B 9 

Using Aj =F P1+1 + PJ+2 and that wh is linear, we have 

Ik= Wh(Pj) AjAjB Wh(x)dx 
i 

27 {Wh (Pj) [7Wh (Pj) + Wh (Pj+l) + Wh (Pj+2)]} 

= 2f {:7jWh(Pj)|+ (Zwh(Pj)) -ZWh(Pj)2} 

= | E IWh(Pj)l + 2[EWh(Pj)]2}. 
J J 

Thus IK is nonnegative which proves the first assertion. The last equation implies 

(Wh, wyhwh) > Y(|K| IY E IWh(Pj)l2) = IlWhlo w 
27 . ~~~9 

K j 

Remark 2.2. Lemma 2.3 is the only place we use the fact that two vertices of a dual 
element should be from barycenters. Another advantage of choosing barycenters 
over circumcenters (as in the Delaunay-Voronoi grids for the covolume methods 
[15]) is that they are inside their corresponding triangles, which is not necessarily 
the case for the circumcenters. 

Lemma 2.4. 

B(Wh, qh) = b(7hwh, qh) = c(wh, qh) VWh E Hh, qh E Lh 

Proof. 

Ns 

B(Wh,qh) = b(7hwh,qh) = Ew(Pi) / qhn du 
1 'K* 

= lIK, 
KcTh 
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where 

3 

IK =E qhWh(Pj) * n du 
j=l Aj 7+1BA.? 

E [f div (qhWh(Pj)) du - f qhWh(Pj). n du 
j=_l JZAj+BAj jAj+l 

3 

= E - qhwh(Pj) ndoj 
j=l- AjAj+l 

3 

=-(qhWh(Pj) * n)lAjAj+lI 
j=l 

-E (qlnAjAj+ I 

3 

E j ~qhWh(x) nda 
j=1 AjAj+l 

-qh JdivWhdx. C] 

Remark 2.3. Lemma 2.4 was implicitly used in [4, 19] and is central to the first 
order accurate network method therein. Part of Section 4 is dedicated to this issue 
where it is related to the incidence matrix of a network. See also Lemmas 4.1, 4.2 
below. 

Due to Lemma 2.4, the bilinear form B becomes a well known form in the anal- 
ysis of a nonconforming mixed method applied to the Stokes problem [7]. The 
validity of the following inf-sup condition is verified in [7]. 

Lemma 2.5. There exists a positive constant 3 independent of h such that 

(2.11) sup B(Wh,qh) 
(2.11) ~~sup ?>/31 qhJ1o. 

Wh$O JWhj1,h 

We shall also need the following approximation property of the transfer operator 
ah - 

Lemma 2.6. There exists a positive constant Co independent of h such that 

(2.12) K17hWh -WhIO < Cohlwhl1,h VWh E Hh. 

Proof. 

1KYhWh - WhHo = I 2 
1hWh(X) - Wh(X)1 dx. 
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Referring to Fig. 2, writing Wh = (Wh, w2)t and using Taylor's expansion, we have 

3 

1-Y7hWh(X) -Wh(X) 
1 dx =E 1 |YhWh(X) -Wh(X) 

1 dx 
j=1 \Aj A3 +1 B 

3 

= z (IWh (Pj) -Wh (X) 12 dx 
j= 1A3A Aj+l?B 

3 2 

= >3 J >3 (Vw(Wj) _-Wk(X)12) dx j=1 i\Aj A3+lB k=- 

3 2 

= eJ E (|Vwh~()* p x, dx 

3 2 

= J fS (lVwh(x)W 121 (pi X) 2) dx = __A3Aj+lB k=- 

3 

? Coh2EI A VWhA(X)B2dx. 
j=1 \Aj Aj+, B 

The following lemma is a special case of Lemma 2.3 in ([9], p. 591). 

Lemma 2.7. There exists a constant C > 0 independent of h such that 

(2.13) |lZhIlO < CjZhj1,h, VZh c Hh, 

provided that the triangulation family is quasi-uniform. 

Remark 2.4. The quasi-uniformity is essential for this Poincare inequality on the 
nonconforming space Hh to hold since an inverse inequality is used in the proof. 
For its conforming counterpart no such restriction is needed. 

3. ERROR ESTIMATES 

We now prove the main theorem of this paper. 

Theorem 3.1. Let the triangulation family of the domain Q be quasi-uniform, let 
{Uh,Ph} be the solution of the problem (1.24)-(1.25), and {u,p} solve the problem 
(1.6)-(1.7). Then there exists a positive constant C independent of h such that 

(3.1) Iu- Uhl,h + | P - PhO ?< Ch(| |u|12 + IIPIll + 1), 

provided that u E H' (Q) n H2 (Q), p E H1 (Q). Furthermore, 

(3.2) IIu - uhHo?< Ch(j uH12 + IIPIl1 + 1). 

Proof. Lemmas 2.3 and 2.5 guarantee the existence and uniqueness of the solution 
{Uh, Ph}. We first introduce an auxiliary symmetric Stokes approximation problem 
to (1.6)-(1.7): Find (iih, p) E Hh x Lh such that 

(3.3) AS(iih,Wh) +acO(iih,Wh) +B(Wh, Ph) = (f,Wh) VWh E Rh, 
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This is a well known nonconforming method and we have the following convergence 
result. (Cf. pp. 231, 246, [3] for the oe0 = 0 case whose proof can be easily carried 
over to the nonzero case; just redefine their ah(v, w) as As(v, w) + ao(v, w).) 

(3.5) IU - fhlh1,h + a -o2 IU_fihilo + IIP - PhIIO < Ch(IIuII2 + IIPII1)) 
provided that u E H2(Q),p E H1(Q). On the other hand, 

(3.6) 
As(uh,Wh) +aO(Uh,-YhWh) +B(Wh,Ph) = (f,YhWh) VWh C Hh, 

(3.7) B(uh,qh)=0 Vqh E Lh 

Subtracting (3.4) from (3.7) gives 

(3.8) B(Uh-ih, qh) = O Vqh ELh 

Subtracting (3.3) from (3.6) gives 

(3.9) 

AS(Uh - Uh,Wh) + aO(Uh YhWh) -aO(Uh,Wh) + B(Wh,Ph -Ph) 

= (f,-YhWh)-(f,Wh) VWh E Hh. 

Define 

eh := Uh - Uh. 

Replace the wh in (3.6) with eh and use (3.8), Lemma 2.2 to obtain 

(3.10) 

IehIl, h + ao(6h,wYhih) = (f,-Yhih - eh) + ao(fih,eh-heh) 

Use (2.10) on the second term of the left-hand side, Lemma 2.6, and lliihIlo < M 
to obtain 

(3.11) IhI,h ?< If I oCohI5hlI1,h + CoaoMhlIhI1,h. 

Hence 

(3.12) I6hI1,h < Ch, 

where C may depend on f, u, but not on h. Combining this with (3.5) and using 
the triangle inequality gives 

ju - UhIl,h < Ch(I1U112 + IIpIIi + 1). 

We can use the inf-sup condition on Eq. (3.6) and the same techniques as above to 
derive 

I Ph -PhIIo < Clh. 

An application of the triangle inequality then proves (3.1). 
If cao /& 0 then (2.9), (3.10) and (3.12) imply 

Cl CV 11ehll I2< aO (6h i -h6h) < C2h|6h|l,h < C3h,2 

and hence 

llIehIlO 
< Ch, 

which upon combining with (3.5) gives (3.2)-. 
If ao = 0, then setting Zh = eh in Lemma 2.7 and using (3.12) derive the 

last inequality again. However, this time we cannot use (3.5) directly. Now, let 
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IrhU E Hol be the piecewise continuous linear interpolant of u. Using Lemma 2.7, 
approximation properties of the interpolant, and (3.5), we have 

IU- UhIlO < I|U -rhUH1O + |1hU - UhlO 

< |U - rhUH lo + C411rhU - UhJ1,h 

< | - IrhUH lo + C4 I1rhU - U 1,h + C4U - Uh I 1,h 

< (C5h2 + C6h)||u|J2 + C41u - Uh1|h,h 

< C7h(JJuJJ2 + I|P|i1)- 

A simple application of the triangle inequality now proves (3.2). C] 

Remark 3.1. Note that we can symmetrize the problem (1.24)-(1.25) by replacing 
(7hVh, Wh) by 2 [(7hVh, Wh) + (Vh, 'hWh)] and still obtain the same optimal error 
estimate in the above theorem. 

4. A FLOW NETWORK MODEL FOR SADDLE-POINT PROBLEMS 

In this section we introduce a "P-recovering" technique for solving the general 
saddle-point linear system in the unknown {U, P} of the form 

(4.1) AU + BtP = F, 

(4.2) RU = 0, 

where A c R 2NS X2Ns is symmetric positive definite, B c RNT x2Ns, dim ker Bt > 1 
and B has the decomposition 

(4.3) B = AD for some A E RNT xNs,DERNsx2Ns 

The dimension of ker Bt is usually one in fluid mechanics applications in which P is 
the pressure and hence determined up to a constant vector of identical components. 
If Ker Bt = {0}, the most basic method for solving such a system is the so-called 
pressure-matrix method and its preconditioned variants. In the pressure-matrix 
method we write the above system as 

bA-lbtP = BA-1F, 

U = A-(F - BP) 

and solve for P and then for U. Obviously the pressure matrix R: BA-lBt is 
only semidefinite since Bt in (4.1) is not of full rank. Thus the conjugate gradi- 
ent method cannot be used without caution. On the other hand, the augmented 
Lagrangian method (pp. 49-51, [11]) works well for nonzero Ker Bt space and pro- 
duces a sequence of Uk convergent to U and pk convergent to the minimum norm 
pressure PM. By interpreting system (4.1)-(4,2) as a network model we show how 
to recover the P once the solution U and AtP are known. The augmented La- 
grangian method applied to (4.1)-(4.2) reads: Given P0 E RNT, with pn known, 
calculate U', then pn+1, by 

(4.4) (A + rBtB) Un + Btpn = F' 

(4.5) pn+l = pn + pnBUn, 

where r and Pn are two parameters. In Theorem 4.1 we show that so long as 
the definition of B is used in discretizing the divergence-free condition and the 
pressure-gradient term, the decomposition B = AD holds where A is the incidence 
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matrix [cf. (4.10)], and D = (D1, D2) is rectangular and consists of two diagonal 
matrices D1, D2 [cf. Eq. (4.20)]. Upon using the decomposition and introducing a 
new variable AtP, the pressure drops, (4.4)-(4.5) reads: Given Po E RNS, with Pn 

known, calculate Un, then Pn+l, by 

(4.6) (A+ rBtB) Un + DtPn = F 

(4.7) pn+l = pn + pn(AtA)DUn. 

Since A is sparse and D is "diagonal", this saves work due to the DtPn and DUn 
terms. Also it is well known (p. 92, Strang [20])and can be easily checked that the 
matrix AtA is sparse; its jk-th entry being either 0 or -1 depending whether or 
not the network has a link from node k to j. Finally, we can delay recovering the 
solution P until the last step when we have obtained an acceptable P = AtP. 

From the discussion above we see that the transformed augmented Lagrangian 
method is applicable to linear systems resulted from the covolume elements in this 
paper and the nonconforming Crouzeix-Raviart elements. For ease of exposition 
we shall illustrate the ideas using (1.24)-(1.25) with ao = 0. Hence the system 
resulting from an application of the Crouzeix-Raviart nonconforming method [7] 
will also be covered. The general case can be handled easily once the underlying 
principles are presented. 

First we need the idea of a network [20]. We view a graph as a set of nodes and 
links. A network is a digraph with link and node based quantities. We construct a 
network induced by the problem domain as follows. Globally order the sides of the 
triangles in the flow domain partition (cf. Fig. 3) as ei, i = 1,.. , N, the triangles 
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as j = 1,... , NT, and the midpoints of ei as Pi, i = 1,.* , NS. Assign a unit normal 
vector ni to side ei. There are two choices, but once chosen the ni is fixed. Denote 
by F the digraph whose vertices are Bi, i = 1, - ,NT, and whose links are BiBj 
or BjBi, depending on which of the two has positive component along nk where k 
is the unique side that intersects the line segment BiBj. 
Lemma 4.1. The discrete continuity equation (1.25) 

(4.8) B(uh, qh) = - div uhqh dx = 0 Vqh C Lh 

is implied by 

(4.9) -ADun = O, 

where u?0 :=Uh(Pj) * nj, the Ns x NS matrix D diag(hj), hj = 1, and the 
NT x NS incidence matrix A is defined as 

(4.10) 
1, if nj is an outward normal on side jof triangle i, 

aij = iT-1, if nj is an inward normal on side jof triangle i, 
ol O, if nj is not associated with triangle i. 

Before proving the lemma, two remarks are in order. 

Remark 4.1. See also (4.31) where the velocity of (4.9) is expressed in terms of the 
Cartesian coordinate system. Thus AD can be thought of as the discrete divergence 
operator. 

Remark 4.2. The phrase "is implied by" means essentially "is equivalent to." Recall 
that Lh, the set of all piecewise constants with the zero mean, is used to guarantee 
the uniqueness of the pressure approximation. It is inconvenient to derive the 
corresponding algebraic continuity equation in terms of this space. Rather, the 
space of all piecewise constants suffices so long as we remember when the algebraic 
continuity equation is combined with the discrete momentum equation (4.17) below 
only the pressure drops or differences Atp are unique. Note that the i-th component 
of Atp is the pressure drop across the side ei. 

Proof. We can represent the discrete continuity equation in terms of the character- 
istic basis functions of the triangles. For a triangle K = Ki whose barycenter is Bi, 
(4.8) reads 

J KdivUhdx = Uh * ndc 
K A~K 

3 

(4.11) = EUh(Pik * nik leik I 

k=1 
3 

= Z[Uh(Pik) nik ] i"ik Ie%ik = O, 
k=1 

where Pik are the midpoints; fii the three outward unit normals; ik the global 
indices of the sides in the network. Note that the tangential component is irrelevant. 
Now observe aij is nonzero only for j c Nbdi := {il, i2, i3} associated with the three 
sides of Ki and for these three j's 

(4.12) nj * ii = aij, 

where fii is the unit outward normal to side e4. 
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On the other hand, the i-th equation in (4.9), ignoring the negative sign, reads 

Ns 

Z aij Iejluh(Pj) * nj = a3 aI ej Iuh(Pj) * n 
j=1 jeNbdi 

= E nj *lijIejIuh(Pj) * nj. 
jENbdi 

Comparing this with (4.11) proves the assertion. O 

Define a basis for Hh: 

(4.13) _(1) ( ' (2) = 
0 

where q$j, j = 1, , Ns, are the global Lagrange basis functions associated with 
Pj. Hence 

Ns 2 

(4.14) Uh (X) = >3>3U(h 3pj 
1? 

1 k=1 

where 

(4.15) Uh(Pj) = Uh(Pj) * e.(k) 

= ( 1 ) ,e2 = ( O 

Define the gradient related matrices G(k) and g(k), k = 1,2, by 

(4.16) G(lk) (V~(l)V)k) g(k) (vh(2),vh@k)) 

and hence G(1) = g(2), G(2) = g(l) 

Lemma 4.2. The discrete momentum equation (1.24) with ao = 0 

(4.17) (Vhuh,Vhwh) + B(Wh,Ph) = (f,Yhwh) VWh C Hh 

is equivalent to 

(4.18) G(1)u(?) + G(2)U(2) + DiAtp = fi, 

(4.19) G(2)U(?) + G(1)U(2) + D2Atp = f2, 

where for k = 1, 2, U(k) is the vector whose j-th component is Uh(Pi) * e(k),j - 

1, * * *, NS, and p is the vector whose j-th component is Ph(Bj), j 1,... , NT, the 
matrices 

(4.20) Di:= diag (e(1) n leji), I D2 := diag (e(2) * nilej i) 

(4.21) fi = (fi-yh J(i))) i = 1,2, 

and GMi),i = 1, 2, are defined in (4.16). 
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Proof. We shall express (4.17) in terms of the basis functions of (4.13), with (4.18) 
from (4.17) in terms of the basis (j(1) j = 1 ... Ns, and (4.19) from (4.17) in 

terms of () j = 1, ... , Ns. We show only how to arrive at those pressure terms. 
Using the techniques in proving Lemma 4.1 , we have for wh E Hh 

NT 

B(Wh, ph) = E Ph(Bj) I Wh * ndx 
j=1 3KB3 

NT 

= ZPh(Bj) S Wh(Pk) * Elkek| 

(4.22) 
j=1 

kENbd3 
NT 

= 
5:Ph(Bj) 5 {Wh (Pk) * nkIek|} Ink * ik 
j=1 k 

NT NS 

= E 5Ph(Bj) {Wh(Pk) nklek } ajk, 
j=1 k=1 

where we used (4.12) in the last equality. Setting wh = (1) 1 < 1 < NS, and 

evaluating derive (4.18). Likewise, setting Wh = 
((2),1 < 1 < NS, and evaluating 

derive (4.19). 

On each side ej, j = 1,*** Ns, let 

(4.23) e(l) n= cos Oj and hence e(2). n = sin Oj. 

Then on side ej the velocity Uh(Pj) in the Cartesian coordinate system (e(1), e(2)) 

and the same velocity in the normal-tangential right-handed coordinate system 

(nj,tj) are related by 

(4.24) ui = cos 0u -sin0jui, 33 j 

(4.25) (2 )Sin0 uj +Cos u. 

In matrix form, we have 

(4.26) u(1) = Un-_ Dsu, 

(4.27) u(2) = DSUn + DCUt, 

where the Ns by NS matrices 

(4.28) D, := diag(cos Oj), D, := diag(sin 0j). 

Thus with the notation of Lemmas 4.1 and 4.2 the linear system we want to 

solve is: 

Find (u(1) u(2) p) E RNs x RNs x RNT such that 

(4.29) G(l)u(') + G(2)u(2) + DiAtp = fi, 

(4.30) G + G( ?) + D2Atp = f2 

and 

(4.31) A(Di1u() + D2 U(2)) = 0. 



A COVOLUME METHOD FOR THE GENERALIZED STOKES PROBLEM 103 

Setting U = (U(1), U(2))t, P = p, F = (f1, f2)t, 

(4.32) D := (DI)D2)i 

A := ~0G(1) G(2) A := G 0(2) G(M) 
and 

B=AD. 

Hence 

Theorem 4.1. With the notation of Lemmas 4.1 and 4.2, the algebraic system of 
the covolume method with ao = 0 can be represented as a saddle-point system with 
a decomposition on the discrete divergence operator: 

(P1) Find (U, P) such that 

(4.33) AU + BtP = F 

(4.34) RU = O, 

wh&e B = AD. 

Remark 4.3. The matrix B is really the discrete divergence operator and it has a 
convenient decomposition. The matrix -3t is the discrete gradient operator acting 
on the pressure space and Lemma 2.4 makes the saddle-point form possible. Now 
as stated in the beginning of this section we can use the transformed augmented 
Lagrangian method to solve this problem. 
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