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AN ANALYSIS OF A CELL-VERTEX 
FINITE VOLUME METHOD FOR A 

PARABOLIC CONVECTION-DIFFUSION PROBLEM 

WEN GUO AND MARTIN STYNES 

ABSTRACT. We examine a cell-vertex finite volume method which is applied 
to a model parabolic convection-diffusion problem. By using techniques from 
finite element analysis, local errors away from all layers are obtained in a 
seminorm that is related to, but weaker than, the L2 norm. 

1. INTRODUCTION 

The cell-vertex finite volume method is a commonly used discretization scheme 
for conservation laws. It has been highly successful in modelling flows in aerody- 
namics. Since the method fits very naturally with convection problems, it has ad- 
vantageous properties for convection-diffusion problems. Nevertheless, all analyses 
for cell-vertex methods have been carried out either for pure convection problems 
(see, e.g., Morton and Siili [10], Suili [15, 16] and Morton and Stynes [9]), or for 
convection-diffusion two-point boundary value problems (see, e.g., Mackenzie and 
Morton [8] and Morton and Stynes [9]). So far, there has been no similar analysis 
for a parabolic convection-diffusion problem in the literature. 

In this paper, we examine a cell-vertex finite volume method when applied to 
the following model time-dependent convection-diffusion problem: 

(1.1) Lu(x, t) _-Eux; + au, + bu + rut = f (x, t) V(x, t) c Q, 

(1.2) u(O, t) =u(1, t) = 0 for 0 < t < T, 
(1.3) u(x,0) =u(x) for 0 < x < 1, 

where 0 < E < a and Q = (0, 1) x (0, T]. For simplicity, we assume that a, b and r 
are constants with 

(1.4) a>O, b>0 and r>0. 

We also assume that f E L2(Q) and uo E L2(0, 1). 
The conditions (1.1) - (1.4) define a time-dependent convection-diffusion prob- 

lem. Problems of this type arise, for example, in the modelling of steady and 
unsteady viscous flow problems with large Reynolds numbers (see Peaceman and 
Rachford [13] and Van Dyke [17]), convective heat transport problems with large 
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Peclet numbers (see Jakob [6]), oil reservoir simulation (see Ewing [4]), radioac- 
tive corrosion in the water cycles of an atomic reactor, adsorption processes in gas 
pipelines, spread of medicaments with the blood circulation or of plumes of poi- 
sonous industrial wastes in river systems (see Baumert et al. [2]), petroleum reser- 
voir mechanics (see Price and Varga [14]) and electromagnetic field problems in 
moving media (see Hahn [5]). In (1.1), E is a diffusion coefficient and the function 
a is a flow rate. 

The differential operator in (1.1) is parabolic, but for small E its behavior might 
be considered as mixed parabolic-hyperbolic. The solution u(x, t) will in general 
vary rapidly in a layer region of width O(eln(1/e)) at boundary x = 1, even for 
smooth initial-boundary data. This layer region is called a boundary layer. The 
boundary layer phenomenon has been discussed by many authors since Prandtl's 
original work in 1905; see, e.g., Vishik and Lyusternik [18], Eckhaus and de Jager 
[3], Nayfeh [11] and O'Malley [12]. It causes serious difficulties when solving (1.1) 
- (1.4) numerically. 

An outline of the paper is as follows. In ?2 we describe the cell-vertex method 
for (1.1) - (1.4) and reformulate it as a finite element method. Section 3 is devoted 
to the derivation of a discrete Garding inequality that guarantees the existence and 
uniqueness of the finite volume solution. Local errors in the 12 seminorm (defined 
in ?3) are analyzed in ?4. (We note that, when restricted to certain piecewise 
bilinear trial spaces, this seminorm becomes a norm.) Our analysis indicates that 
on a general tensor product mesh, the method is first-order accurate away from 
all layers, in the 12 seminorm. We can sharpen this result to local second-order 
accuracy in 12, if either E is very small compared to the mesh diameter or the mesh 
is locally almost uniform. 

Throughout the paper, we shall use C to denote a generic positive constant which 
is independent of E and of any mesh used. 

2. DESCRIPTION OF THE CELL-VERTEX SCHEME 

To discretize (1.1) - (1.4), we first define a partition of Q as follows. For any 
pair of positive integers N and M, we consider the arbitrary tensor product grid 

Qh = {(Xijtj) Q: 0 = Xo < X1 < ... < XN = 1, 

0=to <t < ... <tM= T}, 

with hi = - ixi_, kj -tj t -1 and h = maxij {hi, kj}. Define the "finite 
volume" or "cell" Kij by 

Kij = (xi-,,xi) x (tj_3,tj), for i 1,... , N and j = 1,.. M. 

In the finite volume context, the discretization of (1.1) is performed on each cell. 
The basic idea is to integrate (1.1) over a cell so that the convection and diffusion 
terms are converted into line integrals of normal fluxes along the cell edges, and 
then use the trapezoidal rule to approximate the integrals. Thus, letting uh denote 



ANALYSIS OF A CELL-VERTEX FINITE VOLUME METHOD 107 

the computed solution, for cell Kij we set 

(2.1) 

IK f (x, t) dxdt 
Ki,j 

-2 (Ul (Xi, tj) -Uh(Xi, tj) + Uh(Xi, tj_1) -Uh(X_i-, tj_)) 

+ 2i (uh (xi, tj)-Uh(Xi_1, tj) + Uh(X,, tj)Uhh(Xi_1, tj_1)) 

rh 
2(h (Xi, tj)-Uh (Xi, tj_1 +h (X,_,, tj)-Uh (X.-,t_) 

bhikj (uh(x,t) 
+ Uh(X-,tj) + 

Uh (X,t,) 

h 

u (x,_i,tj_1)) 

With the approximation uh (X, t) parameterized by its values at the vertices, this 
still leaves two problems to be solved. First, how do we define u h at the nodes? 
There are several ways in which this may be done, but we consider here the so-called 
Method A in Mackenzie and Morton [8]. That is, we define 

(2.2) ux (xi Itj) = h h38(ilt)-hx_,j) 

fori=1,... ,N-1,and 

(2.3) uh(O, tj) = 
2 

(uh (x,tj) uh (O, tj)) -uh(Xl,tj) 

Similarly to (2.3), one can define uh (1, tj). This solves the first problem. 
The second difficulty is as follows. If we perform the discretization (2.1) on all 

cells, we will have a system of NM equations in (N -1)M unknowns, since uh (x, t) 
will be prescribed on three sides of Q by (1.2) and (1.3). We have M equations.too 
many. To obtain an exact match, we choose upwind control volumes, that is, each 
nodal unknown is associated with the cell upwind of it. We do this by discarding 
the equations associated with KN,J for j = 1, . . ., M. We then obtain a system of 
equations (2.1) - (2.3), for i = 1, ... , N - 1 and j = 1,... , M, which has exactly 
the same number of unknowns as that of equations. The second problem has been 
eliminated. 

Finite volume methods are often interpreted as finite difference methods. This 
is reflected in the finite difference techniques used to analyze such schemes. For a 
scheme such as (2.1) - (2.3), which does not satisfy a discrete maximum principle, it 
is difficult to obtain a satisfactory finite difference analysis. Instead, we observe that 
the cell-vertex formulation of the finite volume method has a natural interpretation 
as a Petrov-Galerkin finite element method. The finite element framework then 
affords the possibility of applying finite element techniques to estimate errors in 
the finite volume method; see [10, 15, 16, 9]. 

To reformulate the cell-vertex finite volume scheme (2.1) - (2.3) as a finite ele- 
ment method, we first define our trial and test spaces. Set 

Uo= {v E H1 (Q) n 0Q) : v(O, t) = v(1, t) = 0 for t E (0, T], 
v is bilinear on each cell K 

Mh = {p E L2(Q): p is constant on each cell K, 

pOoncellsKN,j forj=1,... ,M}. 
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In order to simplify the presentation, we introduce the averaging operators ,a, /,a 
and pt, for i = 1,..., N and j = 1,..., M, 

xWi,j = hk jI w(x,t) dxdt, 

txwi,jj= hi 
w (x,tj)dx, 

xtj 

for all w(x, t) for which the right-hand side is defined. 

Remark 2.1. One can easily verify that for each v E boh and for i = 1,. . ., N and 
j=zl,... ,M, 

(2.4) Vi,j= 1(Vi_j + Vij + Vi-i,j 1 + Vi,j-i) 

(2.5) - 2I(Ixvi,j + IxVi,j-1) 

(2.6) 
I 

(utvi,j + utVii- j,), 2 

(2.7) la(vx)i,j = h (4tvi,j - Ltvi_l,j), 

(2.8) la(vt)i,j = h(Ixvij - Axvi,j-0) 

where vij denotes v (xi, tj). 
Now the cell-vertex finite volume approximation is-defined as follows: find uh h 

Uoh satisfying 

(2.9) B (uh p) = (f,p) Vp Mh 

(2.10) (Uh(.,0),p+) = (UO, p) VP E Mh, 

where (,.) and (,.) are the usual L2(Q) and L2(0, 1) inner products, 

p+ (x) = tlim + p(x, t), 

and we set for any (v,p) E H1(Q) x Mh, 
M N-1 

(2.11) B(v,p) = - E kj lapi,j {iit(vx)i,j -/t (v) _ j} 
j=1 i=1 

+ (avx+rvt+bv,p). 

Here we define, for j= 1,... , M and v E C(Q), 

(2.12) 

2h +h+? (,ivi+ ,j - Vi,j) if i = 1, . N. I N-1 
Att(vx),ij 

2h Atvlj -At(vx) j if i = 0. 

Remark 2.2. For the discretization of the diffusion term in B (v, p), we do not need 
nodal values of vx, just its integral along two sides x = xi-, and x = xi of Kij. 
For i = 1, .. ., N - 1, At(vx)i,j is defined by associating lavi,j with the cell center, 
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then taking the obvious divided difference. For i = 0, we define 't(v )i,j by an 
extrapolation. It is easy to check that (2.1) - (2.3) is equivalent to (2.9) - (2.12). 

In the next section, we shall demonstrate existence and uniqueness of the finite 
volume solution. 

3. STABILITY AND CONVERGENCE 

We begin our analysis of the cell-vertex finite volume scheme (2.9) - (2.12) by 
establishing the stability of the method in some appropriate mesh-dependent norms, 
which in turn implies the existence and uniqueness of the finite volume solution uh. 

We introduce the following mesh-dependent norms: 

V~l2(h) ={M N- hik~I1vi~2 }1/2 

J .M 

N-1 

N-i 

IVIl2(&Qh) = Ej h + 12 hikbLxvMl } 
tj=l i=l 

M N-1 
1 /2 

IV112 (a+Qh) 
= 1 < kj IAt VN - 1J1 + E hi I -tvi, M 

12 ) 

j=l i=l 

MrN-1 m 1/2 V _2(Qh) = { Z hi12xvio2 1/2 

-i= 

|Vx|j2(Qh) = h{ E jytv), + 4 ZkijIt(vx)ojl2}) 

for all v(x, t) for which the right-hand sides are defined. 

Remark 3.1. We note that these norms are seminorms on L2(Q). If I 112(Qh) is 

restricted to the subspace of Uh defined by 

{v C Uh :v(x,0) = 0 for 0 < x <1}, 

then it is a norm. The first three of these seminorms are similar to those used in 
Suili [16]. The last seminorm is introduced here to deal with the diffusion term. 

Define a projection R: Uoh _ Mh by 

Rv { 
vi j on Kij, fori=1,... ,N-landj=li,... ,M, 

0 otherwise. 

The stability of the finite volume method (2.9) - (2.12) is proved by the following 
discrete Garding inequality. 

Theorem 3.1. Assume that E < a(hNl + hN). Then for each v C Uh, 

B(v,Rv) > IVX I^2(Qh)+blVl12(Qh) 

+ I min{a, r}lv12K(a+Qh) 
- 

1 Vl2(aQh) 
42 



110 WEN GUO AND MARTIN STYNES 

Proof. Recall the definition (2.11) of B(., .). For each v c b4h, 
M N-1 

B(v, Rv) =- E kj ktvi,j {ft (v.),j -'t (vx)i-1,j} 
j=1 i=1 

+ (avx + rvt + bv, Rv) 
(3.1) 1l + I2. 

First, by summation by parts, 
M 

I, = El: kj {-IVN-l,j it(Vx)N-l,j + 1uvil,j /t(vx)O,j 

(3.2) j=1 
N-2 

+ (,tvi+1ij - Iivi,j)Iit(vx)i,j}. 
i=l1 

Now we have 

-1-VN-1,j ^t(vx)N-l,j 

- (AVN,J - VN-1,j)I1t(Vx)N-1,j - VN,j /it(Vx)N-l,j 

hN-1 + hN 1) 2 1 j 
(3.3) I At (Vx) N-1j2 

- 
-ItVN-1,j It(Vx)N-1,j, 

using (2.12), (2.6) and AtVN,j = 0, 

hN-1 + hN t(vX) 1j 2 - 1 

4 4(hNl1 + hN)~I~V1~ 

by the arithmetic-geometric inequality 

2c43 < a2/q + q/2 

for all q > 0 and all oa and /. Similarly, using (2.6) and ,utvo,j = 0, we have 

,UVlj At (vx) Oj 

= 2pitvLj At(vx)Oj 

34= h t (vx O,j + it (vx) ,j,)/it (vx)o,j by (2.12), 

> hi (a()oj2 _ It(Vx),,j 12). ? /^t ~ t(vx) ij I ) 

Also from (2.12), for i = 1, ... , N - 2, we obtain 

(3.5) (/,uvi+ij - tviXj) At (vx) ij = 2 a()i 2 

Substituting (3.3) - (3.5) into (3.2), we get 

(3.6) 

A Zk{hN-1 +hN tv l 2 

j=1 4 4(hN-1 +hN) V1 

hi 2 _ltv)X I -lt(Vx)l,jl2) 
+t (L+ftt- (vx) Ojl - 

N 
-2hi+h, 

+ z 2~h~ 1tvx)J} 
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Next, we have 

(3.7) 
M N-1 

12 = E E hikj ,u(av; + rvt + bv)i,j ,uvi,j 
j=l i=l 
M N-1 

=E E {akj (,Utvi,j - ,uttvi-i,) + rhi (,-xvi,ju-,xvi,j-i) + bhikjpvivj} /Vi,j, 
j=li i=l 

by (2.7) and (2.8), 
M N-1 N-1 M 

a= E kj E (I/_tvi,j l2 - ,tv _lj l2) + 
r 5 hi E (IbXV,j Uxvi/ 22) 

j=l i=l i=l j=l 
M N-1 

+ b5 hikj5 _,u,j12, using (2.5) and (2.6), 
j=l i=l 

M N-1 

= 2 kj1ttVN-l.j2+2 E hi (_x Vi,M' -1_xV,o ) 
j=i = 

M N-1 

+ b5 hikj5 ,uV,j12, 
j=l i=l 

by telescoping and using ,utvo,j 0, for j = 1, ... , M. 
Hence, 

B(v,Rv) =I +I2 
M 

2 12 2 4(hN-1 + hN)) kjiN j 

N-1 

+ 2 5 hiiUvI,2 - Vl12 (a_ Qh) + bv12(Qh) 

The desired result then follows from the assumption of the theorem. LI 

As a corollary we obtain the following stability result. 

Theorem 3.2. Assume that E < a(hN-1 + hN). Then (2.9) - (2.12) has a unique 
solution uh E Uoh and 

(3.8) 6x l2(Q ) + 112 (Qh) + u (a+Qh) (3.8) 
~~~<c{ if i2(Qh) +I U 12 Qh)} 

Here, C depends only on a, b and r. 

Proof. As the existence of a unique solution follows from (3.8), because we are 
dealing with a norm in this situation (cf. Remark 3.1), we need only establish 
(3.8). 

Taking p = Ruh in (2.9) and using the arithmetic-geometric inequality, we obtain 

B (Uh, RUh) (fRuh) 

< -I u12 (Qh) + -If 112(Qh) 
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Now an appeal to Theorem 3.1 completes the proof. El 

Theorems 3.1 and 3.2 are in the spirit of results obtained in finite element anal- 
yses using standard "inf-sup" machinery; see, e.g., Babuska and Osborn [1] and the 
references therein. 

As another corollary of Theorem 3.1 we have the following global error bound. 

Theorem 3.3. Assume that e < a(hN-l + hN). Let u' be the interpolant from Z4o 
to u. Then 

? ttt(Ux) -tt(Uh) (1h) +I U - th(Qh) + |U- u12(&Qh) 

?C{6t(uh) f ( U)h2(Qh) (u -u)X r(+ )t(Qh) 

+ U~U1h1 (Qh) + U U1 (0 hh) + UU!- (o )}, 

where 

(3.9) 
M N-1 

|At (Ux) Att(UhI 12 E k=Zhi 2 I |_t (Ux)i,j -_t (Uh)i ,j 
2 

j=1 i=1 

M 
+ l kjZk t ,t(ux )o j At t(Uh)o,j12, 

j=l 

and t (ux) -t (ux) 1 is similarly defined. 

Proof. Set 
h _ uI 

I 
'U 

Then 

Ub-Uh - 

We begin by estimating ~. 
Applying Theorem 3.1, we obtain 

(3.10) 2 IG II (Qh) + blI12I(Qh) + min{a, r}Il12 (DQh) 

? B ((,Jt) + 
2212 (a- - 

Set 

(3.11) ~ eij = At (u?x)i, - t (X)iij 

FRom (1.1) - (1.3) and (2.9) - (2.12), we have 

M N-1 

(3.12) B((, R1) = - & 
k 1_ tIkj {,eij - ei,j} 

+ (a?x + rqt + bmJ, Rk) 

and, by (2.10), 

(3.13) IeIl2( Qh) - il2 Qh)- 
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We first estimate the term involving ?: 

M N-1 

-E _ kj [Lij,j eij - ei -, j 
j=1 i=1 

M f N-i 

= 1 kj t-A j eN-l,j + 1_lt,j eo,g + (i-t4i+i,j -ttij,) ei,j 
j=l = 

by summation by parts, 

- 6kkj {-2 ttN-jj eN -l,j + 2ptfi,j eo,j 
j=l 

+ 2 t At((x)ijjei,j 

(3.14) by virtue of (2.12), (2.6) and Utt~O,= bttN,j , 0, 

- Skj { -IttN-1,j eN-l,j +y-4 (At(x)o,j + 't (() ,j) eo,j 

?E hi+ h?1A t(?x)i j eij} by (2.12), 
i=1 

< k3kj m{ j It(N-j 12 + C6leN-l,j 2 

j=1 

+ hj 
I2t ((x )oj 12 + 

hI 
It ((x) 1,j 12 + Chi eo,j 12 

16 1 

1) 
N 

hi + hi+, I t(N)-12+25 hi + hi+,lei12} 

'8L-E 2 21 
2jjj1 

8i=1 
22 

1 ~ ~ 1~ 2 &I 2 t (,I\12 < - min{a, r}lI12(,I+Qh) + 14 2 - (Qh) + Ce _ It(X)_ L*UA )x 12(QUh) 8 2() 4I~I2~)r\'1( 

using e < a(hN-1 + hN). 

As regards the other term in (3.12), we have 

(3.15) (ajx + rrlt + bq, R() 
< 

2I(I2(Qh) + Cla + rqt + brl 2(Qh). 

Thus, from (3.10), (3.12) - (3.15), it follows that 

- 
I I? (Qh) + ? Qh2 ) + 1 min{a,r}lIQ(0+h) 

< C {e _,tt(U) - t(U4) 12(Qh) + Iar7 + rTt + b?712(Qh) + 1712 (aQh)} 

This, together with the triangle inequality, yields the desired result. Cl 

4. LOCAL ERROR ANALYSIS 

In this section we present local convergence results for the cell-vertex finite vol- 

ume scheme (2.9) - (2.12). While the analysis is rather intricate, it ultimately 

shows that the scheme yields accurate results on certain subsets of Q where u is 

smooth; see Remark 4.2 below for more details. 
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We first derive various interpolation errors. Set 

I={(i,j):i =1,- , ,N -1, j=1I,-. ,M}. 

We have 

Lemma 4.1. For any (i, j) E I, assume that u E C3(Ki,j U Kj+1,j). Then 

(4.1) uTirjh| + Iu(arix + rTit) , j ? (hikj) h IU H3(Kij ) 

(4.2) Ktx7/i'ol < Chi lu IH3(Xi-ixi) 

(43) UIt(ux)i,j - 't(u) ijI ?C{lhi -i+i| HUIHC2(ki,j) 

+ (hi+, + hi + k ) |lUjjC3(KjjUKj+j,j)1 

with 

(4.4) ILtt(ux)o,j -a2tt(u)oXj ?C{|hi -h2O | | c2(K1j) 

+ (h2 + hi + k1) IIUIIC3(K1,3UK2j)}, 

where I IH3(D) denotes the usual seminorm on H3(D). 

Proof. The proof of (4.1) can be found in the proof of Theorem 4 in Morton and 
Suili [10]. In a similar manner one can prove (4.2). 

We need only prove (4.3) and (4.4). For i > 1, using (2.12), we have 

A ux)i,j = hi + hi1 (uu+ i -uj) 

=2(hi + h ?) (ui+?,j + u?i+,jy-iUi_1,j-u-i_,j_1), by (2.4), 

1 2 (xi h tj)+ux(xi,tj -) + tx (u xi(xtj)tu)+ua(xiv,tj-)) 24 

+ 12(hI +hi+1) {h3+1 (uxxx (0, tj) + Uxxx(02, ty-1)) 

+ hi (Uxxx (03, tj) + uxxx (04, tj-l))} 

by a Taylor expansion, where 

Xij1 < 03,04 < Xi < 01,02 < Xi+l1 

Thus, 

|/Ut (ux)i,j- /'-t (uX)i,j | 

< I ux(xi, t) dt - - (ux(xi, tj) + ux(xi, tj_1)) 
kj Jt31 2 

- C lh~i IUIc2(kj),.+ C (h??1 + h?) 
I|UIIC3(Kj,jUKj+1,j) 

Cjhi+i - hil I|UIC2(kj,j) + C (h2 1 + h2 + kj2) I|UIIC3(Kj,jUKi+j), 

by the error estimate for the trapezoidal rule. 
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Similarly, for i = 0, by a Taylor expansion about x = 0 and using uo,j 0 for 
all j, we have 

tt(ux)0oj = 
2 

ttul,j - t(Ux)lxj 

1 1 
= h(Ul,j + Ui,ji) -2(h +h (u2j + U2,j -1) 

ux (0, tj) + ux(0, tj) + 
hi 

(uXX(0, tj) + uxx(0 tjy)) 

+ -1 x UXXX(05, tj) + uxxx (06, tj-i)) 6 

(u- (0) tj) + ux(0, tj))- 
h h2 

(uXX(0, tj) + uXX(0, tj -)) 2 4 

(hi + h2 )2 (Uxxx(07, tj) + Uxxx (08 tj- )) 
12 

- (uX(0,t) +u (0,tj-1)) + 4 (Uxx(0tj) +uxx(0,tj-1)) 24 

+ 
h 

1 (UXXX (05, tj ) + Uxxx (06 i tj - 1) ) 

(hi + h2 )2 
(UX(07, tj) + Uxxx (08, tj-l)), 

12 
where 

0<Ol <X2 for= 5,...,8. 

Hence, 

11-tt(Ux)O,j- 1-tt(U3X)O,j 1 

< , 
ux(O, t at - - 

(ux(O, tj) + ux(O, tj1)) 

+ Clhl - h2 l HUHC2(K1jj) + C (h2 + hi) H|UHC3(K, jUK2,j) 

Clhl - h2l IHUjC2(k1jj) 
+ C (h2 + h2 + k?) HIUH C3(KigUK2,j)' 

which completes the proof of (4.4). D 

For each (i, j) E I, define 

(4.5) 

= - = t (wx)ij t (wx)i,- j) + 1u(awx + rwt + bw) ij, 

for all w for which the right-hand side is defined. Then 
M N-1 

(4.6) B(w, p) = hikj Ipi,j Bij (w). 
j=i i=i 

For I any nonempty subset of I, let Q = U(i,j)EI Ki,j. Set 

(4.7) hWIB(j) = { ( h Ik3 ()j (W) } 
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We note that f (Qh) is a seminorm on L2(Q). It can be regarded as a gen- 
eralization of the seminorm 1 . Ih(a(.))112(Qh) introduced in Morton and Stynes 
[9]. 

Using Lemma 4.1, we get the following error bound in a local I |l(Qh) seminorm. 

Theorem 4.1. Let Q = U(ij,)cI Kj,j be arbitrary. Set 

I ={(i,j) I: j =j' and li-i'l <1 for some (i',j')I}. 

Let Q+ = U(i j)E+ Kj,j. Assume that u E C3(Q+). Then 

U -u B (Q) 

(4.8) < C { max {h,llhi+l7-hhill h7'lhi - hi-l|}HIulC2(Q+) 

+ max_{ hj2+j h7, hi, k?h-l} llUllC3(Q+) + Ch2IUIH3(Q) 
(i,j)EI 

Proof. FRom (1.1), (2.9) and (2.11), we get 

M N-1 
h (u I-u',p) = - eZE E kj upi,j f ei,j - ei- j} 

j=1 i=1 

+ (ar. + rrt + bq,p), Vp E Mh, 

where eij is as in (3.11). 
Fix (i, j) E I. Take p in (4.9) to be the characteristic function of K%,j. From 

(4.6) this yields 

(4.10) 

Bij, (uh -'lI) = -EhT-{eij, -eiei,j} + ,u(ar% + rrqt + b)i,j. 

Applying Lemma 4.1 gives 

Bij (Uh - 'I) I < CEh- 1 - (hi+l-hil + Ihi- hi- 1) IUHIC2(K%jUK%j) 

+ (h 21 + hi + h 2 1 + k2) 
|lUllC3(KjljjUK,jUK%+lJ)} 

+ C(hikj)-1/2h2lulH3(K%,J), 

with the convention that ho = h1. The desired inequality follows immediately from 
the definition (4.7). C1 

In what follows, we shall derive a local error bound in an energy seminorm. To 
this end, we introduce a cutoff function w(x, t) defined by 

W(x, t) = g (/ h )g(t -t*), 

where (x*, t*) is a fixed node, -y > 1 is a constant (which we choose later to be 
independent of e and the mesh), and 

g(r) 1 + exp(r) (-'o) 
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Set 

(4.11) Qo = {(x,t) c Q: x < x*, t < t*}, 

(4.12) Q+ {(x,t) E Q: x < x* +syhlnh t <t* +s-yhln h}, 

where s > 0 is some integer (which we choose later to be independent of e and h). 
Without loss of generality, we assume that Q0+ consists of cells, that is, 

jI i/ 

Q =U UKij,a 
j=l i=l 

for some (i', j') c I. Set 

j' i'+l 

(4.13) Q - U U Kj 
j=1 i=1 

One can easily show that 

(4.14) wx < 0 and wt < 0 on Q, 

(4.15) Maxw/ min w < C, max IwI/ min w,I <?0, 
Di DiJ ,j Di 

where Di,j = Kjj U Ki+,,j, 

(4.16) IwxI < C-yh-1w, 

(4.17) w (xi,,t) < Ch fort E [0,T], 

(4.18) and (x, t) > 1 on Q0. 

Notation. We introduce the following weighted norms: 

j' i' 1/2 

1V12(Q0+) 

={4hi 

kj 

wi_IAi,iI2}t 

I 

j=1 i= 

I } i' 1/2 

IV1I2(a-Q+),W = hi +,1 kxV, j2 

i=1 

{E i/hi + hi+, ^()1 

for all v(x, t) for which the right-hand sides are defined. 
Define Rw : Uo Mh by 

wpivi, onK~,, fori 1,.. ,i',j= 1VX,.. j'2 

R v 0 otherwise. 

Then we can prove a weighted Gasrding inequality. 
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Lemma 4.2. Assume that there exists a positive constant co, which is independent 
of e and of the mesh, such that 

(4.19) e < cohi fori = 1,. ,i'+1. 

Then 

B(v,R v) > -lvx I(Q)W +blv(QO),W 
12 ( ),w 12 QOhShT1V,QW) 

- 1VI2(a- Q+),W- Chshi,l+' 12 (Q++) 

where 1 112(Q++) is defined analogously to I 112(Qh). 

Proof. Similarly to the derivation of (3.7), we have 

(4.20) 
(avx + rvt + bv, Rwv) 

j1 i1 

+ ~~ ZZhjw~~I [ V, 12_- [ttxV, _ ij 2) 

= 2~~k wji,j (,bw,|-/ti1j 
j=1 i=1 

j' i/ 

+ bZZE hik wi,j ,utxvi,j 12-IbxV,,j 12) j=1 i=1 
j' i/ 

+ b Z hikj3wi,j I[vi,j12 
.=1 i=1 

j' i/ 
= 2 , kj {> ,(i,j-gi+1jI )t |pV,,j 12 + Co,/+ 1,j I [t V,I,j 12 

Q -e kj Pj w~i, j - 

j=1 i=1 1 

i' f j' i'- 

+~~ ~~~ Z(w (w,-ij+) zi,j| + -wi,j,Iw+1li,j)flt(vxi,l|s}. o1 

=1 j i 
+ b E hik 01j|bv, 

i=1 j=1 

by summation by parts and using [lttvo,j 0. 
Ne*t, the contribution to B3(v, RWV) from the diffusion term is 

j/I/ 

'F -- - E kj wi,Aija()Xj -At(vx)i-l,jl 
j=1 i=1 

(4.21) -E kj - wi/,j 11vi/,j At (vx)il,j +,l,j [tV1 j At (VX)O j 
,7=1 

i' -1 
- Pi,j /-vi,j - Wi+i,j 1-vi+i,j)At (vx)i,j} 
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Now, analogously to (3.3), we have 

-AlVi/,j At(Vx)i11 

(4.22) > hi, + hi,+4 I It(Vx)i',j12 - h +h+ tV%+l,j 1. 

Fori=1,... ,i'-1, 

(4.23) 

-(wi,j vij - wi+j,t bvi+i,j),t(vx)i,j 
- {wi,j (vi+?,j - ttvi,j) - ( -i,j- wi+ ,j)1vi+ ,Ij }I t (vx)i,ij 

= i +h i+? ht (Vx ),j - _ (W,j Wi+ j ) V,+ j t (Vx),,j by (2.12), 

2 I j/2-t(v)iA2 
> 4 Ainj lyt(vs)ixj-hi + hi+, (Wi-jw+i,)2+ T Ij.j 

Substituting (4.22), (3.4) and (4.23) into (4.21), we obtain 

(4.24) 

Qe ?6 Ski {hil ? hi+ t(1r)i',l2 + 1 

+ wlkj (I t (vt)o1- I2t(vx),Ij 12) h W ?h I ft V, Ij() 12 

i' -1 1 

>4-Irl2+ hA)-h, + h + h1 w )j Ii-jvi+i,+I| 

j'XI i-l ~ 5~~, I~v'ii 4hi( i=o) hi+ h'+ihj-i+, 

*1 4 

il-I~~~~~~i 
-(4.25) 5 h~ ? h~~1 2 -I I vtV+ , 1j 2 

hi=1 hi+,=1 j-W+1j 

In(.4,w> a on the econter by usin (4.117,j toge 

4 0~ ~~~ Chil hi,+, 12 (Q+2(Q+3),J 
u (I 

6 ~~~ .1~~2W_IIt, , 
2 

k3 ? i hi+,i Z.d j W?', IjtVi/jI 
j=I i=1 ~ j= 

jI~~~~ 

hi + hi,, k+ij IL,t,,+dj12 
j=I~ j= 

using (4.19). 
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As for the last term in (4.24), using (2.6) and (a + b)2 < 2(a2 + b2), we get 

(4.26) 
i' -1 1 

S h + h+ (ij - wi+i,j)2w jiuvii,jl2 

<~~~~~~~~~W 2 -1 ma w 2wl(1[,utV,,j l2 + j[,tV,+I,jj2 ) 1- 1 
hl max h 

2 hi + hi+ ,+I Ki+1,j I1 

<CS i+1 'jh- max jxjutVi,,jj2 + tvI+ijA ) 
.~hi + hi+,i.+ 

V,Ij1) 

using (4.16) and (4.15), 

i' -i 

< C-y max IVX(lAbtvi,jl2 + I[ttvi+I,jj2) 

< C-'E (Kmax lwxI + mKax) lx btIVi,j12 

< CY- (max ) 
htVij 1 ? KY lwxl min lwxl (Wi - i+ 

E Kj,j UKi+l, j IKi+l ,j )hi+, 

since (4.14) implies that ij - w1i+l,j > 0?, 

< C'y- i i I h j - Wi+l,j )|t V,j 12, using (4.15), 
hi+ 

a , 1 (i - Wi+l,j) I[tVi,j1, 

on choosing -y sufficiently large, independently of e and of the mesh used. 
Thus, from (4.24) - (4.26) and (4.19), we obtain 

j'i' 

Qe? > VI (S2) -2 kj E(wij -Wi+i,j )Itvi -ChShi-lv V>++). 

Combine this with (4.20) and use (4.14) to complete the proof. C 

We now prove the main result of this section. 

Theorem 4.2. Assume that e < a(hNl + hN) and that (4.19) holds. If u c 
C3(Q++), then 

1 - u hE(Qo) C h IIXIIC3(Q++) + IU IH3(OX,i/)) 

+ C (hshi- )12/ (IfHIL2(Q) + |U1 |IL2(O,1) + I IH3(QO I 

where QO and Q++ are as in (4.11) and (4.13) respectively, s is as in (4.12), and 

1u u IE(QO) 
= {e ,ut(uX)- /i(uX) 11?(Q) 

+ u - U(Q )} 

with Iut(u ) -p At(U4h) Io(QO) and 112(QO) defined similarly to (3.9) and I112(Qh). 
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Proof. Applying Lemma 4.2, we obtain 

+bj (4.27) 4 <BQ,R0+ ) + + 
< B(&,, Rw&,) + _12 |l('-+w + Chshi'+l' 14112(Q+ 

Recalling (4.6), we obtain 

j' I* 
B(, Rw(= E hi+kj wij t 5i kjwj Bj 

(4.29) 
j' 

jI 

55b E hjkj gj _IB + rE E(hQi) W + OhSBhij 1 I2.(Q++) 

j=l~~~~~~~= i=l 

< C {141(Q+)+ 142(&9Q+) } + ChShi,14112(QO++), 

since w(x,t) 2 on Q where is defined similarly to 
Appealing to Theorem 4.1, we obtain 

(4.30) 

I I(O)<Ce 11<maxi,{hTl} {l max,{l hi+ - hi I}HIUIIC2(Q+) + h2HIUIIC3(Q++) } 

+ Ch2ubH3(l1+) 

using (4.19). 
By (2.10), 

(4.31) l(II2(a-QO+) = hLII2(QOI Q) < Oh2 U IH3(0 11,12 

by virtue of (4.2). 
For the last term in (4.29), we have 

<iI2(Q++) ? h '(Q+) + (++12 

?_ (I<2Q + U1 (- + 2I (Q++)) + 

according to Theorem 3.2 and (4.1). 
Clearly, for any w c L2 (Q), 

bWI12(Q ++) ? WUI2(Qh) ? IIWIIL2(Q) h 

by a Cauchy-Schwarz inequality. Also, 

hIIU L2Q ? C Q+ U L2(O1)) 
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Thus, 

(4.32) I 
0Ii2(Q++) < C (lfiLfL2(o) + jju 11L2(0 1)) + Ch tUIH3( 2 +). 

Collecting (4.30) - (4.32) into (4.29) yields 

{EIGXItI(Q+)W + IIl2 (II ),w 12} 

(4.33) < ChIIuIIc3(Q++) + Ch2Iuo0IH3(o, xi,) 

+0C (hsh~i+)2 (IlfIIL2(Q) + I|U01IL2(0o1) + IUIH3(Q++)) 

Note that by (4.18), 

(4.34) kXII2(? ) + (I~I2(Q0) < EIG2(Q) w + 12 

Combining (4.33) with (4.34), invoking the triangle inequality and using Lemma 
4.1, we obtain the desired result. Cl 

Remark 4.1. The assumption that u E C3 (Q++) in Theorem 4.2 can be guaranteed 
if the data is sufficiently smooth and satisfies certain compatibility conditions at 
the corner (0, 0) of Q; see Ladyzenskaja et al. [7]. 

Corollary 4.1. Assume that the hypotheses of Theorem 4.2 hold and 

(4.35) hi+1 = hi +O(h2) fori= 1,... ,i' 
and 

(4.36) hi,+, O(h') for some s > 0. 

Then 

u- uhIE(QO) < Ch2 (IIUIIC3(Q++) + Iu IH3(O X,,) + If 1IL2(Q) + ||U IIL2(o0l)) 

Proof. By inspecting the proof of Theorem 4.2, we see (cf. (4.30)) that when (4.35) 
holds, then 

(4.37) IIb(QO+) <?Ch2 IUIIC3(Q-+). 
Hence from (4.29), (4.37), (4.31) and (4.32), we have 

{CI(SxI12(Q+)W 
? 

I2I(Q ),W} 

(4.38) < Ch (2 ||UlC3(Q++) + |U IIH3(Ox, ) ) 

+ C (hshi-+)1 (IlIfIL2(Q) + |U0I?L2(o l) + IUIH3(0++)) 

Since (4.36) implies hi,+1 = O(h-`), we take s = 'r + 4 in (4.38). Now arguments 
exactly the same as in the proof of Theorem 4.2 lead to the, desired result. LI 

Corollary 4.2. Assume that the hypotheses of Theorem 4.2 hold and that there 
exists a positive constant c1, which is independent of E and of the mesh, such that 

(4.39) E < clh2 for i = 1,... , i',+ 1. 

Then 

ju - uhj < Ch (2Iu IC3(s-?++) + Iu IH3(O, X,) + If tIL2(Q) 
+ IIuIIL2(Ol)) 
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Proof. From the proof of Lemma 4.2, we see that when (4.39) holds, one can get 
(cf. (4.25)), for each v E Uc, 

B(v,R,v) > -1I VX.,I(QJ+) W + b-lvChsI(QO+) 

Hence, similarly to the derivation of (4.29), using (4.28), we obtain 

2 lx li^2(QO+),, + b f 1l2 (Q+),W 

1j i/ 
(4.40) < - Z hikj w,j IBi,j(()12 + rj12(Q)w + Chs 2 

j=1 i=1 

< BC {21() + (aQ + Ch 1 (Q ++) 

Also, from (4.30) we see that (4.39) implies (4.37). It then follows from (4.40), 
(4.37), (4.31) and (4.32) that 

{EIXI (Q+j)W + II2(Q+)W} 

< Ch2 IIXIIC3(Q++) + IU0jH3(O,X0,)) 

+Chs/2 (IlfHlL2(Q) + |U01 L2(Ol1) + IHIH3(Q++)) 

Choose s = 4 and follow the same argument as in the proof of Theorem 4.2 to 
complete the proof. C 

Remark 4.2. The assumption (4.19) is reasonable, since we are interested in the 
singularly perturbed case. Theorem 4.2 tells us that under this assumption, away 
from any layers, the scheme (2.9) - (2.12) on an arbitrary tensor product mesh is 
first-order accurate in the 12 seminorm, as one can choose s sufficiently large to 
make the term Chshi/+1 negligible. Corollary 4.1 indicates that if we work with an 
almost uniform mesh, then the method becomes second-order accurate in smooth 
regions. Corollary 4.2 shows that when the diffusion parameter E is relatively small, 
the method is second-order accurate on any general tensor product mesh, away from 
any layers. Nevertheless, this 12 seminorm is of course not strong enough to exclude 
checkerboard oscillations from the computed solution. 
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