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PRECONDITIONING THE POINCARE-STEKLOV OPERATOR 
BY USING GREEN'S FUNCTION 

JINCHAO XU AND SHENG ZHANG 

ABSTRACT. This paper is concerned with the Poincare-Steklov operator that 
is widely used in domain decomposition methods. It is proved that the inverse 
of the Poincare-Steklov operator can be expressed explicitly by an integral 
operator with a kernel being the Green's function restricted to the interface. 
As an application, for the discrete Poincar6-Steklov operator with respect to 
either a line (edge) or a star-shaped web associated with a single vertex point, 
a preconditioner can be constructed by first imbedding the line as the di- 
ameter of a disk, or the web as a union of radii of a disk, and then using 
the Green's function on the disk. The proposed technique can be effectively 
used in conjunction with various existing domain decomposition techniques, 
especially with the methods based on vertex spaces (from multi-subdomain 
decomposition). Some numerical results are reported. 

1. INTRODUCTION 

In the study of nonoverlapping domain decomposition methods, the so-called 
Poincare-Steklov operator plays an important role. How to effectively precondition 
this operator is significant, both from theoretical and practical points of view. There 
have been basically two known approaches to precondition such an operator: one is 
by FFT (Fast Fourier Transform) (cf. [6, 12, 2, 1, 3, 4]), and the other by multigrid 
preconditioner (cf. [17, 15, 16, 5, 19]). These approaches, however, cannot always 
be conveniently applied, for example, (1) in three dimensions, (2) if the grids on the 
interface are not very uniform or do not have a natural multigrid structure, (3) the 
interface consists of several lines or planes that intersect at a point. In this paper, 
a completely different technique will be proposed, which gives an alternative, and 
sometimes a better, approach to preconditioning the Poincare-Steklov operator. 
This technique can subsequently be combined with existing domain decomposition 
approaches. 

The idea is, for a two-dimensional problem for example, to imbed the underlying 
interface as a diameter or union of radii of a disk, and then use the restriction of the 
Green's function associated with a disk. Advantages of this approach include: (1) 
it does not require much structure of the underlying grid; (2) it applies naturally 
to domain decomposition with cross points; (3) it is easy to implement. 
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The preconditioning technique in this paper is based on a new observation that 
the inverse of the Poincare-Steklov operator can be expressed explicitly by an in- 
tegral operator with a kernel being the Green's function restricted to the interface. 
This observation appears to be of independent theoretical significance. 

For clarity, the presentation of the paper will be confined to only two-dimensional 
problems, but the method can also be extended to three-dimensional problems; 
such an extension, however, is not very straightforward, and it will be discussed in 
a future work. 

For convenience, following [18], the symbols <, > and ~ will be used in this paper. 
The relations x1 < Y1,X2 > Y2 and X3 = y3 mean that xi < Clyl, x2 > c2y2 and 
C3X3 < y3 < 03X3, respectively, for some constants Cl,c2,c3 and C3 that are 
independent of mesh parameters. 

The rest of the paper is organized as follows. Section 2 gives a description of 
the Poincare-Steklov operator and an integral representation of its inverse; Sec- 
tion 3 studies the discrete Poincare-Steklov operator and the new preconditioner; 
Section 4 contains some numerical examples and discussions of the application of 
the new preconditioner together with some well-known nonoverlapping domain de- 
composition methods. 

2. POINCAREI-STEKLOV OPERATOR 

Consider the following model boundary value problem: 

(1) { rl u.= f in Q, 

where Q C Rf2 is a bounded domain. Let Ho (Q) be the standard Sobolev space 
of square integrable functions with square integrable gradients and zero Dirichlet 
boundary condition, with a norm given by 

luli,Q = IIVuIIo,Q, U E HO(Q) 

The variational form of (1) is to seek u E Ho (Q) satisfying 

a(u,v) = (f,v) Vv E Ho (Q) 
with 

a(u, v) = j Vv. 

To discuss the Poincare-Steklov operator, two different cases will be considered. The 
first case is a general bounded domain Q which is decomposed into two mutually 
disjoint subdomains Q1 and Q2 such that 

Q = nl U Q2; 

r = aQ i naQ2 is called the interface of this domain decomposition with two 
subdomains; see Fig. 1 below in ?2.2. 

The second case is a bounded domain Q which is decomposed into several mu- 
tually disjoint subdomains QlQ ..2. QP 

p 

i=l 
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furthermore, all oQi \ oQ consist of only straight lines that meet at one single point 
(which is known as the cross-point). Again, F = Ut=1 Fi (with Fi = aOi \ aQ) is 
the interface of this domain decomposition. 

The discussion in this section, unless specified otherwise, will be devoted to both 
of the aforementioned cases of domains together with their domain decompositions. 

In this paper, the space Ho62 (F) will be defined to be the space consisting of the 
trace of functions in Ho' (Q), together with a norm given by 

l],H12(r'\ inf ___ 41() 
Up 0') uEH1(Q),u1r=ur 

It is easy to see that 

IUr]12I = IU HI(Q) 00(P 

where uH E Ho' (Q) is the harmonic extension of ur to all the subdomains, namely 
u H satisfies 

Jrl-/\UH = O in Q\ F, 
uH = ur, on F. 

The space H-/2(F) will be defined to be the dual space of Ho62(F), and its norm 
is given by 

11U1-1j, sup (UE, Vp[)0,p 

v2EH1/2(P) IVrlt1/2(r) 

It is well known that (see Necas [13]) 

I|UI |H1(Q,) IUrIH 1/2( WW 
where 

(2) 1U]p 22 = 1U]p 12 f 
E 

u(X) 12dx (H62 (i) i'i ? i dist(x () ) dx. 

Here, 2 112 is the seminorm in Hl/2(Fi) defined as 

1 2 X U()ur() dxy lUP,1/2,p11 = j( y()i 2Y) 

Consequently, 
p 

(3) HU Ki/2(p) H S 1 U 20i/2(i). 

t=1~~~~~~~~/ 
The norm given in (2) is used in the conventional way of defining Ho/2 (see Lions 
and Magenes [10]). The equivalence (3) relates the Hoo/2 space for the cross-like 
domain to the conventional definition (2). 

The Poincare-Steklov operator S is defined as follows: 

(4) J(Sur))vr = a(uH, vH) Vvr E H1j2(F) 

or, by the Green's formula, formally 

(5) Su (r, ?+ )| 
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where n1 and n2 denote the inner normals of r (excluding the cross-point) with 
respect to the two neighboring subdomains. 

Note that, since uHis harmonic, the defining identity (4) holds for more general 
functions v which are extensions of vr, namely 

(6) (Sur, vr)o,r = a(uH, v). 

The basic property of the operator S is given in the following theorem. 

Theorem 2.1. The Poincare'-Steklov operator S defined by (4) is a well-defined 
operator such that 

S: Hoo12(r) H- (r). 
Furthermore, S is bijective and symmetric positive definite. 

Proof. It follows from (4) that 

(Sur,vr)o,r < Iull,QIVHIl,Q = Iurl,rIvKrl,r. 

Thus, S: Hoo2(r) -+> H-/2(r) is well defined and 

(7) IISrlu1 -/2,r = |Ur IH6002(r) and (Sur, ur) = IUr,I12 1/2 

Clearly S is symmetric positive and definite. On the other hand, for any fr E 
H-1/2 (r), consider the following variational problem: 

a(u,v) = (fr,vr)o,r Vv e Ho(Q) 

Obviously, this problem uniquely determines u E Ho' (Q). By (4), up, the trace of u 
on r, is the preimage of fr under S. Consequently, S is surjective and invertible, 
and, in fact, ur = S-lfr. 1 

2.1. An integral representation for the inverse. As shown above, the operator 
S maps Ho2 (r) to H- /2(r) bijectively. In this subsection we demonstrate that 
the inverse of S can be expressed as an integral operator with a kernel being the 
restriction of the Green's function to the interface. 

Theorem 2.2. Let G(., ) be the Green's function associated with the problem (1). 
Then the inverse of the Poincare'-Steklov operator S has the following representa- 
tion: 

(8) (S-1fr)(x)= jG(x,x')fr(x')ds(x') for fr E L?(F). 

Proof. Given fr E L' (r), let ur = S-lfr and UH be the harmonic extension of 
urp to Q \ r. Note that uH E Co(Q \ r). Given x E Q \ r, substituting for v in (6) 
the Green's function G(x, ) associated with (1) yields 

uH(x) = jG(x, y)fr (y) dy. 

Note that G(., ) is nonnegative and G(x, ) E L1(r) for x E r. By using the 
Lebesgue dominated convergence theorem, and letting x e Q \ r approach r in the 
above identity, we conclude that 

up(x) = j G(x, y)fr(y) dy vx E r. 

The desired representation then follows by definition. L 
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Remark 1. The expression (8) is valid for more general functions f, but the space 
L?? is sufficient for applications to finite element subspaces. 

2.2. A spectrally equivalent operator. Naturally, one expects that the explicit 
expression of S1 given by (8) can be used to construct a preconditioner for the 
(discrete) Poincare-Steklov operator, but the problem is that the Green's function 
G is not easily computable, even for rectangular regions. One way to get around 
this difficulty is to imbed F into a domain for which the Green's function is simple 
and easy to compute. The simplest domain in this regard is a disk. For simplicity 
of exposition, a unit disk will be considered; its associated Green's function has the 
following expression: 

G?(z, z') = log + r2(r')2 - 2rr'cos(O - 0') 
4ir r2 + (r')2 - 2rr'cos(0 - 0') 

Here, (r, 0) and (r', 0') are the polar coordinates of z and z', respectively. 
For the two-subdomain case, F may be identified as the interval [-1, 1] on the 

x-axis. The restriction of the above Green's function to F can be written as 

Go?(x, x') = 2 log 
1 

, xx ,x' E[-,] 

In the multi-subdomain decomposition, the interface can be composed of unit- 
length straight lines that meet at the origin (0, 0) (Fig. 1). 

Under such an assumption about the interface, GC can be used to replace the 
kernel in the inverse integral operator in (8) to obtain another operator S from 

H~o2(F) to H-1/2(F) whose inverse can be expressed as 

(9) S-1fr = jGo, x')fr(x') ds(x'). 

Theorem 2.3. For any function ur E Ho 2(F), we have 

(Sur, Ur) (Sur, Ur). 

This equivalence may be dependent on the shape of Q. 

FIGURE 1. Example of domain decomposition with the interface 
being a diameter or radii of a disk 
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Proof. Let Q? be the open unit disk. Under the assumption on F, Q? is decomposed 
into several mutually disjoint subdomains Q?, Q? ... ., Q? by F as well. By the 
definition of S, it is easy to see that 

(Sur,Ur) )= IU HO I(QO) 

Here, ur 0 is the harmonic extension of up to Q? \ F, and we have 

p 

||r,OI HO' (Q)=E Ur O| Hi (QO) 
i=l 

p 

IlUr 12J/2 
H00 (~ 

p 

11 E |U I1(Qi) 
i=l 

= lUrp11i2 (P) 

=(Sur,ur). D 

Thanks to the above theorem, S-1 can be used as a preconditioner for the 
operator S. 

3. DISCRETE POINCARE-STEKLOV OPERATOR IN FINITE ELEMENT SPACES 

With the Poincare-Steklov operator and its inverse studied in the last section for 
both the two-subdomain decomposition and a special multi-subdomain decompo- 
sition, we shall now define their discrete counterparts in finite element spaces and 
discuss their relationship. These discrete operators in finite element spaces will be 
applied to precondition the Schur complement matrix in the following subsection. 

3.1. Analysis of the discrete Poincare-Steklov operator. Because of Theo- 
rem 2.3, it is sufficient for us to discuss the unit-disk domain Q. We assume that the 
interface of a domain decomposition of Q is a diameter in the two-subdomain case 
and/or composed of radii in the multi-subdomain case. Let T be a quasi-uniform 
finite element triangulation on Q which is compatible with F in such a way that F 
can be represented as a union of edges of some elements in T. Let Qh denote the 
set of finite element nodal points in Q and ]h = Qh n F, Voh(Q) the finite element 
function space with {qi, Z, E Qh} being the set of the usual nodal basis functions, 
and Vh the restriction of Voh(Q) to F. 

Motivated by the variational form (4) of the Poincare-Steklov operator, we define 
its discrete counterpart Sh in the finite element space ],, as 

(10) (Shur, v) = a(ufv) V r 

where uhH is the discrete harmonic extension of Uh to Q satisfying 

a(uH,I q)=0 VZi E Qh \ rh. 

We now define Th in Vr as the discrete version of S1 as follows: 

(11) (ThurvPr) = (S u,vl ) Vvh E VUh. 
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By Theorem 2.2, 

(Thuh I vh) = (I G0(., x')Uh(x') dx', Vh 

Evidently, Sh and Th are symmetric positive and definite operators in the finite 
element space Vr under the L2 inner product. We shall show next that Th is 
spectrally equivalent to S-1. One technical tool in the proof of such an equivalence 
is a stability property of the L2 projection on the interface. 

Lemma 3.1. Let Qh be the L2 projection from L2(r) to Vrh. Then 

HJQhOJHH162(r) 11011H; 12(r$) 

Proof. When the domain is decomposed into two subdomains, the estimate follows 
easily by a simple interpolation argument, using the well-known H1 stability of the 
L2 projection, cf. [19]. But the proof is not so trivial in general, since it is not 
clear how the interpolation argument can be applied to multi-subdomains with a 
cross-point case. The proof given below can also be found in [5]. 

To proceed, we first recall the following well-known estimate: 

(12) 1jU11L2(aQ,) 5 - 
1 |U11L2(Q.) + EIIUIIH1(Q.) 

for any e E (0, 1). A proof of this estimate can be found, for example, in [8]. 
We shall use the operator Rh, the L2 projection from L2 (Q) to Voh (Q), and its 

approximation and stability property 

(13) -<RhuHo,Q?h Rhulj1X- j hJJuJ1,,Q Vu E Hol(Q). 

It follows that 

1QhObHHi/2(r) ?Q IlQh$ - 
RhOqHIH1/2(r) + IlRh$H IIH62(rP) (triangle inequality) 

< h-1/2 |lQh$-RhOH110or + fJRhtHq ? J1Q (inverse inequality) 

< h-1/2 1- - qRh OH|0pr +? lRhOH 11 Q 

< h1 I$H - RhX IOH Q + I1H - Rh ||H1,Q + IRhX ||1 Q (by (12)), 

< JJOHJJ1,Q (by (I13)) 

11011HH62(rp) (by definition). D 

Theorem 3.2. For all ur E Vh, we have 

(14) (S-1h lu h) ,,(Thuhju h). 

Proof. From the definition of Th, we see that 

(ThUh,U h) = (S1ul, uh) 

= (S1u1,SS1Uh) 

(15) = ||S1UhJJ2 (by (7)) 
0 0 

h 11~Il2p (by (7)). 
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FRom the definition of Sh, we see that 

(16) (SUhu,Uh) = a(uH,uh') , a(u0,u') = llUhIIH1/2(r); 

here, uH is the harmonic extension of uh. 

Note that Sh is a symmetric positive definite operator; we have 

IIS-$/2UhII2 = (S u hbyu(6) 

< JjS-lh IIH01/2(r) IlUh 11-1/2,r 

- h 1 |Sh/ Sh Ur || |UN |-1/2,r (by (16)) 

ISh- / U r 11|U||1/2,r- 

Hence, we get 

(ShlUh,Uh) < J|UrhJ-12r 

On the other hand, for any b E Ho12(I), 

(uD b) = (ur,QhO) = H1Sh/2uS,'j2Qh/1 

foh 

/ 

U1|1|Qh0|H12(rP) 

(by (16)) 

h r (by Lemma 3.1). 

Therefore, by the definition of H-1/2(r)) 

|r| -1/2,r' r< I, h Ur Ur) 

We now have that 

(17) (ShlUh,Uh) ,x lUhll_l2, 

From (15) and (17), we obtain 

(S-1h hrU) {}(Th,U) ? 

3.2. Matrix representation. In this section, we shall demonstrate that the dis- 
crete Poincare-Steklov operator Sh defined in the previous subsection is closely 
related to the so-called Schur complement, and the discrete inverse operator Th can 
be written as a matrix whose entries are determined by the Green's function. As a 
result, we obtain a matrix that is spectrally equivalent to the inverse of the Schur 
complement. 

Let the set of nodal points Qh -{zi} be ordered in such a way that ]h = {Zi;i 

1, 2, ... , N}. It is well known that the finite element discretization of the boundary 
value problem (1) can be reduced to the following linear algebraic system: 

where A = (a(qi, 0j)), Qh is the stiffness matrix and ,= (f,qj)Z%EQh. The 
vector ,u corresponds to the nodal values of the finite element approximation. 

In relation to ]h and Qh \ ]h, the stiffness matrix A can be written in a block 
form, 

Aoo A01 
A Alo A Jl 



PRECONDITIONING BY GREEN'S FUNCTION 133 

and the Schur complement is 

(18) S = Aoo0-AoiAI,Aio. 

A direct computation leads to another expression for the elements of S = 

(Sij) N x N: 

sij = (Shi Ir, qjIr), iJ E {1, 2,... , N}. 

Let Qh or Qh denote the L2 projection from L2(r) to Vr, and Gh(z, z') denote 
a function in the tensor product space of Vr and Vrh as follows: 

G h(z,z I) = (QhQQGO) z,z'). 

Here Qh and Qh mean that the action is with respect to z and z', respectively. 

Theorem 3.3. Define T = (tij) E RNXN by 

(19) tj = G h(zi, z), i,j E {1112, .. ., NJ. 

Then T is a symmetric positive definite matrix such that 

(TS) , 1. 

Here i, is the condition number of the relevant matrix. 

Proof. Let M = ((Oi, Oi) r) ziZ,grh be the mass matrix on the interface, and pr be 

the vector corresponding to the restriction of the finite element function ur to rh; 
it can be verified that 

(Sh 1ur ur) = (MS-1MAPr, lpr) 

and 

(ThUh, Uh) = (MTM/-tr, /Pr) 

By Theorem 3.2, the conclusion of the theorem follows immediately. O 

In practical computation, we propose to use the following simpler formula to 
compute the elements of the preconditioner T = (tij) E RNXN, with 

(20) tij = 
Go(zi, zj) (i 7 j), iii = - j 

Go(zi, z')dz'. 
6 c'r,dist(z1,zi)<h/2 

Here, 6 is the measure of the set {z' E r: dist(z', zi) < h/2}. 
The modified preconditioner (20) is expected to be a good approximation to T 

given by (19) because of the approximation property and "local" property of finite 
element L2 projections. Unfortunately, we have not been able to theoretically justify 
such a modification. Nevertheless, we shall provide several numerical experiments 
in the following section to demonstrate its efficiency. 

Remark 2. When the preconditioned conjugate gradient method is used, the action 
of the preconditioner needs to be computed. As the preconditioning matrix is full, 
a direct matrix vector multiplication requires O(h-2) operations. Although this 
complexity is optimal when this preconditioner is used in a domain decomposition 
method for two-dimensional computation, with more efficient techniques (such as 
multi-pole methods, see [9]), it is possible to evaluate the action of this matrix with 
O(h-11 log hi) operations. 
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Remark 3. In the above discussion, the domain Q was supposed to be the unit disk, 
and the matrix T determined by the Green's function of the unit disk was proved 
to be spectrally equivalent to the inverse of the Schur complement reduced from 
the stiffness matrix on the unit disk. If the domain Q is not the unit disk, but the 
interface F of the unit disk can still decompose Q into subdomains, it can be proved 
that the Schur complement reduced from the unit disk is spectrally equivalent to 
the Schur complement reduced from Q. Therefore, T is still spectrally equivalent 
to the inverse of the Schur complement of Q. 

Furthermore, when F is composed of some segments which meet at the cross- 
point, and the length of these segments are roughly the same, and the numbers of 
nodal points in different segments are of the same order of magnitude, it can still 
be proved that T is spectrally equivalent to the inverse of the Schur complement. 

4. APPLICATIONS AND NUMERICAL EXAMPLES 

The preconditioner we proposed in this paper can be combined with other well- 
known domain decomposition methods. In this section, we shall give some examples 
for such applications. But, first, we shall report some numerical examples for our 
new preconditioner itself. We shall consider the model boundary value problem (1) 
discretized by triangular linear finite elements defined on a uhiform triangulation 
on Q. 

4.1. Basic numerical tests. To test our new preconditioner, we first take the 
Poisson equation on a rectangular domain (-1, 1) x (-2,2) which is decomposed 
into two subdomains interfaced at the interval (-1, 1) on the x-axis. The result for 
preconditioner T defined by (19) is given in Table 1 and the result for preconditioner 
T is given in Table 2. In these tables, N is the number of nodal points on the 
interface. 

TABLE 1. Preconditioner (19) for the two-subdomain case 

N 3 7 15 31 63 127 
i (TS) 2.322 2.886 3.042 3.083 3.094 3.097 

TABLE 2. Preconditioner (20) for the two-subdomain case 

N 3 7 15 31 63 127 255 511 1023 
K(fS) 1.265 1.369 1.399 1.407 1.412 1.414 1.414 1.414 1.414 

As we see from Tables 1-2, the condition number s(fS) is bounded indepen- 
dently of h, as predicted by our theory. And s(tS) is actually smaller than K(fS). 

To test our preconditioner for the cross-point case, we take a unit square and 
divide it into four subsquares with a cross-point at the center. Table 3, where N 
is the number of nodal points in the interior of each of the four segments of the 
interface, contains the results for the preconditioner f defined by the simplified 
formula (20). As can be seen, s(fS) is very small indeed. 
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TABLE 3. Preconditioner (20) for the cross-point case 

N 3 5 10 15 20 40 60 80 100 
K(TS) 1.263 1.280 1.281 1.284 1.284 1.282 1.281 1.280 1.280 

To demonstrate the robustness of our preconditioner for the cross-point case, 
we test a cross-point example with different numbers of nodal points in the four 
interface segments around it. Table 4, where N1, N2, N3 and N4 are numbers of 
nodal points in the west, east, north and south direction, respectively, shows that 
our new preconditioner is also optimal even if the grid is not uniform. 

TABLE 4. Preconditioner (20) with nonuniform mesh around the 
cross-point 

N1 5 11 23 47 95 
N2 10 21 43 87 175 
N3 7 15 31 63 127 
N4 15 31 63 127 255 
K (TS) 1.80 1.86 1.89 1.92 1.94 

4.2. Multi-subdomain decomposition without overlappings. We shall now 
report numerical examples for applying our new preconditioner together with two 
well-known nonoverlapping domain decomposition methods: the substructuring 
method and the vertex space method. 

Let Q be a polygonal domain together with a coarse-grid triangulation To with 
mesh size ho. A finite element triangulation Th with mesh size h is obtained by 
refining TO. The coarse mesh To is viewed as a domain decomposition of Q, and 
the mesh line of To is then the interface F of the decomposition. Let Q? and Qh 
denote the set of nodal points of the triangulations To and Th, and So and Vjh 
the finite element function spaces corresponding to To and Th, { Z$0, Z E Q0 } and 

{l4,,Z E Qh} the set of finite element -basis functions of SO and Vh, respectively, 
and AO the stiffness matrix corresponding to To. 

The set of nodal points on the interface Fh = fr n Qh can be divided into several 
mutually disjoint subsets, 

where FO is the set of coarse-grid nodal points (also cross-points), ]ph C rh (1 
1,... , m) consists of, say, k1 nodal points in the interior of a segment of the inter- 
face. 

Substructuring method. The first multi-subdomain preconditioner considered 
is an additive variant of the substructuring preconditioner of Bramble, Pasciak and 
Schatz [2]: 

(21) r IoA-1ot + E TeTee 
eE8 
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Here, 1o = (aij) is the prolongation such that aij = q)(zi), 7;e is the zero extension 
operator from ]Fh to ]h, and Te are the matrices defined by (20), and ? is the 
set of all coarse-grid element edges (namely the edges from domain decomposition 
interface). 

Table 5 contains the results for the condition numbers of fS, which grow at 
the rate of the polylogarithm of the number k1 of nodal points in the segments of 
interface. 

TABLE 5. A variant of the substructuring preconditioner (21) 

p 4 4 4 4 4 4 4 
k1 3 5 10 20 40 80 100 
, 4.54 6.00 8.61 12.0 16.0 20.8 22.5 

Note that the growth of condition numbers shown in Table 5 is due to the 
preconditioner (21) itself and it agrees with the theoretical prediction in [2]. In 
fact the numerical values shown in Table 5 are also very close to those reported 
in [2]. In this particular application with the uniform grid, however, our Green's 
function approach may not be, computationally, as efficient as the FFT approach 
used in [2], but such a simple situation is not the intended application of our 
method; nevertheless, it indeed shows the efficiency of our method in this case. 
More interesting-applications of the method to the cross-point case are given below. 

Vertex space method. The vertex space method is a modification of the above 
substructuring method, where an additional space is introduced, called vertex space, 
around each cross-point in the domain decomposition (cf. Smith [14], and also 
Matsokin and Nepomnyaschikh [11]). More specifically, at each cross-point in FO, 
we select a subset of ]h around it, which contains about k2 points along each 
segment connecting to this cross-point; this set is denoted by IFh (v E V). The 
vertex space preconditioner can be written as 

(22) f = IoA-1ot + E IvTvLvt + E 7Tefe;et 
vEV e6 

Compared with [2], the above preconditioner has additional terms involving v E 
V. Here, Iv is the zero extension operator from ]Fh to ]h, and Tv are the matrices 
defined by (20) for the cross-point case. 

According to the theory of Dryja and Widlund [7], the preconditioner (22) admits 
the following estimate: 

(23) (jTS) < log2 (1 + k1 /k2). 

Note that the preconditioner (22) is optimal if the number of nodal points in IFh is 
proportional to the number of nodal points in ph. 

In our test, we decompose the unit square into p x p subsquares, and each sub- 
square contains k1 x k1 nodal points in its interior. On the (p - 1) x (p - 1) 
cross-points, we select k2 points in each of the four segments around it to form the 
cross-point components in the preconditioner. 

Tables 6-9 contain results with a different number of subdomains, different num- 
ber of nodal points in subdomains and different number of nodal points around a 
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cross-point, respectively. FRom these data, we can tell the role of different parts 
of the preconditioner, and the results appear to be in agreement with the estimate 
(23). 

TABLE 6. The effect of k2 for preconditioner (22) 

p 4 4 4 4 4 4 4 
k1 40 40 40 40 40 40 40 
k2 1 2 4 8 12 16 20 
i 4.96 4.32 3.83 3.01 3.03 3.02 2.96 

Table 6 contains results for a fixed number of subdomains and a fixed num- 
ber of nodal points in subdomains, but variable number of nodal points around 
cross-points. The results show that the size of the cross-point component in the 
preconditioner affects the condition number very weakly (see (23)). 

TABLE 7. Results for very small vertex spaces 

p 10 10 10 10 10 10 
k1 10 20 40 60 80 100 
k2 3 3 3 3 3 3 
, 2.93 2.99 3.91 4.55 5.00 5.40 

Table 7 shows that when the scale of the cross-point component in the precon- 
ditioner is kept fixed, the condition number varies slowly with respect to the scale 
of subproblems also. 

TABLE 8. Optimality of the preconditioner (22) 

p 5 10 20 30 40 50 60 70 80 90 100 100 
k1 5 5 5 5 5 5 5 5 5 5 5 10 
k2 1 1 1 1 1 1 1 1 1 1 1 3 
, 2.78 2.83 2.85 2.85 2.85 2.85 2.85 2.85 2.86 2.86 2.31 2.42 

Table 8 shows that when there is the coarse-grid component in the precondi- 
tioner, the preconditioner will be optimal and the condition number is independent 
of the size of the coarse grid only if the local parameter k2 is kept fixed. 

TABLE 9. Result without a coarse-grid space 

p 5 10 20 30 40 50 60 
k1 5 5 5 5 5 5 5 
k2 1 1 1 1 1 1 1 

s 35.2 137 545 1224.1 2175.3 3398.4 4892.0 
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Table 9 contains results for a preconditioner not using the coarse-grid space, and 
it shows the importance of the coarse-grid component in the preconditioning. 
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