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ITERATED SOLUTIONS OF LINEAR OPERATOR EQUATIONS 
WITH THE TAU METHOD 

M. K. EL-DAOU AND H. G. KHAJAH 

ABSTRACT. The Tau Method produces polynomial approximations of solutions 
of differential equations. The purpose of this paper is (i) to extend the recur- 
sive formulation of this method to general linear operator equations defined 
in a separable Hilbert space, and (ii) to develop an iterative refinement proce- 
dure which improves on the accuracy of Tau approximations., Applications to 
Fredholm integral equations demonstrate the effectiveness of this technique. 

1. CANONICAL POLYNOMIALS OF LINEAR OPERATORS 

Let X be a separable Hilbert space having a basis x :=j{x0, Xl, X2,... }, and let 
A(X) denote the space of all linear operators on X. Then, for A E A(X) and for 
all i E N, Axi is a linear combination of the basis elements: 

(1) Axi = aijxj, aij E C. 

For A E A(X) and x, y E X, we define the equivalence relation 

X =A Y iff x-y E kerA. 

An operator A is said to be banded-from-above if there exists an integer k E N 
which satisfies the property P(k) defined as: 

aij _=0 i,j > 0 with j-i > k + 1. 

Let Ab(X) C A(X) denote the subspace'of all banded-from-above operators on X, 
and define an integer-valued function on the elements of Ab(X), by 

h(A) := min{k E N: P(k)} 

which, following Ortiz [3, 4], is called the height of A. Then, if A E Ab is of height 
h(A) equation (1) becomes1 

h+i 

Axi = aijxj, i > O. 
j=O 

A polynomial of degree n in X is any finite linear combination of the form 

Pn = Aoxo + Aix? + + Anxn, Ai EC, An 5A ? 

Received by the editor July 27, 1995. 
1991 Mathematics Subject Classification. Primary'41A10, 41A65; Secondary 45B05, 47A50. 
Key words and phrases. Tau Method, polynomial approximation, linear operator equations. 
1When dealing with a particular operator A we write h instead of h(A). 

?)1997 American Mathematical Society 

207 



208 M. K. EL-DAOU AND H. G. KHAJAH 

Given a linear operator A and an integer n > 0, we define an element Qn E X in 
such a way that AQn = xn; this Qn is called the n-th canonical polynomial associ- 
ated with A. The following proposition provides explicit expressions for canonical 
polynomials of orders > h: 

Proposition 1. Let A E Ab(X) be an operator of height h and, with reference to 
(1), assume that aij = 1 for all i > 0 and j = h+i . Then, the sequence of canonical 
polynomials {Qk: k > h} associated with A is determined by the recursive formulae 

h+k-1 

Qh+k A Xk- E ak,iQiS k > 0, 
i=0 

where Qh=A XO 

Proof. We use the definition of Qn to write xn as AQn and employ the linearity of 
A. For k > 0 we have 

h+k-1 

AXk = Xh+k + E akiXi 

i=O 

h+k-1 

= AQh+k + E akiAQi 
i=O' 

-h+k-1 

= A Qh+k + E akiQi 

i=O 

Therefore, 
h+k-1 

Qh+k =A Xk- 5 aki Qi 
i=O 

with Qh A XO D 

Note that in the above proposition, if h > 0, the canonical polynomials {QnT 
n < h} remain undefined. Furthermore, if A is invertible, i.e. kerA = 0, then we 
have equalities in place of equivalences modulo kerA. 

Corollary 2. Under the assumptions of Proposition 1, if A is invertible, then the 
n-th canonical polynomial Qn is of degree n - h, where n > h. 

2. APPROXIMATION OF LINEAR OPERATORS WITH THE TAU METHOD 

Let A be an invertible linear operator satisfying the conditions of Proposition 
1 with h(A) = h > 0. Consider the following operator equation with its linear 
auxiliary conditions (if any): 

Au = f7 
(2)Auf ( ) ~~~~B,*LU = g,l, ,u = 1, 2,... mln 
where g,, E C and uz E X is the exact solution. The purpose of this section is to 
explain how the recursive formulation of the Tau Method, developed by Ortiz in 
[3, 4], can be applied to problem (2) in order to derive polynomial approximations 
of u. To this end, we proceed as follows: Assume f is of the form 

f =5, fixi E X. 
i=o 
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Then for some fixed n > h + m we associate with (2) the following problem whose 
exact solution is denoted by un 

h+m-1 

(3) Aun=f+ E S Tn,iXn-i 

i=O 

BAun = YbLi 

where {n,i: i = 0,1, ..., h + m - 1} are unknown parameters to be fixed with n. 
Taking {Qi} to be the set of canonical polynomials of A, we set 

as h+m-1 

Un = fiQi + Tn,iQn-ii 
i=O i=O 

and find that A(un - Un) = 0 by Proposition 1; since A is invertible, it follows that 
Un = Un. It is not difficult to determine the Tau parameters: Since the canonical 
polynomials {Qi : 0 < i < h} are undefined, as mentioned earlier, we equate their 
coefficients in Un to zero and form a system of h linear algebraic equations which, 
when added to the m auxiliary conditions, will result in h + m linear equations with 
an equal number of unknown T's. 

The polynomial un will be called the n-th Tau Method approximation to u and, 
by Corollary 2, its degree is n. The n-th Tau error is the difference en := u -Un 
and the term E -n,iXn-i in (3), denoted by Pn , is called the Tau perturbation term. 
The next result assures the convegence of the sequence {en: n > h + m} to zero. 

Theorem 3. If X is a separable Hilbert space equipped with the inner product (,.) 
and if A E Ab(X) is invertible, then for fixed h > 0 and m > 0 in equations (2) 
and (3), we have 

i. lim 17njIl = O for i = 0,1,1... I,h +m-1 
noo Xo 

ii. lim Ilenl| = 0. 
n--oo 

Proof. Let {xi: i > 0} be a maximal orthonormal basis for X. Subtracting (3) 
from (2) we obtain the error equation 

h+m-1 

(4) Aen =- E TnXiXn-i = -Pn. 
i=O 

Since A is invertible, it is bounded and so is its inverse A-1. It follows then that 
lIenll < IIA-111 IlPnll Let Xn = span{xo,xl,...,xn-h-m} and take X' to be its 
orthogonal complement. Then, for each j = 0, 1, . . . , n-h-rm, we have (Pn, xi) = 0 
since n > h + m; thus Pn E Xx -. Since {X'1 : n > h + m} forms a decreasing 
sequence of closed linear subspaces of X satisfying 

(5) lim diam(Xn) = 0 
n--coo 

where diam(Y) = sup {11 a-b II: a, b e Y}-see the addendum and [1, 2]-it follows 
from Cantor's theorem that 

00 

0x ={o}, 
k=N 

where N = h + mr. But since 
n 

Pn En xk, 
k=N 
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taking the limit as n tends to infinity yields 
00 

lim Pn E n xk = {}, 
k=N 

from which it follows that 

(6) lim 1pJn J=? 
n-+oo 

F'urthermore, from Parseval's identity we see that 

h+m-1 

(7) || Pn 112 = E ln', 
i=O 

Combining (6) and (7) we get (i) 

lim 1,rn,i I = O 0 < i < h + m- 1, 
n--oo 

and (ii) 

JJen JJ<JA-1J11J.Pn 1-+O . C1 

3. ITERATED TAU METHOD SOLUTIONS- 

The idea here is to start with the approximate solution un of (2) and generate 
more accurate approximations via an iterative process. We may assume that the 
operator A is of the form A := T - A where T E Ab(X) and A E C. Equation (3) 
becomes 

(8) Tun-AAu. = f + Pn 

For k > 0, we define the k-th iterated Tau solution ?2n,k associated with un as 
follows 

Un,O = Un7 

(9) 
Un,k = A (T kl - f), k > 1. 

Let the error en,k = U - Un,k. Then, for k> 1 we have 

en,k = A1(Tu-f)- A1'(T-Un,k-1-f) 

= A-1 (Tu-Tun,k-l-) 

= -kTk (U1-Un) 

= A kTk en 

and hence 

1J en,k || < JAI k JIT Ilk. *| en 11I 

Since en is independent of k, the right-hand side of this inequality will tend to zero 
as k -- oo if we assume I T I < IAJ . Thus, we have the main result of this paper: 

Theorem 4. If A = T - A is invertible and if JJ T < IAI, then, for a fixed n, the 
following assertions hold: 

i. || en,k | < |Aj-k || T Ilk. *| en ||, k > 0, 
ii. lim || en,k k= k--oo 
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Note that from equations (8) and (9) we obtain the following procedure for 
computing Un, k 

Vn,O =Un 

Un,k = Un,k1l + A-k T lpk1n v k> 1. 

4. NUMERICAL EXAMPLES 

We show, through the following two examples, how to improve the accuracy of 
Tau approximations using the procedure described above. 

Example A. Consider the integral equation 
1 

(10) (Fu) (t) j K(t, s) u(s) ds - Au(t) =q(t), t E [0) 1] 

where q$ (t) is known. This defines an inhomogeneous Fredholm equation of the 
second kind with symmetric kernel 

_-t(I -s) if s >t 
K(t,-s) (1 

S -s(I -t) if s < t. 
Taking the shifted Chebyshev polynomials Tk, (t) as basis elements, we approximate 
u(t) in the subspace Xn = span{T0*, T,... , Tn }. We follow the recursive formu- 
lation of the Tau Method described in Ortiz [3, 4] for linear differential operators: 
Define Qn(t) so that 

(F Qn) (t) = Tn (t) 
is satisfied. This leads to 

16 
Q2=96[T?+(-?+A)Qo], 

96 

Q4 = 192 [T2 + ( 
I 

+A) Q2- 
7 

Qo- ] 
2419 

and for n > 5, 

Qn = 16 n(n -1) [Tn*-2 + (8(n-l)(n-3 

16(n -3)(n_- 4) Qn4+4n(n l~ )(n -3)(n -4) 

where 6 = 0 for even n and 1 for odd values of n. Note that the first two canonical 

polynomials, Qo and Ql, remain undefined. 

If we take A = 1 and q$ (t) = - cosh 1, the exact solution of (10) becomes u(t) = 4 4 
cosh (2t - 1) . For a given n, we compute the initial Tau approximation un (t) by 
solving the perturbed problem: 

(11) j K(t,s)un(s)ds - Un(t)=- o nsTnh(t) 

Then, using the above procedure, we generate the k-th iterated Tau solutions Un,,k 

and employ the supremum norm: 

liwli = sup{Iw(t) :0 < t < 1}. 
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TABLE A. Error norms 11 enk and Tau values 

k\n 2 4 6 8 10 

1 3.09 E-1 5.65 E-3 4.56 E-5 2.01 E-7 5.53 E-10 
2 7.41 E-2 4.59 E-4 1.28 E-6 3.38 E-9 5.58 E-12 
3 2.87 E-2 1.06 E-4 4.97 E-8 1.22 E-10 9.37 E-14 
4 1.16 E-2 3.94 E-5 7.74 E-9 2.52 E-11 2.42 E-14 
5 4.69 E-3 1.58 E-5 3.46 E-9 9.60 E-12 1.13 E-14 
6 1.90 E-3 6.40 E-6 1.43 E-9 3.87 E-12 3.77 E-15 
7 7.70 E-4 2.59 E-6 5.81 E-10 1.57 E-12 2.44 E-15 
8 3.12 E-4 1.05 E-6 2.35 E-10 6.35 E-13 8.88 E-16 
9 1.26 E-4 4.26 E-7 
10 5.12 E-5 1.72 E-7 
11 2.07 E-5 6.99 E-8 
12 8.42 E-6 2.84 E-8 
13 3.41 E-6 1.15 E-8 
14 1.38 E-6 4.66 E-9 
15 5.60 E-7 1.89 E-9 
16 2.27 E-7 7.65 E-10 
17 9.20 E-8 3.10 E-10 
18 3.73 E-8 
19 1.51 E-8 
20 6.13 E-9 

I__n [7.715 E-2I 1.41 E-3 | 1.14 E-5 5.02 E-8 1.38 E-10 

Numerical results for approximations of order n = 2,4,6,8, 10 with various itera- 
tions k are presented in Table A, where the error norms 11 en,k 11 are given. We note, 
for example, that an error of order 0 (10-8) is obtained through Tau approxima- 
tions u2, U4, u6 and u8 after 17, 11, 3 and 2 iterations, respectively. 

TABLE B. Error norms 11 en,k 11 and Tau values 

k\n 1 2 3 4 5 

0 1.00 1.33 E-1 1.03 E-2 5.48 E-4 2.84 E-5 
1 3.86 E-1 6.04 E-2 2.72 E-3 9.67 E-5 3.57 E-6 
2 2.83 E-1 2.24 E-2 1.47 E-3 3.78 E-5 1.14 E-6 
3 1.15 E-1 3.94 E-3 5.83 E-4 1.95 E-5 4.96 E-7 
4 3.17 E-2 2.37 E-4 1.40 E-4 6.49 E-6 1.71 E-7 
5 6.72 E-3 7.94 E-5 2.43 E-5 1.49 E-6 4.52 E-8 
6 1.16 E-3 2.79 E-5 3.28 E-6 2.62 E-7 9.20 E-9 
7 1.70'E-4 5.81 E-6 3.52 E-7 3.72 E-8 1.50 E-9 
8 2.17 E-5 9.15 E-7 2.97 E-8 4.44 E-9 2.04 E-10 
9 2.45 E-6 1.19 E-7 1.82 E-9 4.57 E-10 2.37 E-11 
10 2.48 E-7 1.34 E-8 4.35 E-11 4.14 E-11 2.42 E-12 
11 2.28 E-8 1.33 E-9 7.61 E-12 3.33 E-12 2.19 E-13 
12 1.91 E-9 1.19 E-10 1.52 E-12 2.34 E-13 1.78 E-14 

Tn 1.00 1.11 E-1 [8.85 E-3 5.48 E-4 2.72 E-5 
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Example B. Our next example is concerned with the exponential function et 
which satisfies the following Volterra equation of the second kind 

t 
(12) (Fu)(t) = u(s)ds-u(t) =-1, t C [0,11]. 

The perturbed equation becomes 
t 

(13) un (s) ds - un (t) =-1 + TnTn* (t) 

and we list the numerical results in Table B. 

ADDENDUM 

Here we prove the following result: 
Let H be a separable Hilbert space with an orthonormal basis {Xk: k > 0} and 

let {Hn : n > 0} be a sequence of subspaces of H such that Hk C H;ul- for all 
n > 1. Then we have 

diam(Hn) -0 as n -> oo, 

where diam(Hk) = sup{I Ia-b 11 : a, b E Hj }. 
To prove this, let a = Zj>0(a, xi) xi and b = EZ>0(b, xi) xi be two elements of 

Hii Then 

a - b = Z((a, xi) - (b, xi)) xi = Z(a - b, xi)xi = Z(a - b, xi) xi. 
i>o i>o i>n 

Since the set {Xk: k > 0} forms an orthonormal basis, we get 

(14) lIa-b 112 =Z E(a-b, Xi) 12. 
i>n 

But 

(15) El(a-b,xj) 12 < oo. 
i>o 

Thus (14) is the residual of the absolutely convergent series (15) and therefore 

lim E I(a-b, Xi)12 = 0 
n-oo 

i>n 

from which it follows that diam(Hk) -- 0. 
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