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SPHERICAL BESSEL FUNCTIONS 
AND EXPLICIT QUADRATURE FORMULA 

RIADH BEN GHANEM AND CLEMENT FRAPPIER 

ABSTRACT. An evaluation of the derivative of spherical Bessel functions of 
order n + 2 at its zeros is obtained. Consequently, an explicit quadrature 
formula for entire functions of exponential type is given. 

1. INTRODUCTION AND STATEMENT OF THE RESULTS 

Given any complex number a, the function 

J. (Z) E (_ )k z2k 
Z k=O 2 ?+2k k! r(k + a +) 

is an even entire function of exponential type 1. Here Ja,(z) is the Bessel function 
of the first kind of order ae and is known as the spherical Bessel function when 
ra = n+ r n C Z. Let jk = jk(a), k = ?1, ?2,..., be the zeros of c(Z) ordered 
such that j-k -jk and 0 < Jill < 1J21 < --- 

An exact quadrature formula with zeros of Bessel functions as nodes has been 
recently given [1] as follows. 

Theorem A. Let ER(a) > -1. For all functions f of exponential type 2r such that 
f (x) = O(1xK-6), x -* ?oo, with 6 > 2R(a) + 2, we have 

(1) 

jx 2? (f (x) + f (-x))dx =2+2?)2Z ( (+)k (f T)) 

The growth condition imposed on the functions has been relaxed by Grozev and 
Rahman. 

Theorem B ([2]). If ai > -1, then (1) holds for every entire function f of expo- 
nential type 2r such that x2a+?l(f(x) + f (-x)) belongs to Ll [O , oo). 

Since, in formula (1), Ja (jk) is not given explicitly, we find it interesting to 
evaluate it for the spherical Bessel functions. From now on, the notation jk is used 
exclusively to denote jk (n + 2). 
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Theorem 1. Let n be a nonnegative integer and 

(r 
n 2 )! (2n -2r)!.2' 2 

A(jk) (2n-r-2 !E ( [2n-)r (n-r)!12 JkJ 

We have 

(2) J+? (jk) = (-1)k j 2 A(jk) for k = ?1, ?21... 

Since (2) is not valid for negative integers, we give another result for these values. 
We note that the zeros of J,(z) are all real if a > -1 and only a finite number 

of them are nonreal if a < -1 [3, ?15.27]. Let {lk}l?I be the positive zeros of 
JA(z) a = n + arranged in ascending order of magnitude and k =-1-k for 

zce 
2, aaek 

Theorem 2. Let n be a negative integer and 

lr -n-I 
(_r 

2n-r-2)! (-2n - 2r - 2)! 
2r\ 

,Ui(lk) := (! j (-2-n-r-)! (-n-r-)!2 k 

We have 

(3) J~l(1k) = (_1)n?k?1 k 
2 

(lk) for k= 1, 2... 
2(_l)n?k i1j k Ui(lk) for k = -1, -2,.. 

Remark 1. Using Theorems 1, 2 and the differential equation 

z y +?zy +(z -_a)y=O 

satisfied by Jo (z), we can evaluate Jn+ 1 (jk) Jn+ 1 (jk) etc. 

2. LEMMAS 

For the recurrence formulas satisfied by Bessel functions and used in this section 
we refer the reader to [3, ?3.2]. We need the following property of spherical Bessel 
functions to prove formula (2). 

Lemma 1. Let n be an integer. For all nonnegative integers p, we have 

(4) J_p_(jk)= 2) p 2r +(jk) 

Proof. We prove (4) by induction on p. For p = 0, (4) is equivalent to 

(5) Jn- (jk) = + (jk) 

which we obtain using the formula 

(6) zJoe(z) + aJo(z) = zJo-l(Z) 

with ae = n + 2 and z = jk. For p = 1, (4) gives Jn-3 (jk) = 2n-Ij+ 1 (jk), which 
is true by the formula 

(7) Ja-i(Z) =-o Ja(Z)-Ja+ (Z)v 

taking ae = n - 2 and using (5). Suppose that (4) is true for p and p + 1, where p 
is an even integer, and let us prove it for p + 2 and p + 3. 
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When a = n- P-3, (7) and the recurrence hypothesis give 

JJn-p- (i(jk= (-p?) J3 - p 1 (ik) 

{(~~~~/ )E ) r) r(n -pr+ r-) 2kP+1-2r 

ik_)rpr J r~(i2k).-r}n2( 

{(2n 2p 3)E( l)r(P?12r) rtnr+2)2P?l2r 

-_(-_ _(P) r_ _ _ _ n - p1 J r*(p)+2-2r -p/2 ( --r r ) -+ 2P2r 

l( ) t r J r(n -p+r _ _) jkp-2r2 p r2 

= { (2m-2p3)Z(1)r+ ( r?n-r) (? ? 

- (n2-)(nP+lr)2P(_ ?)2} }JJ' (j(i) {Z-p-3/2)(pr27 (ri ? 1) 2r(r + 1) +12) 

(2-p -r+2) jp+l-rA 2p2r 
(n-pI+r-(32 -p)+ r(- - 1 p?2r - 2r ?2) 

P 1 

2 + rr-1 r(n -p+r+3) 2P2-, 

-p( = 2ptr - 3)(p -2? 2) + r(n - r) jp+2-2r 

rr(n - p- k+2r - )Jn+ 2ik 

+ (2 (-r jP ) rnj2+ -3 -(-1) ) }2P-?}2(J2). 
(n - ~ 12n- p - 3/2() r?2 (p~ -,2r ? 12) = r(n -p? r - 3/)(p-r ) 

(np - 2r + p + 1 ( 2PP1 r(n - p?- ) jp- 
1)n 

J j(n-p) = {-2r2(~)r(nP? +1/2 P(- n'-p -/)(-+) 

-(p - r+ 2) +I - r) j2 + r ~ )J~?(k 

{(p?-2)/2 2 r(?r P r?~2?2~ 

Thus, 4) is rue fo p +2 For p ?3 weue(7,tkn1 p+~ n h 

remainder of the proof is similar. C 

To establish (3), we need another property of spherical Bessel functions. 
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Lemma 2. Let n be an integer. For all nonnegative integers p, we have 

(8) 
[p/2] -r r(n+p-r+) 2P-2, 

Jnp 3 (jk) = E (-l)r+l (P22r) (n+pr+ + 2 J 1 (jk) 

Proof. The proof is similar to that of Lemma 1 except for the next few changes. 
For p = 0, we use the formula 

(9) ZJ,'(Z) - axJ(Z) = -ZJ,+?(Z) 

with a = n+ 1/2. Forp = 1, we use (7) with E = n+3/2. For p+2, p+3, we use 
(7) respectively with af = n +p + 2 n+p+ 7. C 

3. PROOFS OF THE THEOREMS 

Proof of Theorem 1. Using Lemma 1 with p = 2n, we obtain 

(10) 
n 

2n ~~~- r ?( r+1)2n2 

J-(n+ ) =(jk) T E(-1)r (2 r ( ? r 2 } J (jk)- 
2rO r / ?n r 1) j2ni-2r 

jn2 

But 

r +1 _~F f(2m)l o 1 12 . (11) F(m?2)- 2m !) for mn=O,1,2,. 
and 

r(m+1 fir( 1 ) m22m m! for m =0,1,12,...,1 2 (2m)! 
so that 

(2n-r r(n -r + 2) 22n-2r (2n - r)! (2n - 2r)! 
(12)2 = ln, 

r 9 
r(-n + r + 1) r! [2n-r (n -r)!2 

An application of the formula [3, ?3.12] 

(13) Jjz)J_(z) - J (z)J1/(z) 2 sin(air) ia(Z)J-C,Z) - Ja(Z 
/ 

""(Z) irz 

gives 

J-(n+'?(jk) - 2 (-l)n 
ff+2 ) ) lrjk J'+ i(jk) 

Hence, in view of (10) and (12), we obtain 

(14) 
( j2 -r (2n-r)! (2n - 2r)! -2n+2r+l? -1A2(nk) 

( n+2 (jk)) = 2 E r! [2n-r (n-r)!]2 k J k Jk 

It remains to study the sign of J/<1 (jk). We have (see [3, ?15.22]) 

(15) ? < jk < jk(n + 3/2) < jk+1 for k =1,2... 

Hence, the interval (jk, jk+1) contains only one zero of Jn+ 3 (z) for k = 1, 2, 
which implies 

(16) sgn( Jn+3 (jk)) -sgn Jn+3 (jk+l)) for k =1,2... 
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By (9) we have 

J+ (jk) = Jn+3 (jk) for k =1, 2,..., 

and it follows from (16) that 

(17) sgn (J+ 1 (jk)) -sgn (J+1 (jk+l)) for k = 1, 2, ..., 

which implies, in view of (14), that 

n+k (jk) sgn AJn+(k)) j (jk) 

- (-1) sgn(Jn+sg ( jn)) j 2A(jk) for k =1, 2... 

So, in order to obtain (2) for jk > 0, it suffices to prove that 

(18) Jp+l/2 (jl(P + 1/2)) < 0 for each nonnegative integer p. 

For p = 0, we have 

J1 (X)= sinx, jk()= k7r, k=1,2,..., 
2 -irx 2 

whence 

JI (i(1 /2)) = JI (ir) - <0. 
2 2 71 

Suppose that (18) is true for some positive integer p, which implies that 

Jp+ 1 (x) < 0 for all x E (jl(p + 1/2), j2(P +1/2)); 

in particular, 

Jp+ (ji(p + 3/2)) < 0 since, by (15), ji(p+3/2) c (ji(p + 1/2) j2(P ?1/2)). 

But, using (6), we have 

J 3 (jl (p + 3/2)) = Jp+ 2 (jl (p + 3/2)) < 0, 

so that (18) holds for p + 1 and consequently for all p > 0. 
For jk < 0, we assume first that in the definition of z', arg(z) has its principal 

value, and we suppose, as in [3, 3.62], that arg(-z) = ir+arg(z). Then we have 

Jn+2 (jk) = Jn+ (-j-k) 

=-e( +2) Jn+ 1 (j-k) 

2 (-)k(j-k)n2 A(j-k) 

- (_j)k (-i-k)n- 2(-jk) 

_ 
(-1)k jnk 2A(jk), 

since A(-jk) = A(jk) and Ja(-z) = e"'J (z). 

Proof of Theorem 2. Several details of the proof are similar to that of Theorem 1, 
and we omit them. 

We replace p by -2n - 2 in Lemma 2 to obtain 

(19) 

2 ir (-2n-r-2)! (-2n-2r-2)! 2n+2r+3 

((n+j ) r k 2 
-~E 

r![2 --r-l(-n - 
Jk))! 
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We have [3, ?15.22] 

(20) 0 < lk < lk(nf-1/2) < lk+1 for k = 1, 2,..., 

which by virtue of (5) implies (17), where jk is replaced by lk* So we have, by (19), 

Jn 1 (1k) = 
(_l)k-1 sgn (Jn+ 1(1l1)) 1k 2(lk) for k 1,2 

Thus, to establish (3) for lk > 0, we have to show that, 

(21) (-l)P+1J+ 1 (jl (p + 1/2)) < 0 for each negative integer p. 

For p =-1, we have 

J_ 1 (x) = -cos x, lk(-1/2) = (2k- 1)ir/2, k = 1, 2, ..., 
2 rx 

whence 

J (11(-1/2)) = J1 (1r/2) =--< 0. 
22 iF 

Assume that (21) is true for some negative integer p, which implies by (20) that 

L_)P+'Jp+ l (I1P-2) <?' 

and using (9), we obtain 

(-l)PJ_ i(lI(p-1/2)) =(-l)P+'JP+l (11(p-1/2))< 0. 

Therefore, (21) holds for p - 1 and consequently for all p < -1. 
For lk < 0, we have 

Jn??2 (lk) = e(n1)ri (-l)n+k+l (l)-n-3 3u ) 

=(_l)n+k (-k-n-2 3(I 

(_1)n+k 
1-n- 32 ) C = (1)ri?k l ,(lk). 

4. AN EXPLICIT QUADRATURE FORMULA 

We are now ready to deduce the following result from Theorems B and 1. 

Theorem 3. Let n be a nonnegative integer. For all functions f of exponential 
type 2r such that 

(22) x2 f(x) c L (R) 

we have 

J x2 f (x)dx 

ir ,: , (2n -r) ! (2n -2r)! j2 i k 

(23) T2n+1 
S (_ r (n-r)2 kr) f ( 

k#O 

+ T2I1 (2n + 1) (2n) n) f(0). 
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Proof. Without loss of generality we may assume that f (z) is even. Let 

1 1[,3 )n? '(T)2 1 
g(x) := - [f(x) - 22+2r(n (T)3 J2 

Since f (z) and Jn2Fl (z)/zn? are even, their derivatives vanish at zero. Besides, 
we have limz,o J,(z)/z' = 1/(2Fr(a + 1)). Thus limz,o g(z) exists, and conse- 
quently g(z) is entire. According to the hypothesis and to the formula [3, p. 405], 
we have 

(4 J2 +1 (x) 2 
(24) [00 2 dx = 

00 x 2n?1 

and g(x) satisfies the conditions of Theorem B with ae = ri+ ? . Therefore, we have 

(25) 
2n+2 (x_dx _ ~ j(2n - r)! .(2n~ - 

2r)!j2r?2 gi 
j x2 2g(x)dx = T2n+3 L _ r! [2n-r (n - r)!]2 Jk 

k$O 

Replacing g(x) by its value and using (24), we readily obtain (23). C] 

Note that, in formula (54) of [1], which corresponds to (25) with n = 1, there is 
a superfluous factor 32. As a consequence of Theorem 3 we have the following 

Corollary 1. If n is a nonnegative integer, then for all functions f of exponential 
type r such that 

x nf (x) E L2 (R), 

we have 

(26) 

[0 2jf (X)12dX = i 00(? (2n - r)! (2n -2r)! 2r i 
X 

T2n+3 S ( r! [2n r (n - r)!]2 Jk )f ( 
k#O 

? T? (2n + 1) ((2n)!) If (0)j2. 

Proof. Write f(x) = fi(x) +i f2(x), where fi(x) = w(f(x)) and f2(x) = 9(f(x)) 
when x C RE. The functions f2 (x), f22 (x) satisfy the conditions of Theorem 3. 
Hence, by (23), formula (26) holds for fi (x) and f2 (x). The result follows since 
jf (X) 12 = fi2 (X) + f22 (X). C] 
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