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AN A POSTERIORI ERROR ESTIMATE FOR A 

FIRST-KIND INTEGRAL EQUATION 

CARSTEN CARSTENSEN 

ABSTRACT. In this paper we present a new a posteriori error estimate for the 
boundary element method applied to an integral equation of the first kind. The 
estimate is local and sharp for quasi-uniform meshes and so improves earlier 
work of ours. The mesh-dependence of the constants is analyzed and shown to 
be weaker than expected from our previous work. Besides the Galerkin bound- 
ary element method, the collocation method and the qualocation method are 
considered. A numerical example is given involving an adaptive feedback al- 
gorithm. 

1. INTRODUCTION 

The numerical treatment of an integral equation of the first kind via an adaptive 
scheme is studied in [4, 7, 8, 9, 14, 15, 18, 19, 24, 25]. In this paper we sharpen 
results of [4, 7, 8, 9] and treat collocation and qualocation methods for the first 
time. 

As a model example, we consider Symm's integral equation, which is equivalently 
related to the interior or exterior Dirichlet problem for the Laplacian in a bounded 
two-dimensional Lipschitz domain Q with boundary O9Q of transfinite diameter =A 1 
and r C aQ: Given f find X with 

(1.1) - jq(y) log Ix - yIds = f (x) (x E-r). 

A Galerkin discretization, a collocation method or a qualocation method provides 
us with some qh and a partition Xr = {rl,... , rN } of r in (so-called) elements 
rl,... , rN with the property that the residual R, 

(1.2) R(x) := f (x) + ? j h(Y) log Ix - yldsy (x E r), 

has at least one zero in each element rj. 
The aim of this paper is to prove that this information is sufficient for an a pos- 

teriori error estimate 

N(E II12 1/2 
(1.3) II- O~h IIH-a (r) <_c(a, ir) - h 2 

kR 
i 

j=1L() 
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where prime or '9 denotes the derivative along F with respect to the arc length. 
The constant c(ai, r) depends on the norm (i.e., on ai) and on the mesh ir. The 
mesh-dependence is very weak, 

(1.4) C(ai, ir) Ca, if a 
#1/2, 

L C1/2 (log(1 ? ))1/2 if ca 1/2, 
where 0 < a < 1, ii= max{hj/hk: Fj is a neighbor of Fk}, and C, is a universal 
constant depending on ai only. 

We show that this dependence of r, for a = 2 in (1.4) is sharp. We remark 
that the reverse inequality of (1.3) (with a different constant C) can be proved for 
uniform grids as in [5]. 

An outline of this paper is as follows. In ?2 we present an estimate as our main 
result in Theorem 1. We report on some applications in ?3, mainly for Symm's 
integral equation, but point to other first-kind integral equations as well. A numer- 
ical example for the collocation method applied to Symm's integral equation from 
[14] is presented in ?4, where we consider an adaptive mesh-refinement procedure as 
well. A further important application to the adaptive coupling of boundary element 
methods and finite element methods will appear in [6]. 

2. AN ESTIMATE 

We define the Sobolev space H' (F) for an open or closed arc F. Let Q be a 
bounded Lipschitz domain with (closed) boundary r = aQ. The norm in H1 (P) is 

|| V 1H1l(f) = V L2(1 ) ?+ 1 VI L2() 

(prime denotes derivative with respect to the arc length). Then, we define H'(F) 
by (complex) interpolation of Hl(P) and L2(F), 0 < ai < 1 (cf., e.g., [3]). 

Remark 1. Equivalently, H'(F) is the trace space 

H'(r) = {vl: v E H 1/2(R2)} (o > 0) 

of H'+1/2(R2) defined as the standard Sobolev space [16]. 

For ai 0 we define Ho(F) - L2(F) and extend the scalar product in L2(F) to 
the duality pairing (, ) in Ho(f) and H`(f): 

Ha (F) = (H- '(r))* (a < 0), 

with * denoting the dual space. 
Let R JR -> F be a periodic arc length parameterization of r with length L. A 

subarc w of F is defined by a < b, b - a < L, as the range of I[a,b]. In particular, 
if F is an open arc, we assume oy = [O,L] to be an arc length parameterization of 
F. For any subarc w, 

H'(W) = {vK : v E H`()}j 

where the norm of v E H'(w) is defined as the minimal norm of an extension, i.e., 

11 V jjHR(w) = inf{jj IIH() : V E H'(f) with vr = v}. 

Note that functions in H1 (w) are absolutely continuous (on w) and their derivative 
(with respect to the arc length) belongs to L2 (w). 

A mesh ir = {F,. .. ,FN} is defined as a partition of F in elements F1,... ,FN 
such that we have a partition of the parameter interval 0 = xo < x1 <.. < XN = L 
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with Fj being the range of [xj-, xj] under the mapping -y. Let hj denote the 
length of Fj. If F is an open arc, then we further assume that the length of the 
complementary arc f \ F, that is, L - L, is greater than h1 + hN. 

Theorem 1. Assume that f E H' (F) has at least one zero in each of the elements 
in the mesh 7r. Then, for 0 < a < 1 with c(ac, 7r) given in (1.4), 

(2.1) | f HH () C(a, r) (S h<l) 1 a-f 1122 ) 1/2 
3=1 

The proof relies on a local interpolation as in [8] and the following lemmas. 

Lemma 1 ([14, 17, 21]). Let fI,. . . fn E H`(f), 0 < a < 1, such that fi * = 0 
on F whenever 1 < j < k < n. Then, 

n n 

(2.2) 1H E fi IIHHa() ?C1 E 1 fi IIHH() 
j=1 j=1 

The constant Ci depends on F but does not depend on fj or on n. D 

Remark 2. The lemma is proved by von Petersdorff in [17], where Ha (F) is defined 
by complex interpolation (cf., e.g., [3]) with Ci = 1 and for suppfj a Lipschitz 
domain. The lemma is used by Stephan and Suri in [21] with Ci = C, where 
H (F) is defined by real interpolation. Faermann studied the assertion and its 
reverse inequality [14] and she derived some constant Ci explicitly in case Ha (F) is 
regarded as a manifold (transforming the norm of Ha (R), in the parameter interval 
to the manifold). As is well known, all the abovementioned definitions of Ha (F) 
define the same set of functions and equivalent norms [16]. Thus, the lemma holds 
in all cases, but, in general, with a different constant Cl. Here, in case of complex 
interpolation, Ci = 1. 

Remark 3. We recall the interpolation estimate: For all f E H1 (F) and 0 < ai < 1, 

(2.3) || f HHa(F) ? 02 * f K() H1 f llHl(r)- 

The constant C2 depends certainly on the domain and on the interpolation; for 
complex interpolation, C2 = 1. 

Remark 4. An equivalent norm in Ha (R) is given by the Sobolev-Slobodeckij norm 
- 1 defined by 

(24) If la 1 f 1IL2(R) + J J - tll+2a dsdt (fEHR(R)) 

A central role in the proof of Theorem 1 is played by hat functions nx,y,z E H1 (R) 
defined, for x < y < z, by 

0 if t < x, 
(2.5) ___ (t) = ll y if x<t<y, (tR). 

1 if y t > z 

We essentially make use of the Sobolev-Slobodeckij norm, defined in (2.4), of the 
hat functions. 
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Lemma 2. For 0 < E < 1 there is a constant C, > 0 such that for all x < y < z, 

Cc, (Y - X11-2 + IZ _ yll-2c)1/2' if a 7& 1/2, 

(. C1/2 (l0g(1 + max{ Iz-yI -YlI 1/2 if ag = 1/2. 

This lemma is possibly well known; a proof is sketched at the end of this section 
for completeness. 

Proof of Theorem 1. Since f has a zero zj in Fj, the fundamental theorem of cal- 
culus implies, for each z F3j, 

z 

(2.7) If(z) = I f'(() dsdI < || f' IL1(rj) < hII f'HL2 (rj) 

where we used Cauchy's inequality in the last step. Hence, if yj :y(xj) E Fj nlFj 
and fj:=f(yj), 

(2.8) lfjI < min{ h |iH f' IIL2(rj_1), hI f' IIL2(rj)}. 

Similarly, we infer from (2.7) that 

(2.9) 11 f IHL2(rj) < hj 11 f' IL2(rj). 

First, we treat the case F closed (hence equal to F) and then deduce the second 
case from that. Let yo = YN, YN+1 := Yi, XN+1 := L + h1, and, for j = 1,... , N 
and z E F, define the hat function 

(2.10) 7yj(z) =7xj_1, j,xi+ (-Y W)) 

The norm in H'(r) and the norm If o y 1 c, with I, as in (2.4), are equivalent. 
Therefore, Lemma 2 leads to 

(2.11) 1 7i'jI lH-(I[) < c (ae,7r) * (h -2a + h' -2a 1/2 

where c(oa, ir) is given in (1.4). Next we split f into three parts, f = r +godd +?even, 

N N 

(2.12) geven := E fj yj and Yodd 5= E fi N; 
j=1, j even j=1, j odd 

r := f - godd - geven. We remark that r has zeros Yi, ... , YN and godd has ze- 
ros Yo,Y2,... , while geven has zeros Y, Y3. We may apply Lemma 1 to r by 
considering rj defined by rj := r on Fi and r3 := 0 on F \ Fj. By construction, 
rj is continuous at Yj-1 and yj and is piecewise an absolutely continuous func- 
tion. Furthermore, the derivative rj belongs to L2(F), so that rj belongs to H1(F). 
According to Lemma 1, 

N N 

(2.13) 11r r (2 ) < E 1 rj 1H() < E ? r 1L(2 (P) 11 r 2ce 

j=1 j=1 
where we used (2.3) and that rj is zero outside Fj. Since r vanishes at the endpoints 
of Fj, we find, as in (2.9), 

(2.14) 11 r ||L2(rj) < hjll r' IL2(rj). 

By definition of r we have r = f - fji 77j-1 - fj Thi on Fj. Thus, by the triangle 
inequality and by 1H,q -1 5 HL2(Fj) = hi j 2(-) = 1/2 

(2.15) || r' HL2(rj) < 1H f' HL2(r3) + hi /If11 + hi /fil < 311 f' IIL2(rj) 
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because of (2.8). By (2.13)-(2.15), 

N 

(2.16) .11 r H() < 9Eh2(1 )(1 + hj2)a1 f' 112 
j=1 

Arguing for 9odd and 9even as in (2.13) we conclude from Lemma 1 that 

N 

|| 9even H(1 ) ? E <fi12 H |j 1(2 
j=1,j even 

and an analogous estimate for 9odd. Combining the two estimates and using (2.8) 
and (2.11), we finally derive 

N 

(2.17) 112even H1Ha() ? H9odd <Ha() ? 2c(a, 1r)2 h2-2a 1 f' 1L2 
j=1 

According to the triangle inequality, we get, for f = r + godd + geven) from (2.16) 
and (2.17), that 

(2.18) 11 f IIH (I) < 6(1 + c(ca, r)) E(Z ? h+ )'h-2,H f' 1 1/2 

This proves the theorem in case F is a closed arc. 
It remains to consider the case 'that F is an open arc. Then, the norm of f is 

defined by extension such that we define an upper bound of I f I (F) if we extend 
f to f E H1(F) by reflection at the endpoints of r, i.e., 

f ( (s)) = f((-s)) if -x* < s < 0, 

f((s)) = f ((L - s)) if L < s < 2L - x, 

where -y(x*) is a zero of f in Fj. Hence, we extend j by zero outside of F* 

oy[-x*, 2L - x7v]. Note that F* is an open subarc of F because of L -L > hi + hN. 

Therefore, f belongs to H1 (F) and has zeros in each of the elements 

(2.19) Fo := y[-hi, 0],FIrlI ,N,rN+1 := y[L,L + hN],FN+2 =r \Fr 

In other words, we have a partition of the closed arc F and a function f in F. 
Therefore, we may apply the proven first case of the theorem and obtain an estimate 
like (2.1); actually it is (2.1) when we add contributions of the element Fo (which is 
smaller than the contribution of IF), of FN+1 (which is smaller than the contribution 
of FN) and of FN+2 (which is zero). Thus, 11 f IIH(r) < 11 f IIHH() is bounded by 
twice (2.1). It remains to consider the case ai = 1/2, where a different i, in the 
new mesh (2.19) on F might cause another constant. A closer look at the above 
arguments shows that the hat functions at the endpoints of r* do not appear 
because f vanishes there. Consequently, the norms of the related hat functions are 
not involved; we in fact may consider the same constant c(ai, ir) in the new situation 
(2.19). This concludes the proof of Theorem 1 in the second case. D 

Remark 5. We stress that (2.8) and (2.9) imply (2.1), so the condition on the 
zeros of f is needed to ensure (2.8) and (2.9) only. Thus, Theorem 1 can be 
generalized, replacing the condition on the zeros of f by the inequalities (2.8) and 
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(2.9). Moreover, assuming weaker forms of (2.8) and (2.9), we get a (weaker) 
estimate of the form (2.1) following the arguments in the proof of Theorem 1. 

We conclude this section with some remarks on the proof of Lemma 2. 

Proof of Lemma 2. It is sufficient to consider x = -a, y = 0, and z = b with 
a, b > 0, and T7 := T7-a,O,b. Since T ni HL2( 0,o0) = (a + b)/3, the proof relies on a 
direct computation of the integral 

f+0 f+ o I T(s) -T(t) 2 ds dt. 

The domain of integration (-oo, oo) is split into four parts (-oo, -a), (-a, 0), (0, b), 
and (b, oo), according to the piecewise definition of T. Each of these integrals is an 
analytic function which can be computed by hand. 

A (laborious) Maple calculation of the resulting 12 nonzero contributions for 
a = 1/2 reveals 

(2.20) I=(1+-) .log(1+-)+(1+). log(1+-) (a=1/2). 
a b b aa 

Define k max{ a,b'}. Then, (2.20) shows 

I<2(1+1/k) .log(l+k) <4 log(l+k), 

which proves the assertion in Lemma 2 for ai = 1/2. 
We report on the case ai 7& 1/2, 0 < a < 1, in the sequel. The abovementioned 

12 integrals can be transformed into four types of integrals I1,... ,14 which are 
estimated below, where the constants C1,... , C4 depend only on ai 7 1/2 but not 
on a or b. The first type of integral is 

Ii :=jo0ja t t g l dxdy = a12j j: 1-x dxdy = a12 C, 

where Ci f:= fI Ix1li+2a dx dy < 1/(2a (1 - 2ac)2) < oo. The second type, 
obtained, e.g., after the substitution of x into -x, is 

12 j= jb L - x/b 
1 
2dx dy =: 12a + 12b 

?x y11+2Ca 

with 

12a I jb b dxdy = bl-2a J 1X2 dxdy < C2b1-2a, 

where C2 f: fL < 2/(ol1 - 2al) < oo. The second contribution is, for 
a < b only, 

12b 
b 

fb 11 
- 

x/b2 dxdy < fA 
a 

f x/a 12 dxdy 
]a]O Xy11+2a XxY?Iy1]02a 

jbjb dx~y2 dy d?1~ 2?21 + dxdy < at-2aeC2 + m(aw-2 + bls-2a 

In the last term we used 
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fb b dxdy J 2a(1-2ac) 1 > 2ci, 
II I ~1+2a dxdy < 

JaJa IXYI a12 if 1 < 2a. 
a (2ca~i-1) 

Altogether, 

12 < (C2 + (oal - 2al)-1) . (al-2 + bl-2a). 

The third type of integral is 

13 ja Ix/aj - y/a2- dxdy = a1-2aC4 
ix-y11+2ca 

where C4 := f xy1-2 dx dy < 2/(1-ca) < 00. 
The remaining contribution is, essentially, 

14 ja 1b lxlb y/aj2 dx dy 14a + 4b 
I+y~l1+2ca 

We may, and will, assume without loss of generality that a < b. Then, 

4 a a 
ljx/b-y/a dd 1-2a j11 jx-ya2b dxdy 

q1 y+l 
= a12 . j j - y *- a/b)2 . z-1-2 dx dy 

-2a J z-2a dx dy + a'-2a (a/b)2 j j 2 z-1-2a dx dy < a 
o y 

< a- (2/(1-ca) + 1/(2ai)) 

and 
b4 a I/b - y/al2 

dxdy 
2a12 

i o dx dy 1-2 
14b =x 1 + yll/2a dxdy < a'2 j x + yll+2a 

< a C2ac 

Altogether, 

14 < a12 . (C2 + 2/(1 - a) + 1/(2ai)). 

To summarize, one can find the claimed estimate by dealing with 12 nonzero inte- 
grals which are transformed into four types I 1,... , 14 and estimated as above. In 
this way, one proves the lemma. 

Remark 6. Considering a hat function rj as in the proof of Theorem 1, one verifies 
that the mesh-dependence in c(oa, ir) is sharp. 

3. APPLICATIONS 

Assume A is a pseudodifferential operator of order ai E R on the closed arc F. 
Suppose there exists some s E R with 0 < s < 1 such that 

(3.1) A: Hs+c(F) > HS(F) is linear, bounded, injective, surjective. 

Hence, for f E HS(F) there exists a unique solution u E Hs+ (F) of 

(3.2) Au = f. 
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Assume we are given a mesh ir = {F1, ... , FN} on F and a function uh E Hs+ (F) 
with the property that the residual R AUh - f belongs to H1 (F) and that R has 
a zero on each element Fj. Then, according to Theorem 1, 

(3.3) U - Uh ||Hs+c(r) < c(s, r) || hi-s atR IIL2(r) 

Here, h is considered as the piecewise constant function with hlrj = hj. (For 
a proof of (3.3) notice that A-1 is bounded, say by CA-i, owing to the inverse 
operator theorem, and so U - Uh HHs+c!(r) < CA- R f Hs(r). Thus, (3.3) follows 
from Theorem 1.) 

In the sequel, we consider a few examples where (3.3) holds. The first model case 
is the single-layer potential operator A = V, V$ defined as the left-hand side in 
(1.1). (We consider X = u and Oh = Uh in this section for A = V to unify notation.) 
The condition (3.1) is satisfied with s = -1/2, ai = -1 provided the capacity of 
F is not equal to 1 (cf., e.g., [13, 22, 20, 23]; sufficient is, e.g., that Q is included 
in a unit disc, and hence this is achievable by scaling of the domain). By [12], 
(3.1) is actually true for any s in the unit interval, even for a Lipschitz boundary 
F. Moreover, if f E H1(F) and uh E L2(F), then R E H'(F). (R E Hl/2+E(F) for 
some e > 0 would be sufficient.) So it remains to study why the residual R has a 
zero on each element. 

Example 1 (Galerkin method I: discontinuous trial functions). Assume that Sh is 
a finite-dimensional subspace of L2(F) such that, for any element Fj, we have at 
least one element qj E Sh which satisfies 

(3.4) y3j >0onFj and yj=OonF\Fj (1<j<N). 

(In practical examples Sh is some spline space such that qj = 1 on Fj, Ty = 0 on 
F \ Fj, belongs to Sh.) 

Then, the Galerkin solution uh E L2(r) satisfies 

(3.5) j(Auh-f)wh ds = 0 for all Wh E Sh, 

and hence (3.3). (For a proof notice that, by (3.5), the integral of R . rB is zero. By 
(3.4), the continuous function R has a zero on Fj.) 

Example 2 (Galerkin method II: continuous trial functions). In case of continu- 
ous trial functions, we may fail to find mj satisfying (3.4). (For example, in 
case Sh = S (IF), the continuous piecewise linear splines, the hat functions are 
supported on two neighboring elements.) Therefore, we assume in this example 
that Sh includes nonnegative functions Ti,... , Tj and that there exists a mesh 
* = {f1,... ,Fj} with suppyj C Fj C F for j = 1,... ,J. As in the previous 
example, we conclude from (3.5) that R has a zero on each element in *, and so 
Theorem 1 leads to 

(3.6) U - Uh IHH+a(F) ? C(S-) (S A2(1-s) H11 a R 1122 / 
O s L(F) 

j=1 

To obtain the estimate (3.3), we further.suppose that at most d elements of ir are 
needed to cover one element of * and that conversely each element of * contains at 
least one element of ir. Then, for all Fj E * and Fk E ir with Fk C Fi there holds 
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hk < hj < d. d- * hk. This and (3.6) prove the estimate (3.3) with replacing the 
constant c(s, 7r) by 

(3.7) 

Q- *d'-s * .d(l-s) if s : 1/2 and C1/2 d/2 d/2 * (log(l+ d ,d))1/2 if s = 1/2. 

To illustrate this example, we consider Sh = S1 (r) and define a coarser mesh ir by 
J:= [N/2j and rF := r21 U r2j for j ={1,.. ,J-1} or for j = J if N is even, 

and otherwise rJ = Uk=J,J-1,J-2 rk. Thus, d = 2 if N is even, and d = 3 if N is 
odd. Finally, we stress that similar constructions are also possible for higher-order 
spline functions, even with higher smoothness properties. 

Example 3 (Qualocation method). As in Example 1, let Sh satisfy (3.4). Then, 
the qualocation method determines uh E L2(r) with 

N kj 

(3.8) Zwij * (AUh-f )(Xij) * Wh(Xij) = 0 for all Wh E Sh, 

j=l i=1 

where xij are kj simple nodes on rj and wij are positive weights. The condition 
(3.8) is simply a numerical approximation of the Galerkin condition (3.5) by some 
quadrature rules which are properly developed for integral equations in [11]. Since 
the weights are positive, (3.8) implies that, for a fixed element rj, some values of 

R(xij) are > 0 and some are < 0. By continuity of R, R has a zero on rj, thus 
(3.3) holds. 

In case (3.4) is violated but there exist nonnegative ansatz functions with a larger 
support, we can proceed as in Example 2 and obtain either estimate for a coarser 
mesh * or (3.3) with larger constants as in (3.7). 

Example 4 (Collocation method). In the notation of Example 3, (3.8) is a col- 
location method if kj = 1, wj = 1, i.e., if the residual R is zero at a given node 

xlj E Fj. Hence (even if (3.4) is not satisfied), (3.3) holds. 
We remark that, even in the case of midpoint collocation on polygons (Sh the 

piecewise constants and xlj is the midpoint of rj), an a priori error estimate in 
HS+a (r) seems unknown; only a tricky convergence result [10] in mesh-dependent 
norms (equivalent to Sobolev norms for uniform meshes) serves as a motivation to 
apply a low-order collocation method. 

Remark 7. The Arnold-Wendland lemma [1] is used to construct a posteriori er- 
ror estimates for the collocation method in [14]. Hence, discontinuous piecewise 
constant splines as in Example 4 are excluded in [14]. 

The second model case is the hypersingular integral equation, equivalently re- 
lated to the Neumann problem for the Laplacian, 

(3.9) Wu(x) = f(x) (xE r), 

where the hypersingular operator W: HS(r) -) Hs-(r), defined by 

(3.10) Wv(x) :=- -_ v(y) j log Ix - yldsy, 

is linear, bounded, symmetric and a Fredholm operator of index zero [12]. The 

operator A = W is positive definite between Ho/(r) and Ho (r), 

(3.11) Ho(F) := {v E H(r)F: jvds = O}_ H(I)/R. 
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From [12], (3.1) is true for a = 1 and any s with -1 < s < 0. Hence, with a little 
modification, we are in the situation (3.1) and (3.2). 

Given a mesh ir, let S1 (F) be the space of continuous functions, with support in 
F, which are a polynomial of degree < 1 on each element. 

Theorem 2. Let F be an open or closed arc as in ?2. If f E L2(F) is L2(F)- 
orthogonal to S1 (F), then for 0 < ai < 1 with c(ac, ir) given in (1.4), 

(3.12) 11 f IIH-a(r) < c(a) 1r) * || h f 1L2(r). 

Proof. First, assume F to be a closed arc. The differentiation a is an isomorphism 
between Ho (r) and Ho-1(F) (see, e.g., [7]). Its inverse is the integration operator 
I: Ho-(F) -> Ho(F). Let F := I(f), i.e., a F = f. Since f is orthogonal to 
Ph E S, (F), we have 

(3.13) 0 TjhayFds= -jFA ahds 

by using integration by parts. Hence, F is L2(F)-orthogonal to the set of {a THh 

nh E S (IF) }, which is the set of piecewise constant functions with integral mean 
zero. Since F E Hol(F), F is orthogonal to all piecewise constant functions, and 
so has at least one zero on each element. Therefore, Theorem 1 can be applied to 
F and proves the assertion. Finally, if F is an open subarc of F, as in ?2, with 
endpoints a and b, let f= f on F and f= Oon \F, so f E Ho (F). Set F:-I(f) 
and F(x) := F(x) - F(a), so F vanishes on F \ F and (3.13) leads to F being 
L2 (F)-orthogonal to the piecewise constants. Thus, F has a zero on each element. 
Since F' = f and differentiation is a bounded operator from H"- (F) to H(F), 
we have 

11 f IfH--(r) < 11 f 1fH-a() < C | HF 6Hl-c(P). 

Then, the assertion follows from the estimate on F in Theorem 1. 

Remark 8. As indicated in the proof of Theorem 2, the differentiation operator can 
be used to shift the range of interest from 0 < s < 1 in Theorem 1 to any real s 
(under appropriate regularity conditions on Sh, Uh, f, A etc.). 

Example 5 (Galerkin method for W). Assume that Sh is a finite-dimensional sub- 
space of H1 (F) including S71 (F), F closed for notational simplicity. Given f E L2 (F), 
the Galerkin solution Uh E H1 (F) of the hypersingular integral equation (3.9) sat- 
isfies 

(3.14) j(WUh-f)- Whds = 0 for all Wh e Sh- 

Hence, r := WUh - f is L2(F)-orthogonal to S1(1), so that Theorem 2 proves, 
0 < t < 1, 

(3.15) IU - Uh HjHt(r) < c(1 - t, ir) .1 hl1tr HIL2(r). 

Remark 9. Theorems 1 and 2 can be applied to a transmission problem as analyzed 
in [8] (also under consideration in [7]). The application of Theorems 1 and 2 follows 
the lines of this section, so we omit the details. 

In conclusion, Theorems 1 and 2 improve on recent work [4, 7, 8, 9] in case F is a 
one-dimensional open or closed arc. The a posteriori estimate is sharp for uniform 
meshes. 
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Theorem 3. Let F be a closed polygon and let the right-hand side f in (3.2) be 
smooth such that the singularities of a solution u are caused by corner singularities 
only. Suppose 7r is a quasi-uniform mesh, i.e., 

(3.16) max{hj/hk j, k = 1,... , N} < Ci, 

where Ci is a global constant. In Examples 1-4 we have Uh E S, (F) and 

(3.17) C2 111 h1 Ss3 R JIL2(r) < I Uf - Uh1IH8-1(r) < C211 h18, Rs IIL2 (F). 

In Exarmple 5 we have Uh E S1 (r) and 

(3.18) C07II h1'r 1IL2(r) ? U - Uh IIHt(F) < C2II hl tr IIL2(r). 

Proof. The assertion follows as in [4], because there is no difference in the trial 
function space between Galerkin and collocation methods, and only approximation 
and inverse properties of the trial function space and regularity of the solution are 
required. [1 

4. NUMERICAL EXPERIMENTS 

A posteriori error estimates are useful tools to verify the reliability of a compu- 
tation and to motivate an adaptive algorithm using local upper error bounds. In 
this section we consider the new estimates and focus on the midpoint-collocation 
of Symm's integral equation method as in Example 4, because 'there is no rigorous 
a priori error estimate in energy norms H-1/2 () for arbitrary meshes (however, 
cf. [10]), and so the reliability is not guaranteed without an a posteriori error con- 
trol thus the estimate (3.3) is very important to justify the numerical scheme. 
Numerical examples for Galerkin methods can be found, e.g., in [7, 8, 9] including 
algorithms of the type under consideration below. 

The following numerical example is taken from [14] where we refer to for details 
on the implementation; see also the appendix. Let Q be three quarter of the disc 
of radius 1/2 centered at the origin. So, a parameterization of F is -y(s) = (s, 0) 
for 0 < s < 1/2, y(s) = (cos(s - 1/2),sin(s - 1/2)) for 1/2 < s < 1/2 + 37r/4, 
-y(s) = (0, 1 + 37r/4 - s) for 1/2 + 3Ur/4 < s < 1 + 37r/4. The right-hand side f is 
computed by the Dirichlet data uo as 

(4.1) f(x) =uo(x)- -juo (y)& logIx-yldsy (xEF). 

We use uo (r, ,o) = r2/3 * sin(2fo/3) as Dirichlet -data in polar coordinates. The 
solution of the Dirichlet problem is u = uo (since uo is harmonic) and q in (1.1) is 
the normal derivative of u. Note that the singujlarity of uo at the corner is generic 
for the domain Q. 

In the discretization, the integral Ij (x) - J r, .$(y) log Ix - yidsy is approxi- 
mated by I(x, a, b), where rj is replaced by the straight line segment [a, b] between 
the end points a and b of Fj (taking the chord instead of the arc). We refer to 
[14] for details; the numbers below are computed with functions f and I(x, a, b) as 
shown in the appendix. 
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With xj denoting the midpoint of Fj (on the arc), the collocation equations read, 
for the unknown coefficients uj, 

N 

(4.2) Z Ij (Xk) Uj =f (Xk) (k= 1,... ,N). 
j=1 

The implementation is performed in Maple, the (small) linear system is solved by 
Gaussian elimination. 

Once (ul, ... , UN) are known, the residual can be computed by R(x) f(x) - 

ZN 1 Ij (x) * uj. We evaluated R on each interval and computed a spline approxi- 
mation of R to reduce computational costs. 

The discrete solution Uh (piecewise constant with uj := Uhlr.) for N = 10 and 
the exact solution are plotted in Fig. la as functions on the parameter interval. The 
coarsest mesh is indicated there by the jumps of Uh (Uh being piecewise constant). 
In a different scaling, the related residual R is shown in Fig. lb. 

By using a spline approximation of R, the quantities 

(4.3) aj := 11 R' IL2(rj) (j = 1,... N) 

can easily be computed as the upper bound bN, 

N12 
(4.4) bN:= (hj.a2)/ 

Since the solution is known, we can compute the energy error 

(4.5) eN (Zj R (u -Uh)) = j(V(-uh)) (-uh) ds, 

which is equivalent to the error in the H-1/2(17)-norm. Starting with the coarse 
mesh for N = 10, indicated in Fig. la by the jumps of Uh, we define a quasi- 
uniform discretization by successively halving of all elements giving meshes with 
N = 10,20,40,80,... elements. The corresponding quantities are shown in Table 
1. 

TABLE 1. Numerical results for quasi-uniform meshes 

N eN aN bN eN/bN 

10 .083212 .16861 .4935 
20 .050715 .714 .09877 .5135 
40 .031698 .677 ;06063 .5227 
80 .019925 .669 .03787 .5260 

160 .012544 .667 .02377 .5275 

We observe that the error eN is decreasing and so the scheme seems to converge. 
The experimental convergence rate aYN is computed as 

(4.6) a log(eN/ leN) 

(4.6) cYN~~~l - log (N/N') 
where N' and eN, are the corresponding values of the previous row. From Table 1 
we see that a uniform mesh yields a convergence rate 2/3 which, as is well known, 
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FIGURE 1. Exact and discrete solution in la (top) and residual R 
in lb (bottom) for N = 10 

is expected for a Galerkin scheme (see, e.g., [21, pp. 805 ] for a discussion on the 
convergence rates in this example). In practical situations, we do not know eN but 
may compute bN. Since, by Theorem 1 applied in Example 4, we have an estimate 

(4.7), eN < C(log(l + h))1/2 bN 

as in (1.4)), the values bN in Table 1 indicate convergence as well and justify 
that Uh may be regarded as a reasonable approximation to u. 
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FIGURE 2. Meshes generated by Algorithm (A) indicated by nodes 
in the parameter interval 

The question of efficiency is related to the quantities eN/bN in Table 1, which 
are proved to be bounded from above. The numbers in Table 1 are bounded below 
as well, which indicates efficiency of the estimate as proved in Theorem 3. 

The final application is to adaptive algorithms. As in [7, 8, 9] we use the size of 
hja?, the contribution of Fj to the upper bound, to decide if we should refine Fj 
or not. 

Algorithm (A) . Given a coarse mesh, refine it successively by halving some of 
its elements as follows: For any mesh 7r compute a,, ... , aN as defined above and 
refine Fj if and only if 

(4.8) h. a2>Ok max hk*a 2 
3 - k=1...N 

k 

Remark 10. We ignored the mesh-dependence in c(1/2, ir) in this algorithm for 
simplicity. Since the dependence on i- is very weak, this is reasonable if we deal 
with a few refinement steps only. 

With 0 = 1/2 and the coarse mesh with N = 10 as above, Algorithm (A) 
determines a sequence of meshes as shown in Fig. 2, where the coarse mesh (chosen 
as in Fig. 1) is indicated on top by displaying the nodes in the parameter interval 
only. Each subsequent line represents the mesh after another step of Algorithm (A) 
and corresponds to the rows in Table 2. 

In the first four steps, we observe just a refinement towards the endpoints, which 
is reasonable in view of-the singularity there. The fifth and seventh mesh show some 
overall refinement followed by a further local refinement towards the endpoints. For 
these, quite arbitrary meshes, no convergence result in the energy norm seems to be 
available, so we can only rely on the computable upper bound bN shown in Table 
2 as well as other related quantities explained above. 
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TABLE 2. Numerical results for adapted meshes generated by Al- 
gorithm (A) 

N eN aN bN eN/bN 

10 .083212 .16861 .49 
12 .056021 2.17 .11900 .47 
14 .040796 2.06 .09164 .44 
16 .032842 1.62 .07806 .42 
24 .016187 1.74 .03646 .44 
26 .012974 2.76 .03137 .41 
34 .010497 0.79 .02272 .46 
40 .008647 1.19 .01910 .45 
42 .008561 0.20 .01821 .47 
46 .007017 2.19 .01656 .42 
52 .004830 3.04 .01269 .38 

From Table 2 we infer convergence because bN seem to decrease to zero. More- 
over, the convergence rate as well as the accuracy is remarkably improved. Effi- 
ciency is observed because eN/bN seems to be bounded below - though there is 
no proof for that. In conclusion, Algorithm (A) appears to be a proper tool in 
this example, even for the collocation method as illustrated as follows: The initial 
error elo is reduced to 10% using 10 meshes with degrees of freedom 10, 12,... ,46. 
The computer costs for each (small) system with N elements are essentially C. N2 
(postprocessing and computation of the stiffness matrix rather than the LU decom- 
position dominate the effort). So we have to compare 102 + 122 +... + 462 - 8,584 
with 1602 - 25,600 for the finest uniform mesh which produced far worse results. 

APPENDIX 

This appendix briefly documents the implementation of the midpoint collocation 
considered in the example of ?4. We refer to [14] for more details and proofs. 
CALCULATION OF f(x): 

f(x) ~ I12/ 
f (x) - _ --xi '3sin(2'p/3) + (x), 2 

kD(X) - 2 if lxi = 1/2, 

3 1rsi 
OkD(X) = -2 -8/3 1 (1 - t2. I sin2 dwv 7r 2/(+ 1t)2 1 -2t cos(3wl2) 

if t:=2. IxI<1. 

CALCULATION OF I := I(x, a, b): a := lb-al2, := -2(x-a)T * (b-a), a := Ix-a12, 
_'32' 77~~~' 6 :=44_,2, j :=4ap; 

if 6 = 0 then 
if 77 = 0 or r7 = 1 

then I :=-@(2 loga -1) 

else I := -(1 log(at + o3 + -y) 1- log = 1 ) fi 
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else 

I =-2 ( 2la I77 log (a + 3 + -Y) + 721 log (-y)-1I 

+ 2; (- +1377/2)[arctan( 
2 

3 + )-arctan( 1)]) fi. 
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