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THE QUASI-LAGUERRE ITERATION

QIANG DU, MING JIN, T.Y. LI, AND Z. ZENG

ABSTRACT. The quasi-Laguerre iteration has been successfully established, by
the same authors, in the spirit of Laguerre’s iteration for solving the eigen-
values of symmetric tridiagonal matrices. The improvement in efficiency over
Laguerre’s iteration is drastic.. This paper supplements the theoretical back-
ground of this new iteration, including the proofs of the convergence properties.

1. INTRODUCTION
When the Laguerre iteration [4]
n
2
f(=z) fi(z) f(z)
(-52) i\/(”‘l) [("‘1) (-52) -~ (55 )]
is used to solve a polynomial f with all its zeros being real, such as the characteristic
polynomial of a real symmetric matrix, the most important advantages are its
global and monotonic convergence. While its ultimate convergence rate is cubic,
the requirement of evaluating f”, which is relatively time consuming, constitutes a
major disadvantage of this iteration in terms of its efficiency. A new iteration, which
we called the quasi-Laguerre iteration, has been established in [1] which avoids the
evaluation of f” but still maintains global and monotone convergence when applied
to polynomials with all real zeros. The purpose of this paper is to supplement the
theoretical background of this new iteration.

Formula (1.1) can be derived in diverse ways. The best one seems to be to answer
the following question [3]:

(1.1) Lyi(z)==z+

Question 1. Among all polynomials p(z) of degree n with n real zeros and with
p(xo) = f(mo) # 0,p'(z0) = f'(w0) and p"(z0) = f"(z0) at a specified real zo,
which one has a zero closest to zo? and where?

In general, of all those polynomials, L, (o) in (1.1) gives the closest zero from
the right and L_(zo) gives the closest one from the left.

To avoid the evaluation of f”, the above optimization problem can be revised as
follows:

Received by the editor August 9, 1995 and, in revised form, September 15, 1995.

1991 Mathematics Subject Classification. Primary 65F15; Secondary 65F40.

The research of the first author was supported in part by NSF under Grant DMS-9500718.

The research of the third author was supported in part by NSF under Grant DMS-9504953
and by a Guggenheim Fellowship.

©1997 American Mathematical Society
345



346 QIANG DU, MING JIN, T.Y. LI, AND Z. ZENG

Question 2. Given two specified reals a < b, among all polynomials p(z) of degree
n with n real zeros, none of which lie in [a, b], and with

(12) v _ 1@ 4 20 _ro

pla) ~ fl@) ™ p) ~ )’

which one has a zero closest to a from the right or from the left? and where?

Even further, to account for multiple zeros, we reformulate Question 2 in a more
general form:

Question 3. Given two specified reals a < b, for polynomials satisfying the con-
ditions in Question 2, consider their mth (m < n) zero to the right (or to the left)
of a. Which polynomial has the closest one to a from the right (or from the left)?
and where?

This optimization problem has been solved in [1] and the solution has a closed
form. To convert the solution of this optimization problem to an iterative scheme,
let zps be a zero of f with multiplicity M > m. To approximate zp, from its
left, suppose zps is on the right-hand side of two starting points x,&‘? < x,(}l) and

none of the zeros of f lie between x,(g) and zp;. Then, for £ > 1, we may let

a= :cs,lf"l), b= :cg,’f) and let wgi“) be the closest mth zero to the right of .7:5,’:) of
polynomials satisfying the conditions in Question 2. Similarly, when two starting
points xﬁ}) < x(mo) are available on the right-hand side of zj; with no zeros of f

lying in (zM,xgg)), then for kK > 1, we let a = ng), b= ws,lf_l) and let wgi“) be
the closest mth zero to the left of xﬁ,’f) of polynomials satisfying the conditions in
Question 2.

The sequence {.7:5,’:)} so constructed is obviously a monotone sequence. It will be
shown in §3 that this sequence converges to z; with ultimate convergence rate v/2+
1 when m = M, and the convergence is linear if m < M. The linear convergence
ratio,

k+1
ot
khm ® ,
—oo g — 2um

will also be given.

In practice, the multiplicity of any zero of f is, in general, not revealed ahead
of time. Therefore, we can only use m = 1 in our iterations. We will show in §4
that when a multiple zero occurs and when the linear convergence ratio becomes
evident, the convergence can be speeded up substantially by a special device. ,

This newly derived quasi-Laguerre iteration was employed to approximate eigen-
values of symmetric tridiagonal matrices with remarkable results. The details of
the practical implementation and comprehensive numerical experiments on diverse
types of matrices can be found in [1]. Our algorithm considerably improves the
speed of Laguerre’s iteration for the same purpose [1].

During the writing of this paper, we became aware of an earlier unpublished
work of L. Foster [2] in which a class of globally convergent iterations, including
our quasi-Laguerre iteration for the case of simple roots, were studied. Our work
here is based on a different approach and achieves much more general results.

2. THE QUASI-LAGUERRE ITERATION

For the reader’s convenience, we briefly outline the basic algorithm for the quasi-
Laguerre iteration in this section. A more detailed derivation can be found in [1]



THE QUASI-LAGUERRE ITERATION 347

and we only introduce the relevant part that is essential for the presentation of the
convergence analysis given in §3.

We are given a polynomial f of degree n with all of its zeros being real. For
a < b with f(a)f(b) # 0, let F be the class of polynomials p(z) of degree n that
satisfy the following conditions:

(i) all zeros of p(z) are real;
(ii) none of the zeros of p(z) are in [a, b];
(iif) p(a)p(b) # 0 and

'(a "(a '(b (b
In answering Question 3, stated in §1, we are led to the quadratic equation [1]
(2.2) mr(b,a)Y? — [r(a,b)r(b,a) — n® + 2mn] Y+ mr(a,b) = 0,
where
(2.3) r(a,b) =n+ (b—a)g(a) and r(b,a)=n+(a - b)q(b).

Its solutions are given by

r(a, b)r(b,a)—n? + 2mn £ 1/[r(a, b)r (b, a) — n?] [r(a, b)‘r(b, a)—(n — 2m)?) .

Yi=

2mr(b, a)
Now, as in [1], let
(2.4)
s mg_ 27O
m+ = Ym:F 1 =

2mr(b,a)(b— a)
7(a, b)r(b, a)—n?+2mn—2mr (b, a) F/[r(a, b)r (b, a)—n2][r(a, b)r (b, a)—(n—2m)?]
2m[n — (b — a)q(b)]
—(b—a)R —2mgq(b) + /R[(b — a)2R + 4m(n —m)]’

R=n (=10 gy,

=a-—|—

where

and also define

b—a
2~ = _
( 5) Vit “ }/(n—m):i: -1

The solutions of the optimization problems in Question 3 can then be described
as follows (see [1] for details):

(i) If f has at least m (counting multiplicities) zeros to the left of a, then the
Z€r0 U in (2.4) of the polynomial

(2.6) pi(z) = C(@ =t )™ (z — 02 )" ™"

is the closest mth zero to the left of a among all polynomials in F. And it
is clear that

(2.7) Zm— SUpm— <o <us_ <ui_<a<b,

where z,,_ is the mth zero of f to the left of a.
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(i) If f has at least m (counting multiplicities) zeros to the right of b, then the
Z€r0 Um+ in (2.4) of the polynomial

(2.8) p2(z) = O(& — umy)™ (@ — vi4)""

is the closest mth zero to the right of b among all polynomials in F. It is
also clear that

(2.9) a<b<uis Sugy < - KUy < 2y,

where 2, is the mth zero of f to the right of b.

Let a polynomial f of degree n be given with all its zeros being real. Let zps be
a zero of f with multiplicity M > 1. To approximate z; from its left, we shall use
Um+ in (2.4) with m < M to generate a monotonically increasing sequence {x(k)
which converges to zp; as k — oo. Slmllarly, to approximate zps from its right,
a monotonically decreasing sequence {w,f } converging ’co zZm, as k — oo, can be
generated by using u,— in (2.4).

To be more precise, suppose z)s is on the right-hand side of two starting points

(Ol_ < zl L_ and none of the zeros of f lie between £ my and zps. Then, for k£ > 1,

we let

(2.10)
2D o) 4

am [ — () — a8 ya(a )]

(ot — 2R = 2ma(alf7) +[R [0 — a2+ i — m)]

)

where

sy =L @) e -n) 2 (@)

Fzlk (k) F(z TGN 1))
and
R=n (q(w%n) —(k( 1()’2 ) gz Vg(zl).
Tm3 — Ty

In other words, we replace um+,a and b in (2.4) by m(k+1), scf,’fl and :c(k , respec-
tively.

From what has been presented earlier (and derived in more detail in [1]), it is
easy to see that

k k+1
Tt < Tt < 2

(k +

and no zeros of f fall between z,, ) and zp. So the sequence {miﬁ} satisfies

2O <2l < <2 < <y

Similarly, when two starting points x( ) < z®

m—

are available on the right-hand
side of zp; with no zeros of f lying in (2,2, ©) ’ ), then for k > 1, let a = x(k)
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b= Iﬁ,’ffl) and um— = 5,’:1”) in (2.4). Namely,
(2.11)

k+1 k

S )

om [n _ (z(k_l) (k) )q(x(k 1))]

—@% D — 28R — omg(z*V) - \/ [(zf,fil)—zgf)_)?R+4m(n—m)]

b

where
Fa)) Fahh)
Q(IE,]:)_)_ f( (k)) ( k- l)) f( 571:_1))
and

(k) (k 1)
Ren (Q(I (k)l) q(zm (k) )) — g(@®) )q(zk-D)y.

Tm— T
Again it is clear that

gkt < )

and none of the zeros of f lie between zj; and z(k+ ),

{z fn)_} satisfies

Moreover, the sequence

(k)
m

) <ical®) <20

2y <<z <z,
We call the process of generating the sequences {Ii:?t} defined by (2.10) and
(2.11) the quasi-Laguerre iterations.

3. CONVERGENCE ANALYSIS

We first prove the following theorem.
Theorem 3.1. Both sequences {ng)i} converge to zp monotonically.

Proof. We will prove the theorem for the sequence {xﬁ,’i)_ }22 ;. Similar arguments

hold for the sequence {mm )iz, We shall write y; for zﬁ,’f)_ when there is no

ambiguity. Obviously, by the way it is constructed, {yx} is a decreasing sequence
bounded below by zp,. Then it must converge to a certain number x* > zp,. Let
20 2(n=M) be the rest of the zeros of f besides zp;. Suppose z* # zp; then
f(z*) #0. Recall that

y—z(")+y—ZM.

q(y) = ) =
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Thus,
R=n (wl—)> — q(y)a(yr-1)
Ye—-1 — Yk
Ye—1—Yk | = yk—z(z) Ye—2m Y- l_z(z) Vo1 —2n1
= q(yx)q(yr-1)
(% 1 + 5 ~ alwe)a(no)
(g — 2D (ye—1 — 2®) " (gx — 20) (k-1 — 2m0) q(yx)a(yr—1
n—M
1 M R
- - _ * = R
n |: e (:1;* _ z(z))2 + (CII* _ ZM)2:| [Q( )]
From (2.11),
2mln — (ye—1 — _
Y1 =Yk — [n — (yx—1 — ye)a(ye-1)]

(ye—1 = ye)R + 2ma(y—1) + v/Rl(yx-1 — yx)?R + 4m(n — m)]
Taking yr, — x*, we have

2
ot = x* _ mnn : ;é ll'*,
2mq(z*) 4+ 1/4m(n —m)R
which leads to a contradiction. O

The next theorem provides the rate of convergence of both sequences {xﬁ,ﬁ

Theorem 3.2. (i) When m < M, the convergence of {:cf,’f)i} to zp is linear and
the convergence ratio

(k+1)
w= lim tmx ~*M
k——»oo x(k) ZM )
is the only real solution in (0,1) of
n-M-m 5 M-m
T o -z —x+ - 0.

(ii) When m = M, the convergence of {:cf,lfi} to zp s superlinear with conver-
gence rate /2 + 1.

Proof. Again, we will prove the theorem for the sequence {mﬁ,’f)_},;“;l and write yx

for xf,’f)_ when there is no ambiguity. Similar arguments hold for the sequence

(k)

{Tmi}iz:-
From (2.11),
(3.1)
Yk+1 = Yk — 2m[n — (yk—1 — Yx)q(yx-1)] ’
(yk—1 — yk) R+ 2mq(yk—1) + \/R[(yk—l —yr)2R + 4m(n — m)]
where

f'(yk—1) ~ f'yw)

q(yk—1) = Tl )’ q(yx) = o) and
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R=n (MQ> — q(yx)a(yYr—1)-

Yk—1 — Yk
Let 21, ..., 2(n=M) be the rest of the zeros of f besides zp;. Then,
' (yk—1) M ' . nM 1
-1)= = + _ with 1) = —_—
2le-) flyk-1)  Ye-1—2m Qvr-1) Qve—1) ; Yr—1 — 2
M
f'(yk) M . g 1
= = + with = [
Aw) = F N = o Q) Q(yk) ; 0
and
R=n (————q(y’“) - q(yk'1)> — q(yr)a(yr-1)
Ye—1 — Yk
M(n — M) MQ(yr—1)  MQ(yx)
= - - _1)+nR
(yx — 2m) (Yk—1 — 2m1) Yk — M Yk—1 — ZM Quk)QYe-1) +nki
with

n—M 1

R = - .
' ; (Ye-1 — 20) (g — 20)

Since yr — zp as k — 0o, we have
n—M 1 n—M 1
— = —_— = —_— <
Q(yx 1) ; I o) —Q ; 2 — 20 00

n—M 1
Qlyx) = ; 2 Q
and

n—M 1 n—M 1

.2 = - ] : = (21 — 2(0)2 ’
(32) R ; (ye—1 — 20 (yx — 2®) — R ; (zm — 2()2 =%

Let €, = —ﬂwfor all k > 1; then%7y,';—l—e;c Obviously, 0 < €; < 1 and
0<1-—¢ <1 From (3.1),

(3.3)
Yet1 —2M _ 4
Ye — 2Mm

2m[n — (yk—1 — Yk)q(yx-1)] '
(yx — 2m) {(yk—1 — Yk)R + 2mq(ye—1) + v/ R[(ye-1 — y&)*R + 4m(n — m)]}

Now,

(8 Weor - 90)aWer) = (41 — ) [

yk}\}— P +Q(yk—1)]
_ _ _ Y —zZm
= (Yr-1 — 2m) [1 et = ZM] [yk-1 e +Q(yk—1)]

=(1— €)M+ Qyk—1) (k-1 — z2m)] = M(1 — €x) + O(yx—1 — 2m),
(b)  (yk—2m)(Yk—1—2m)R=M(n—M)—Q(yx)Q(Yr—1)(Yr — 20 ) (Yk-1—2M)
—(yk—1 = 2m)MQ(yk-1) — (Y — 20 ) MQ(yx) + 1y — 2a) (k-1 — 2m) B
=M(n— M)+ O(yk—1 — 2Mm),




QIANG DU, MING JIN, T.Y. LI, AND Z. ZENG

(e = 200) (Yk—1 — ye) R = (1 — €x)(yk — 2m) (Yr-1 — 2m) R
=(1—-e)M(n— M)+ O(yxr—1 — zm) (because of (b) above),

(ye — 2m)°R = ek (Yk — 2m) (Yk—1 — 2m)R = ex M (n — M) + O(yx—1 — 2u)
(because of (b) above),
(yx — ZM)2R [(yk_l - yk)QR +4m(n — m)]

= [(yk — 2m)(yk—1 — k) RI® + 4m(n — m)(yk — zm)*R

=(1—e)?M?*(n— M)? + 4m(n — m)extM(n — M) + O(yx—1 — 2um)
(because of (¢) and (d) above).

Substituting (a), (c), (e) into (3.3) yields

(3.4)

_ Yk+1 — ZM
Ye — 2Mm
2m[n — (1 — ex)M] + O(yx—1 — 2m)

€k+1 =1-

M(

n—M)(1—ex)+2mMe, + M(n—M)\/(l—ek)2+‘§\7;((:__X4")) ex+O0(Yk—1—2m)
= G(ex) + O(yk-1 — 2m),

where

Gle)=1- 2mln — (1 — e) M) '

M(n— M)(1—¢€)+2mMe+ M(n — M)\/(l —€)?2+ ‘}Zl((:__&"))e
We claim that G(¢) can be rewritten as
2(M —
(3.5) Gle) = (M —m) —
M (1+e+ /-2 + T2

To see this, let A = \/(1 —€)?+ ‘m(:__%)e and

A=m[n-(1-¢e)M],
B=(n—-M)(1—-¢€)+2me+ (n— M)A,

C=M-m,
D= (1+¢)+A.
24
Then, G(e) =1 — B’ and

So,

AD =m(n— M)(1+¢€) + mMe(1 + €) + [m(n — M) + mMe|A,
BC=(M-m)(n—M)(1—-¢€)+2(M—m)me+ (M —m)(n—- M)A.

AD + BC = mMeé® + (M? — Mn + 2mn 4+ Mm — 2m?)e
+M(n—M)+[Mn-—M)+mMeA.
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Meanwhile,
MBD = M(n — M)(1 — €%) + 2mMe + 2mMe* + M(n — M)(1 — ¢)?
+4dm(n—m)e+ [M(n—M)(1+¢€)+ M(n—M)(1—¢€) +2mMeA
= 2mMe? 4 (2M? — 2Mn + 4mn + 2Mm — 4m?)e
+2M(n— M)+ [2M(n — M) 4+ 2mMe]A

= 2(AD + BC).
Thus,
1 A A C C AD+BC C M C
M -CEl=F=%5*5"b~ BD D~ 2 D
Therefore,
(6)_20 2(M —m)
MD M(1+6+\/1—6 +————§(,}1((:__$))e)

In this form, it can be easily shown that G(e) is monotonically decreasing. To prove
this, let

h(e) =1+ €+ /(1 —€)? +4ve, where _mr-m)

"= Mn-M)
For € € (0,1),
-1
St ks SN
V(1 =€)+ dye
so, from (3.5), G(€) is monotonically decreasing.

Now,
(i) For m < M, let

_M-m m(n —m)
b= M M(n — M)

Since G(¢) is monotonically decreasing for € € [0,1] and ¢ € (0,1) for all kK > 1, we
have

h'(e) =1+

€ (0,1) and = > 0.

B _ _
0< 1+ﬁ—G(1)<G(ek)<G(O)—ﬂ<1.
Hence, when k is sufficiently large,
G(1 G(0)+1
0< % < €k+1 = Glek) + O(yk—1 — 2m) < —(y—— <1

Consequently, the convergence of {yx}32, to z is linear.
Moreover, (3.4) implies that

(3.6) lex+1 — Glex)| = [O(yk-1 — 2m)| < Cyk—1 —2m) fork>1

for some positive number C independent of k. Since yr, — 2z, there exists an
integer N > 1 such that :

(3.7) G(1)-Cyn-1—2m)>0 and G(0)+C(yn—1—2m) <1
Let

a=GQ1)-Cyn-1 —2m), d1=G(0)+C(yn-1—2m)
and

ck+1 = G(dr) —Clynsk—1—2M),  drs1 = Glek) +C(ynyk—1—2Mm), for k> 1.
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Then,
(i) {ck} is monotonically increasing and {dj } is monotonically decreasing, namely,
0<a<ep<e< << <dpg< - <dg<dp<di <1.
(ii) cr < entk <dp fork>1.
This can be shown by mathematical induction as follows. For k =1,
0<c1=G()—-C(yn-1—2m) (because of (3.7))
< G(en) — C(yn—1— 2zm) (because G is decreasing and 0<ey <1)
<ent1 < G(en)+Clyn—1 — zm) (because of (3.6))
<G0)+C(yn—1—2m) =d1 <1 (because of (3.7)).
So, both (i) and (ii) hold. Suppose the conclusions hold for k¥ > 1, that is,

(3.8)
O0<a < <ep—1<ck, dp<dp—1<---<d1 <1 and ¢ <engr <dg.

It follows from the monotonicity of both G and the sequence {yx} that

k1 = G(d) = C(Yntk-1 — 2m) > G(dk-1) — C(Yn+k—2 — 21) = Cks

di+1 = G(ck) + C(yn+k—1 — 2m) < G(ck-1) + C(YN+k—2 — 2m) = di.
Furthermore,
ck+1 = G(di) —C(yntk—1—2m) < Glen+k) —C(yn+k—1—2m) (because of (3.8))

< entk+1 < Glen+r) + Clyn+k—1 —2m)  (because of (3.6))

< G(ck) + Cyn+k—1 — 2m) = di4+1  (because of (3.8)) .
Hence,

0<c < - <ep<ckt1, dpr1<dg<:---<dy <1 and
Cht1 < ENfht1 < dip1.

We now let ¢, — ¢ and d;y — d. Then G(c) = d and G(d) = c. Since G(e) is

monotonically decreasing, G? = G o G is monotonically increasing and can have at
most one fixed point. So, ¢ = d, and consequently G(w) = w, where

w=1im6k=lhnu.
k—oo k—oo Yp—1 — ZM
Thus,
2(M —m)
w= 4m(n—m)
M(1+w+\/(1—w)2+ M(n_M)w)
or, w is a solution to the equation
_n—M—’IYL3 2 M—m_
(3.9) glz) = ey R x+ i =0.
There is only one real solution to (3.9) in (0,1), since
M—-m
n—M-m M—-m n—M-—m M—-m
- —1-1 = - ——
W =—"3 "ty (n—M 1) (M 1)
__om o om__—mn
" n-M M Mm-M) "
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and

g (z) = T—A}mxz—2x—1<0 for z € (0,1).

(ii) For m = M, from (3.5), G(ex) = 0 for k > 1; accordingly, from (3.4),
€x+1 = O(yg+1 —2nr) — 0 as k — oo.

Thus, the convergence of {yx}3>; to zas is superlinear. Further, from (2.6), the
polynomial p(z) = C(x — yg+1)™(z — v)™ ™, where C is a constant and v is a
certain real number not in (yk, yx—1), satisfies

P(ye) _ f'(y) and P (ye—1) _ f'(yr—1)

plyk)  flyk) pluk—1)  flyr—1)’
That is,
M n—M M Mg
(3.10) Yk —Uk+1 Uk—V Yk —2M ; Yk — 2@
and
M n—M M i |
(@11) Yk—1 —Uk+l  Yk—1=V  Yk—1— 2M ; Yr—1 — 2
Or,
‘n—M
M (yk+1 — 2m) n—M 1
3.12 = — + —_—,
(812) (e —2m)(We —Ykt1) Y —v ; Y — 20
M - -M "X
(3.13) T D B s
(k-1 — 200) (Yr—1 — Y1) Ye-1—v 4 yp-1— 20

Subtracting (3.13) from (3.12) and dividing the result by (yx—1 — yx), yields

M (yet+1 — 20) (Yk—1 + Yk — Yk1 — 2M)
(e — 200) (Y — Y1) (Wr—1 — 200) (Yo—1 — Ypot1)

‘'n—M X 1
3.14 =— + - o
(3.14) =9 2 e e =)
n—M
Note that R* = ————— in (3.2). Hence, for sufficiently large k,
— (am — 20)2

(Yk+1 — 2m) (Yk—1 + Y& — Yot1 — 2M1) 2R*
< =,
(ye — 2m) (W — Uka1) (Yh—1 — 20) (k-1 — Yry1) M

since (yx — v)(yx—1 — v) > 0. Furthermore, the left-hand side of (3.12) satisfies

0<

0 M (yrt1 — 2m)
<
(yk — 20 ) (Yk — Yr+1)
_ M (yYrq1 — 20) (Yk—1 — Yrt1 + Y& — 20M1) (Ye—1— 2m) (Yn—1 = Yh41)

(e — 200) Wk — Yet1) We—1 — 200) (k=1 — Ykt1) Ykl — Yht1 + Yk — ZM
<2R*(yk-1—2m)—0 as k— oo.
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Thus, the right-hand side of (3.12) gives

n_
yk—v

Z as k — oo.
p— ZM—Z(t) .

Therefore, when & — oo, the right-hand side of (3.14) approaches
(3.15)
2
Q2 n-M 1 1 n-M 1
E=R - = —— — — ] >0.
R n—-M Z} (zp =202 n—M ; 2y — 20 20

1=

Let

1 1
a=(1,...,1) and b= (zM—z(l)"“’zM—z("'M)>.
n-M

Then, by the Cauchy-Schwarz inequality, [a, b) < ||al|||b]|, or,

1 n-M 1 2 n-M 1
_ < _—
= (S wtw) S

Hence, E = 0 in (3.15) implies 2(!) = 2(® = ... = 2(*=M)_ That is, f(x) has only
two distinct zeros: z(!) and zp, with multiplicities n — M and M, respectively. By
(3.10) and (3.11), one can easily see that in this case yo = zps with starting points
yo and y,. So, the iteration converges in one step. Thus, we only need to consider

the case where £ > 0 in (3.15). Now,

lim Yk+1 — ZM
k—oo (yk — z2m)*(Yk—1 — 2m)
- lim (Yk+1 = 2m)(Yk—1 + Yk = Yrs1 — 2m)
k—oo (yk —2m ) (Y —Yk+1) (Yk—1—2m ) (Yk—1 — Yk+1)
o Yk = Yk 1) (k-1 — Yiet1)
(Yk—2m)(Yk—1 =Yk +1+ Yk —20m)

Yk Yk +1
— £ llm yk _yk+| . l E llm Yk — A1
M k—oo Yk — ZM Yk-1—Yr+1 Yk —2nM M k—oo 1 4 Yk —2M
Yh-1 " Yk+1 Yh-1 7Yk +1
E
==>0
M
since
lim 2k Yk+1 _ 1~ lim Yerr = 2m
k—oo Yk — 2pm k—oo Yr — 2zpm
and
Yk —2M
lim —J% "M _ iy Wit g
k=00 Yp—1 — Yk41  k—oo | — LerlZEM
Yk-1—2M

By the following lemma, the convergence rate of {y,}?2, to zas is indeed V2+1.

Lemma 3.3. Suppose a sequence {yx}3>, converges to z. Let ey = |yx — 2|. 1

€kt1 = Mkeiek_l and klirr;o M, = M",

O
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where 0 < M* < 0o, then the convergence rate of {yx} is /2 4+ 1. More precisely,

——

Proof. First we assume M* = 1, that is, limy_ ., My = 1. Let

dp =Inexy; — (V241 Inex, k>1.
From ex1, = Mie2ex_ we obtain

Inext; =2Inex +Inex_y + In M.
So,
di =2lneg +1nex_; +In My — (V2 + 1) Ine

=(1-Vv2)Inex +Inex_; + In My

=(1-V2)[lnex — (V2 + 1) Inex_,) + In M;

= (1 - V2)d_1 + In M;.

Since0>1—\/§>—landlan—>Oa,sk—>oo,wehavedk—>O as k — oo.
That is,

€k+1
1 1 as k — o0.
€k
Now, if M* # 1, let
M
e, = VM*e, and M| = M,i'
Then,
M
ehir = VM erss = 1o (VM e (VT ex 1) = Mi(e}) e}y
and
lim Mj = 1.
k—o0
So,
li €let1 _
and

€k+1 — (VM.)\/i‘Fl — (M*)l/\/i 0

lim
k—o0 el\c/§+1 vVM*

4. PRACTICAL CONSIDERATION ON CLUSTERS OF ZEROS

In practice, when our quasi-Laguerre iteration is used to approximate a real zero
z* of a real polynomial f, the multiplicity of z* is, in general, not revealed ahead
of time. Therefore, one can only use m = 1 in (2.10) or (2.11) which may cause
slow convergence when the multiplicity of z* is larger than 1. Even when z* is
simple, slow convergence may still occur when z* leads a cluster of close zeros of f.
To overcome this difficulty, we propose the following procedure, which works very
efficiently in practice:

By Theorem 3.2, when the quasi-Laguerre iteration for a simple zero (m = 1) is
used to approximate an M-fold zero z* (M > 2), or a cluster of M simple zeros,
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of a polynomial f of degree n, it converges linearly with a ratio g, ps which is the
unique solution in (0,1) of
n—M M

The following theorem gives the properties of g, a for M > 2 and n > M + 1.

0.

Theorem 4.1. (i) For a fized M, gn,M ncreases as n increases (n > M).
(il) For a givenm, gnpm > qn2 f2< M <n—2.

(iil) When M =n — 1, then g, n—1 increases-as n increases (n > 3).

Proof. (i) For a fixed M, write

Then, when n; > na,

) = gnafa) =

SO, qn,,M > Qny M-
(ii) For a given n, write

1 B 1
n—-—M n—-M

)zB}O for z € (0,1).

— M- M-1
gM(x)E%gﬂ—lﬁ—ﬁ—x—k i

When 2 < M < %, then

1 1 1 1 1 1 1 1
@ =00 = (g~ ) =ty W 25 e e
n n
= — > f 1).
2(n—2) M(n~—M)~0 orz € (0,1)

S0, gn,M 2 Gn2-
3 <M<n-2then2<n-M<Z% and hence, ¢nn—m > gn2. On the

other hand,
0(2) — Gnra (@) = (n_M - 47) 1=5)>0 frac.),

Then An,M > Qnn—M- Thus, Gn,M > Gnn—M 2 Qn,2-
(iii) If M =n — 1, write

1 1

n—M-—1 M-1 1
gn(x)z—mx:‘—xz—x+ M =—x2-z+1—7—1—_—?
Then, when n, > no,
1 1
9ni (@) = gn, () = me—1 m—1 >0 forze(0,1).
SO’ Anini—1 > Qnong—1- O

For n > 3 and M > 2, by Theorem 4.1 (iii),
Gn,m 2 q32 When M =n—1,
and by Theorem 4.1 (i), (ii),

M > Qn2 > q32 When M <n-—2.
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In any case, g3,2, the zero of 22 +x — 0.5 =0 in (0,1), is the smallest linear ratio
for multiple zeros. Let (1,23, ... z() . . be the monotone sequence of the
quasi-Laguerre iterates. When {x(k)} converges superlinearly, then

|zBH+D) — (R

q = —|x(k) =T —0 ask— oo,

s0, g should be smaller than g3 when k is sufficiently large. Therefore, when
gk > g3,2, linear convergence seems apparent. In this case, for sufficiently large k,

(k+1) __ .
P g or o) — 7| mqle® —o*|  where g = gnu,
|$(k) _ x*' s )
and
B |x(k+1) —x(k)| _ |$(k) _ x*l _ |x(k+1) _ $*| N (1 _ q)lx(’“) _ x*| N
Ik = |zF) = z(=1)] T a0 — ] — [z — 27| ~ (1= @)a*—D = 27| ~q.

In practice, the gx’s can be very close to g after several iterations. If ¢; = ¢ for
j >k, then

20T — 2*| = g|la¥) —g*| for j >k,

and
1

l-q
So, at the kth iterate (¥, if linear convergence is revealed, namely gz > g3,2, then |
instead of performing the regular quasi-Laguerre iteration

2+D — 50 5,

o= 2 1 (@D — g9,

where 6, is the correction 21 — z(¥) to 2(®) calculated by the quasi-Laguerre
iteration with m = 1, one can accelerate the iteration by setting

24D ) 4 Ok
1—-gk
To illustrate the efficiency of this acceleration device, consider a Wilkinson ma-
trix WQJE, with dimension n = 99. This is a symmetric tridiagonal matrix whose
eigenvalues are mostly pairs of numerically indistinguishable real numbers [5, pp.
308 — 309]. Let f be the characteristic polynomial of Wgh; namely,

f(z) = det(WJ_[; = zI).

The zeros of f are the eigenvalues of Wg5. The pair z; = 11.0 + 5 x 10715 and
23 = 11.0 — 5 x 1071% is a pair of close zeros of f. To approximate z1, the starting
points (9 = 11.5 and (! = 11.27 (one step Laguerre’s iteration from x(o)) are
used. For k = 1,2,..., 6 = 1) — z(k) is evaluated using the quasi-Laguerre
formula with m = 1. If g5 < g¢3,2, then most likely z; is neither a multiple zero
nor a member of any cluster. Then z(**1 is accepted and we continue onto the

1)
next iterate. Otherwise, let ¢ = z(*) + ¥ and check for possible overshoot by
. — (k) 6k(1 — ql)
evaluating the Sturm sequence at c. If ¢ overshoots, then reset ¢ = z\*) + ——1—T

for | = 8,4,2,1 until overshooting disappears. Then c is,accepted as (**1) and we
continue onto the next iterate.
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TABLE 1. Acceleration of the quasi-Laguerre iteration for Wi
For each number in the table, the digits before a space are correct

z(*) (original)

11 .500000000000000
11 .270700712327294

|2 (E+D)  (®)]

T = 1200 — £G-1)]

z(*) (accelerated)

11. 500000000000000
11. 270700712327294

11 .149428542073966
11.0 63735435125402
11.0 26235830973979
11.0 10578521008206
11.00 4261938886133
11.00 1715645778917
11.000 690622605815
10 11.000 277993423158
11 11.000 111899071095
12 11.0000 45041905516
13 11.0000 18130368451
14 11.00000 7297872838
15 11.00000 2937554150
16 11.00000 1182429996
17 11.000000 475954003
18 11.000000 191581922
19 11.0000000 77115924
20 11.0000000 31040850
21 11.0000000 12494622
-22 11.00000000 5029360
23 11.00000000 2024429
24 11.000000000 814877
25 11.000000000 328006
26 11.000000000 132029
27 11.0000000000 53145
28 11.0000000000 21393
29 11.00000000000 8612
30 11.00000000000 3467
31 11.00000000000 1396
32 11.000000000000 565
33 11.000000000000 233
34 11.000000000000 107

0. 706618
0.4 37604
0.4 17533
0.40 3427
0.40 3112
0.4025 55
0.4025 56
0.40252 7
0.40252 5
0.40252 3
0.402522
0.402522
0.402522
0.402522
0.402522
0.402522
0.402522
0.402522
0.402522
0.402522
0.402522
0.402522
0.402522
0.402520
0.40252 1
0.40252 6
0.40252 1
0.402 477
0.40 1680
0. 399604
0. 381937
0. 305425

11.0 13287361699255
11.000 124299930121
11.0000 61856842477
11.000000 198368395
11.0000000 99023529
11.0000000000 12077
11.00000000000 6040
11.00000000000 2304
11.000000000000 156
11.0000000000000 64

© 00O U W -

Table 1 gives the comparison between the original quasi-Laguerre iteration and
the accelerated quasi-Laguerre iteration. Notice that the gx’s in the third column
of Table 1 are identical up to six digits with ¢ = ggg,2 ~ 0.402522.
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