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THE QUASI-LAGUERRE ITERATION 

QIANG DU, MING JIN, T.Y. LI, AND Z. ZENG 

ABSTRACT. The quasi-Laguerre iteration has been successfully established, by 
the same authors, in the spirit of Laguerre's iteration for solving the eigen- 
values of symmetric tridiagonal m. atrices. The improvement in efficiency over 
Laguerre's iteration is drastic. This paper supplements the theoretical back- 
ground of this new iteration, including the proofs of the convergence properties. 

1. INTRODUCTION 

When the Laguerre iteration [4] 

(1.1) L?(x)=x+ 

(-MXz)) MX)(-1 [(-1 (-f() -n (xf()) 

is used to solve a polynomial f with all its zeros being real, such as the characteristic 
polynomial of a real symmetric matrix, the most important advantages are its 
global and monotonic convergence. While its ultimate convergence rate is cubic, 
the requirement of evaluating f", which is relatively time consuming, constitutes a 
major disadvantage of this iteration in terms of its efficiency. A new iteration, which 
we called the quasi-Laguerre iteration, has been established in [1] which avoids the 
evaluation of f" but still maintains global and monotone convergence when applied 
to polynomials with all real zeros. The purpose of this paper is to supplement the 
theoretical background of this new iteration. 

Formula (1.1) can be derived in diverse ways. The best one seems to be to answer 
the following question [3]: 

Question 1. Among all polynomials p(x) of degree n with n real zeros and with 
p(xo) = f(xo) =A O,p'(xo) = f'(xo) and p"(xo) = f"(xo) at a specified real xo, 
which one has a zero closest to xo? and where? 

In general, of all those polynomials, L+(xo) in (1.1) gives the closest zero from 
the right and L-(xo) gives the closest one from the left. 

To avoid the evaluation of f", the above optimization problem can be revised as 
follows: 
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Question 2. Given two specified reals a < b, among all polynomials p(x) of degree 
n with n real zeros, none of which lie in [a, b], and with 

(1.2) p'(a) ff'(a) and P'(b) f '(b) 
p(a) f() p(b) f f(b)' 

which one has a zero closest to a from the right or from the left? and where? 

Even further, to account for multiple zeros, we reformulate Question 2 in a more 
general form: 

Question 3. Given two specified reals a < b, for polynomials satisfying the con- 
ditions in Question 2, consider their mth (m < n) zero to the right (or to the left) 
of a. Which polynomial has the closest one to a from the right (or from the left)? 
and where? 

This optimization problem has been solved in [1] and the solution has a closed 
form. To convert the solution of this optimization problem to an iterative scheme, 
let ZM be a zero of f with multiplicity M > m. To approximate ZM from its 
left, suppose ZM is on the right-hand side of two starting points x(?) < x( and 
none of the zeros of f lie between x(?) and ZM. Then, for k > 1 we may let 
a = x( I b = X( and let x( 1) be the closest mth zero to the right of x(k of 
polynomials satisfying the conditions in Question 2. Similarly, when two starting 
points x(1) < X(?) are available on the right-hand side of ZM with no zeros of f 
lying in (ZM,x($)), then for k > 1, we let a = X(k), b = X(k-1) and let x(k+') be 
the closest mth zero to the left of x(k) of polynomials satisfying the conditions in 
Question 2. 

The sequence {x(k) } so constructed is obviously a monotone sequence. It will be 
shown in ?3 that this sequence converges to ZM with ultimate convergence rate V?+ 
1 when m = M, and the convergence is linear if m < M. The linear convergence 
ratio, 

x(k+l) _ Z 

k-io -(k) k Xmoo X( ZM 

will also be given. 
In practice, the multiplicity of any zero of f is, in general, not revealed ahead 

of time. Therefore, we can only use m = 1 in our iterations. We will show in ?4 
that when a multiple zero occurs and when the linear convergence ratio becomes 
evident, the convergence can be speeded up substantially by a special device. 

This newly derived quasi-Laguerre iteration was employed to approximate eigen- 
values of symmetric tridiagonal matrices with remarkable results. The details of 
the practical implementation and comprehensive numerical experiments on diverse 
types of matrices can be found in [1]. Our algorithm considerably improves the 
speed of Laguerre's iteration for the same purpose [1]. 

During the writing of this paper, we became aware of an earlier unpublished 
work of L. Foster [2] in which a class of globally convergent iterations, including 
our quasi-Laguerre iteration for the case of simple roots, were studied. Our work 
here is based on a different approach and achieves much more general results. 

2. THE QUASI-LAGUERRE ITERATION 

For the reader's convenience, we briefly outline the basic algorithm for the quasi- 
Laguerre iteration in this section. A more detailed derivation can be found in [1] 
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and we only introduce the relevant part that is essential for the presentation of the 
convergence analysis given in ?3. 

We are given a polynomial f of degree n with all of its zeros being real. For 
a < b with f (a)f (b) =, 0, let F be the class of polynomials p(x) of degree n that 
satisfy the following conditions: 

(i) all zeros of p(x) are real; 
(ii) none of the zeros of p(x) are in [a, b]; 

(iii) p(a)p(b) =, 0 and 
(2.1) ~~~p'(a) f f'(a) Zrqa,p'(b) f f'(b) () 

(2.1) 
p(a) f(a)p(b) fq 

(a p 
_ 

f(b) - 

In answering Question 3, stated in ?1, we are led to the quadratic equation [1] 

(2.2) mr(b, a)y2 _ [r(a, b)r(b, a) - n2 + 2mn] Y?+ mr(a, b) = 0, 

where 

(2.3) r(a, b) _ n + (b- a)q(a) and r(b, a) = n + (a- b)q(b). 

Its solutions are given by 

Ym? = r(a, b)r(b, a) -n2 + 2mn ? V[r(a, b)r(b, a) - n2] [r(a, b)r(b, a) - (n - 2m)2] 

2mr(b, a) 

Now, as in [1], let 

(2.4) 
b-a 
bm -1a um? = a - 
mT 1= a- 

2mr(b, a)(b - a) 

r(a, b)r(b, a)-rn2+ 2mnr-2mr(b, a) T/[r(a, b)r(b, a)-n2] [r(a, b)r(b, a)-(n-2m)2] 
= a? -(b 2m[nr-(b-a)q(b)] 

-(b -a)R - 2mq(b) ? VR[(b - a)2R + 4m(n - m)] 

where 

R = n ((a) q(b)) -q(a)q(b), 

and also define 
b-a 

(2.5) vI + = a - 
ba 

Y(n-m)+ - I' 

The solutions of the optimization problems in Question 3 can then be described 
as follows (see [1] for details): 

(i) If f has at least m (counting multiplicities) zeros to the left of a, then the 
zero um- in (2.4) of the polynomial 

(2.6) pi(x) = C(x - Um_)m (x -V )nm 

is the closest mth zero to the left of a among all polynomials in F. And it 
is clear that 

(2.7) Zm- <Um- <_ u ? <_iU2_<ul <a<b, 

where Zm- is the mth zero of f to the left of a. 
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(ii) If f has at least m (counting multiplicities) zeros to the right of b, then the 
zero um+ in (2.4) of the polynomial 

(2.8) P2(x) = C(x - Um+)M (X -V+) 

is the closest mth zero to the right of b among all polynomials in F. It is 
also clear that 

(2.9) a < b < Ul+< U2+ <? Um+ ?Zm+, 

where zm+ is the mth zero of f to the right of b. 

Let a polynomial f of degree n be given with all its zeros being real. Let ZM be 
a zero of f with multiplicity M > 1. To approximate ZM from its left, we shall use 
um+ in (2.4) with m < M to generate a monotonically increasing sequence {x$k+} 
which converges to ZM as k -+ oo. Similarly, to approximate ZM from its right, 
a monotonically decreasing sequence {x$k) } converging to ZM, as k -> oo, can be 
generated by using um- in (2.4). 

To be more precise, suppose ZM is on the right-hand side of two starting points 
Xm+ < Xm and none of the zeros of f lie between xm? and ZM. Then for k > I 
we let 

(2.10) 
X(k+l) = X(k) 

2m -n -(xk1) - x$(k)q(X(k-1))] 

-x+ x$ )R - 2mq(xm 1)) ? + / [(xR l) -x$k)2R + 4m(n - m)] 

where 

q(xm+) f- X )f qM+ () 
- 

(l)) 
M+ ~~~f (xmi1- 

and 

R = n q )qq(x) + R = ~ ~x$(k)~ (k-1) J -M 

In other words, we replace Um+, a and b in (2.4) by xmk+M1) (k and k)respec- 
tively. 

From what has been presented earlier (and derived in more detail in [1]), it is 
easy to see that 

Xm+ < x(k+) ZM 

and no zeros of f fall between xM$+j1) and ZM. So the sequence {x$+} satisfies 

x(0) < x(1) < ... < X(k) < < zm M+ M+ M 

Similarly, when two starting points x($) < x() are available on the right-hand 
side of ZM with no zeros of f lying in (zM,xo) ), then for k > 1, let a (k) 
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b = x k- 1) and u__ = x(k+ 1) in (2.4). Namely, 

(2.11) 
(k+ 1) _ (k) 

xm - - _ + 

-(x( 
- ) -(k) )-m (x( _ )) - R [(x(k _) _-x(k) )2 R + 4,m(n- m) 

-(XM xm-R -2,mq-(xrn- 1) 

where 

_k ___ __ 
_Xk - f'(X MI1- 

q(X,rn-) f ((k)) q(xf kX1k) 
- 

f 
-_ 1)_ 

and 

(X (k-) _ (k) 1) (m) -) 

mk- m-(k 

Again it is clear that 

< x(k+ 1) < X(k) ZM?Xm <m 

and none of the zeros of f lie between ZM and xk+1). Moreover, the sequence 

{jXk) } satisfies 

zm < ... <x k) < < X(1) < X (). 

We call the process of generating the sequences {X}k) } defined by (2.10) and 
(2.11) the quasi-Laguerre iterations. 

3. CONVERGENCE ANALYSIS 

We first prove the following theorem. 

Theorem 3.1. Both sequences {x$,)} converge to ZM monotonically. 

Proof. We will prove the theorem for the sequence {xn-jL }k?. Similar arguments 
hold for the sequence {x}k) }k??= We shall write Yk for X(k) when there is no 
ambiguity. Obviously, by the way it is constructed, {Yk} is a decreasing sequence 
bounded below by ZM. Then it must converge to a certain number x* > ZM. Let 
z(),. . ., z(n-M) be the rest of the zeros of f besides ZM. Suppose x* $& zM; then 
f (x*) $& 0. Recall that 

f = ((v) n-M 
q (y) = 

=ZO 

1 
M' f () Z _( 

i=1 
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Thus, 

Yk-1Yk) [ qYk-1() ~ -21Y Z2 kPM 

R n qq(yk)qq(yk-1) 1 + 
Yk-1 -MYk 

rnKi -Mi) +n*ZM2 -M 

From (2.11), 

2m[nZ-Z(Yk-1 -Yk )q(yk-1 )] 
Y -+ qYk-(Yk- -yk)R+ 2mq(yk-1) + v'R[(yk-1 -yk)2R+4m(n-m)] 

Taking Yk qY X*Y we have 

x* - 
x*- 2m- Zi x*, 

2mq(x*)n+ 4m(n-m)J 

which leads to a contradiction. i 

The next theorem provides the rate of convergence of both sequences {x$k) }. 

Theorem 3.2. (i) When mn < M, the convergence of {X$k)} to ZM is linear and 
the convergence ratio 

Rom (2.11 li - Z 

Xm+ - ZM 

Taking~~~~~~ Yk? X* -Z wehv 

is the oniy real solution in (0,1) of 

ni-M-m 3 2 M-m-0 

x ~ -x -x IL O. 

n-M X -x X+MM 

(ii) When m = M, the convergence of {XE } to ZM is superlinear with conver- 
gence rate io+ 1. 

Proof. Again, we will prove the theorem for the sequence {x$,kL }k?= and write Yk 

for x (k) when there is no ambiguity. Similar arguments hold for the sequence 

(k)~~~~~~~~~~ -+oox 
k 

t ~ ~ ~ ~ ~ ~ ~ ~ M m+Jk=l* 

From (2.11), 

(3.1) 
nk1 Y -2m[n- (Yk-1 -Yk )q(yk-1)] 

(Yk-1 -1yk)R + 2iq(ykl) + ./R[(yk-1 -yk)2R + 4m(n-m)] 
where 

q(yk-1) = Aa(n) w fhe =equ(n)e and 

f(Yk-1) q(y~) mf(Yk) 
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R= (q(=k) q(nk 1) q(yk)q(yk-l). 
Yk-1 - Yk 

Let z(1), .. ., z(n-M) be the rest of the zeros of f besides ZM. Then, 

q(Yk-1) = M + Q(Yk-1) with Q(Yk-1) ZM f (Yk-1) -Yk-1 - ZM ~=iYk-1- 

f '(Yk) _ M n-M 1 
q(Yk)=f(Y) 

- 
Yk - ZM + Q(Yk) with Q(Yk) Yk Z() 

and 

R n 
= q(Yk) - qI(Yk)) - 

q(Yk)q(Yk -1) 

Yk-1 - Yk 

M(n - M) MQ(Yk-l) _ MQ(Yk) Q(yk)Q(Yk-1) ? nR 
(Yk -ZM)(Yk-1-ZM) Yk -ZM Yk-1 ZM 

with 
n-M 1 

R1 - L(Yk-1 Z(i))(Yk_ Z() 

Since Yk ZM as k -* oo, we have 
n-M I n-M 

Q(Yk-1) = E - Z(i) 
Q 

<00 
_Ykc-1 

n-M 

Q(Yk) = j 1 ( > Q 

and 
n-M n-M 

(3.2) R= E -Z(i)) 1* 1 E <0 z(i))2 0. 

~I= (Yk - 1 - Z (i))(Yk -=- (ZM- 

Let 6k - Yk-ZM for all k > 1; then Yk-1-Yk = 1 - k Obviously, 0 < qk < 1 and 
Yk-l1ZM Yk-l1ZM 

0 < 1 - 6k <1. From (3.1), 

(3.3) 
Yk+1 - ZM 

Yk - ZM 

2m [n - (Yk-1 - Yk)q(Yk-1)] 

(Yk-ZM){(Yk1 -yYk)fR+2mq(Yk-1)+ vR [(Yk-1 -Yk)2R + 4m(nr-m)]} 

Now, 

(a) (Yk-1 - Yk)q(Yk-1) = (Yk-1 - Yk) [ M + Q(Yk-1)] 

MYk-1 - ZMi) 
= (Yk-1 -ZM)[ Yk M L M + Q(Yk-1) 

L k-1 - ZM I Lk-1 - ZM 
= (1 - Ek)[M + Q(Yk-1)(Yk-1 - ZM)] = M(1 - 6k) + O(Yk-1 -ZM), 

(b) (Yk-ZM)(Yk-1 -ZM)R=M(n-MQ)-Yk)Q(Yk-1)(Yk-ZM)(Yk-1 -ZM) 

-(Yk-1- ZM)MQ(Yk1) - (Yk - ZM)MQ(Yk) + n(Yk - ZM)(Yk1 - ZM)fRl 

=M(n-M) + O(Yk-l -ZM), 
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(C) (Yk -ZM)(Yk-1 - Yk)R = (1 - Ek)(Yk - ZM)(Yk-1 - ZM)R 
= (1- Ck)M(n - M) + ?(Yk-1 - ZM) (because of (b) above), 

(d) (Yk -ZM) R = k(Yk -ZM)(Yk-1 -ZM)R = EkM(n-M) + O(Yk-1 ZM) 
(because of (b) above), 

(e) (Yk - ZM)2R [(Yk-1 - Yk)2 R + 4m(n - m)] 
= [(Yk - ZM)(Yk-1 - Yk)R] + 4m(n - m)(Yk - ZM)2R 
= (1 - Ek)2M2 (n -M)2 + 4m(n - m)CkM(n - M) + O(Yk-1 - ZM) 

(because of (c) and (d) above). 
Substituting (a), (c), (e) into (3.3) yields 

(3.4) 
Yk+1 - ZM 

Ck+1 = =1- 
Yk - ZM 

2m[n - (1 - Ck)M] + O(Yk-1 - ZM) 

M(n-M)(1-Ck)+2mMCk + M(n-M) k(1-ek)2? k+O(Yk-1 -ZM) 

- G(Ck) + ?(Yk-1 - ZM), 

where 

G(c) =1- 2m[n-(1-c)M] 

M(n -M)I (- c) + 2maMc + M(n -M) /(_ )+4m(n-m)e 
4(n- M) 

We claim that G(c) can be rewritten as 

(3.5) G(c) =- 2(M-m) 

M I + e + + (I 1-,E)2 + 4M((n-M ) e 

To see this, let A = (1 )2 + -M) c and 

A = m[n-(1-c)M], 

B = (n - M)(1 - c) + 2mc + (n - M)A, 
C = M - m, 

D= (1+c)+A. 

2A 
Then, G(c) = 1- ,and 

MB 

AD = m(n-M)(1 + c) + mMc(l + c) + [m(n-M) + mMc]A, 

BC = (M-m)(n-M)(1-c) + 2(M-m)mc + (M-m)(n-M)A. 

So, 

AD + BC = mMc2 + (M2 - Mn + 2mn + Mm - 2m2)C 

+ M(n-M) + [M(n-M) + mMc]A. 
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Meanwhile, 

MBD = M(n - M)(1 - c2) + 2mMc + 2mME2 + M(n - M)(1 - C)2 

+ 4m(n - m)c + [M(n - M)(1 + c) + M(n - M)(1 - c) + 2mMc]A 
= 2mMc2 + (2M2 - 2Mn + 4mn + 2Mm - 4m2)C 

+ 2M(n - M) + [2M(n - M) + 2mMc]A 

= 2(AD + BC). 

Thus, 
1 A A C C _ AD+BC C M C 
2 B= B D D BD D 2 D 

Therefore, 

2C 2(M-m) 
MD M (1+ E+ 2( )+M(n-m)) 

In this form, it can be easily shown that G(c) is monotonically decreasing. To prove 
this, let 

h(c) = 1+ + V(1l- c)2?+4z-c, where m' 

- 
m) 

For c E (0,1), 

hl(c) 
e c-1+ 2y >0, 

V/(1 -c)2 + 4^c 
so, from (3.5), G(c) is monotonically decreasing. 

Now, 
(i) For m < M, let 

3= M E(0,1) and =m(r -m))>? m M(n -M) 

Since G(c) is monotonically decreasing for c E [0,1] and Ek E (0,1) for all k > 1, we 
have 

'3 
0 < =G(1) < G(Ek) < G(0)= < 1. 

Hence, when k is sufficiently large, 

? < 
G 

< Ck+1 = G(Ek) + O(Yk-1 -ZM)< 2 < 
2 2 

Consequently, the convergence of {Yk }l? to ZM is linear. 
Moreover, (3.4) implies that 

(3.6) |Ek+1 - G(Ck)| = ?(Yk-1 - ZM) <- C(Yk-1 - ZM) for k > 1 
for some positive number C independent of k. Since Yk -> ZM, there exists an 
integer N > 1 such that 

(3.7) G(1) -C(YN-1 - ZM) > 0 and G(O) + C(YN-1 - ZM) <1- 

Let 
C= G(1) -C(YN-1 ZM), di = G(O) + C(YN-1 -ZM) 

and 

Ck+ 1 = G(dk)-C(YN+k-1-zM) dk+ 1 = G(ck) + C(YN+k-1-ZM) for k > 1. 
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Then, 
(i) {Ck} is monotonically increasing and {dk} is monotonically decreasing, namely, 

O < Cl < C2 < C3 < .< Ck < ** < dk < **. < d3 < d2 < dl < 1. 

(ii) Ck < EN+k < dk for k > 1. 
This can be shown by mathematical induction as follows. For k = 1, 

0 < cl = G(1) - C(YN-1 - ZM) (because of (3.7)) 
<G(EN)-C(YN-l-ZM) (because G is decreasing and O <EN <1) 

< EN+1 < G(eN) + C(YN-1 - ZM) (because of (3.6)) 
< G(O) + C(YN-1 -ZM) = d1 < 1 (because of (3.7)). 

So, both (i) and (ii) hold. Suppose the conclusions hold for k > 1, that is, 

(3.8) 
O < Cl < < Ck-l < Ck, dk < dk-< < di < 1 and Ck < eN+k < dk. 

It follows from the monotonicity of both G and the sequence {Yk } that 

Ck+l = G(dk) - C(YN+k-1 - ZM) > G(dk-1) - C(YN+k-2 - ZM) = Ck, 

dk+1 = G(Ck) + C(YN+k-1 -ZM)< G(Ck-1) + C(YN+k-2 - ZM) = dk. 
Furthermore, 

Ck+1 = G(dk)-C(YN+k-1-ZM)< G(eN+k)-C(YN+k-1-ZM) (because of (3.8)) 
< EN+k+1 < G(eN+k) + C(YN+k-1 - ZM) (because of (3.6)) 
< G(ck) + C(YN+k-l - ZM) = dk+l (because of (3.8)) 

Hence, 

O < C1 < < Ck < Ck+l, dk+1 < dk < < di < 1 and 

Ck+1 < EN+k+1 < dk+l. 

We now let Ck -+ c and dk - d. Then G(c) = d and G(d) = c. Since G(e) is 
monotonically decreasing, G2 =G o G is monotonically increasing and can have at 
most one fixed point. So, c = d, and consequently G(w) = w, where 

w= lim k= lim YkZM 
k--oo k-oo Yk-1 - ZM 

Thus, 
2(M-m) 

M (1+w? S (1 _wS)2?+ M((n-M) 

or, w is a solution to the equation 
(39) g(x)- M-m 3-g2 +M -m 

(3-9) x x + ~~~~~~0. 

There is only one real solution to (3.9) in (0, 1), since 

g() =M > ?' 

g(l) n-M-1-1 n = - M 1 Mm 

-m -m -mn 
+= < 0 

-n-M M M(n-M) 
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and 

g'(x) = 3 M x2 - 2x-1 < 0 for x E (0,1). 

(ii) For m = M, from (3.5), G(ek) = 0 for k > 1; accordingly, from (3.4), 

6k+I = O(Yk1 -z1j) -+ 0 as k -- oo. 

Thus, the convergence of {Yk}l?I to ZM is superlinear. Further, from (2.6), the 
polynomial p(x) = C(x - yk+l)m(X - V)n-m, where C is a constant and v is a 
certain real number not in (Yk,Yk-I-), satisfies 

r/(Yk) f '(Yk) and P'(Yk-1) f '(Yk-1) 
P(Yk) f(Yk) P(Yk-1) f(Yk-1) 

That is, 

(3.10) M +_n_M 
= M + 

M 1 
Yk-Yk+1 Yk - Yk-ZM S YkkZ() 

and 

(3.11) M +__ _ n-M M n-M 1 
Yk-l-Yk+I Yk-1 V Yk-l-ZM i Yk-_ Z() 

Or, 

(3.12) M(yk+I ZM) n M n=: i 

(3.13) (Yk-1 - M)(Yk-1-Yk+1) - Yk-?1-z() 

Subtracting (3.13) from (3.12) and dividing the result by (Yk- - Yk), yields 

M(Yk+l - ZM)(Yk1 + YkYk - Yk+l - -M) 

(Yk -ZM)(yk - Yk+l)(Yk-1 -ZM)(yk-1- Yk+1) 

(.4knI - 
ZM)_n n-M 1 

(3)(Yk - v)(ykI --v) ? (Yk - z())Yk- ZZ(i)) 

n-M1 

Nobtertacti (R*13 5o(3 ) in (3.2). Hence, for sufficiently large k, 

M(Yk+I - ZM)(Yk- + Yk - Yk+1 - ZM) 2R 
(Yk ZM)(Yk- Yk+l)(Yk- -ZM)(Yk-1 -Yk+I) M 

since (yk -v)(yk1 - v) > 0. Furthermore, the left-hand side of (3.12) satisfies 

<M(yk+1 -ZM) 

0<(Yk-zM)(yk- Yk+l) 
_ M(yk+1- ZM)(Yk- -Yk+1 ? Yk--ZM) Z (Yk-l - ZM)(yk1Yk+1) 

- (Yk- ZM)(Yk- Yk+lk+l)-1Y--ZM)(yk1 Yk+1) Yk-I Yk+l ?Yk-ZM 

< 2R*(Yk-l-ZM) - 0 as k -+ oo. 



356 QIANG DU, MING JIN, T.Y. LI, AND Z. ZENG 

Thus, the right-hand side of (3.12) gives 

n-M ~n-M 1 
Y Q= _ as k - oo. 

Yk - VZM-() 

Therefore, when k -- oo, the right-hand side of (3.14) approaches 

(3.15) 
E R n- M (ZM- ) ( nZM Z(i) >0 . 

Let 

a (1,. 1) and b 

n-M 

Then, by the Cauchy-Schwarz inequality, I(a,b)l < llallIlbll, or, 

1 n-M 1 2 n-M 1 1 (k ?1 
n- M VZ ZM - z(i))(ZM -z(i))2 

Hence, E = 0 in (3.15) implies z - z = Zz2(n-M). That is, f(x) has only 
two distinct zeros: z(1) and ZM with multiplicities n - M and M, respectively. By 
(3.10) and (3.11), one can easily see that in this case Y2 = ZM with starting points 
Yo and yl. So, the iteration converges in one step. Thus, we only need to consider 
the case where E > 0 in (3.15). Now, 

lim Yk+I -ZM 
k-?c? (Yk -ZM)2 (Yk - ZM) 

lim (Yk+l - ZM)(Yk-I + Yk - Yk+l - ZM) 

k-?c? (Yk-ZM)(Yk-Yk+ 1)(Yk- -ZM)(Yk- 1-Yk+ 1) 

(Yk - Yk+ 1) (Yk- - Yk+ 1) 

(Yk-ZM)(Yk- -Yk+I +Yk-ZM) 

E Yk -Yk+1 1 E Yk - Yk +1 - -lrn. lrn Yk-Z A.1 
M k-oo Yk -Z Yk-I-y+I+Yk -ZM = M k-oxo + Yk Z 

Yk-1IYk +I Yk-1IYk +I 

E 

since 

lim Yk Yk+i 1- rlin Y+1 - ZM 1 
k-oo Yk-ZN k-.0 yk -ZM 

and 
Yk 

Z-ZA 

lrm =Yk Z! lrm Yk_-I- = 0. 
k-oo Yk-1 -Yk+1 k - 1o- Yk +I-Z A 

Yk - I - Z 4 

By the following lemma, the convergence rate of {yk}i Ito zM, is indeed V_+ 1. O 

Lemma 3.3. Suppose a sequence {Yk.}A1I converges to z. Let ek = IYk - Zl If 

ek+ =l M e 2ekl and lir M, = 
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where 0 < M* < oo, then the convergence rate of {Yk} is V + 1. More precisely, 

lim ek+ I= (M*)l/vX. 
k-oo e2 + 1 ek 

Proof. First we assume M* 1, that is, limk_oO Mk 1. Let 

dk = lnek+ -(Vd+ 1)lnek, k > 1. 

From ek+1 = Mke2ek-1 we obtain 

lnek+1 = 2Inek + lnek-l + In Mk. 

So, 

dk = 2 ln ek + ln ek-1 + ln Mk-(V + 1) ln ek 

= ( 1- V) ln ek + ln ek-1 + ln Mk 

= ( 1- ) [ln ek - (V' + 1) ln ek- l ] + ln Mk 

= (I1 V-)dk- 1 +In Mk 

Since0> I - "> -I and ln Mk Oas k oo, we have dk 0 as k oo. 
That is, 

ek+1 ' 1 as k oo. 
ev2+ 1 

ek 

Now, if M* $ 1, let 

e = M*ek and M - M. 

Then, 

/ ~~~Mk 22 
ek+1 M*ek+l M* ( M*ek) (M\*ek-l ) = (el el 

and 
lim Mk= 1. 

k-.oo 

So, 

e' 

k-oi (elv-+l 

and 

lim ek+1 ( vM) +1l (M*)l/2 o 
k 0evk \/l 

k 

4. PRACTICAL CONSIDERATION ON CLUSTERS OF ZEROS 

In practice, when our quasi-Laguerre iteration is used to approximate a real zero 
x* of a real polynomial f, the multiplicity of x* is, in general, not revealed ahead 
of time. Therefore, one can only use m = 1 in (2.10) or (2.11) which may cause 
slow convergence when the multiplicity of x* is larger than 1. Even when x* is 
simple, slow convergence may still occur when x* leads a cluster of close zeros of f. 
To overcome this difficulty, we propose the following procedure, which works very 
efficiently in practice: 

By Theorem 3.2, when the quasi-Laguerre iteration fox a simple zero (m = 1) is 
used to approximate an M-fold zero x* (M > 2), or a cluster of M simple zeros, 
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of a polynomial f of degree n, it converges linearly with a ratio qn, which is the 
unique solution in (0, 1) of 

n-M-1 3 2 M-1 
1x -x -x+ M=? 

The following theorem gives the properties of qn,M for M > 2 and n > M + 1. 

Theorem 4.1. (i) For a fixed M, qn,M increases as n increases (n > M). 
(ii) For a given n, qn,m q,2 if 2 < M < n-2. 

(iii) When M =n - 1, then qn,n-1 increases as n increases (n > 3). 

Proof. (i) For a fixed M, write 

n-M-1 3 2 M-1 
n(X)- -n M x3-x x + M 

Then, when n1 > n2, 

gn1(X)gn2(-g ( ( M - M) x3> 0 for x E (0,1). 

Sol qnl,M > qn2,M' 

(ii) For a given n, write 

n-M--1 3 2 M-1 
gM (X)-- n-M 

x x+ M 

When 2 < M < n2, then 

9M(X)-92(XP (-n 2n -Mx+1 n>2n- - 

2(n - 2) M(n-M) 

Sol qn,M > qn,2- 

If a < M < n-2, then 2 < n-M < n2, and hence, qn,n-M > qn,2. On the 
other hand, 

9M(() - gn-) M)(X) (1 _ X3) > 0 for x E (0,1). 

Then q,,,M > qn,n . Thus, qn,M > qn,n-M ? qn,2 

(iii) If M =n - 1, write 

_ n-M-1 3 2 xM-1 
gn X) n-M x X+ -x+ -M n +I -f 

Then, when n1 > n2, 

gn (x)-gn (x)- 1 _ 1> 0 for x E (0, 1). 

So, qnl,n1-I > qn2,n2-l. 

For n > 3 and M > 2, by Theorem 4.1 (iii), 

qn,M > q3,2 when M =n-1, 

and by Theorem 4.1 (i), (ii), 

qn,M > qn,2 > q3,2 when M < n-2. 
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In any case, q3, the zero of X2 + x - 0.5 = 0 in (0, 1), is the smallest linear ratio 
for multiple zeros. Let x(), x(2),... ,x(k),... be the monotone sequence of the 
quasi-Laguerre iterates. When {x(k)} converges superlinearly, then 

_ X(k+l) - X(k) I 

q -JX(k) - X(k-1) I ? as k - oo, 

so, qk should be smaller than q3,2 when k is sufficiently large. Therefore, when 
qk > q3,2, linear convergence seems apparent. In this case, for sufficiently large k, 

IX(k+l) - * 
IXkl *I-..qx(k 

JX(k) -X* I qn,M or 1x(k+1) x*j qx(k) -x*| where q-qn,M 

and 

IX(k+l) -X(k) I JX(k) -X* I - X(k+l) - X* (1 - q) JX(k) - q 

JX(k) - X(k-1)1 I X(k-1) - x*| - X(k) - X*I (1 - q)IX(k1) - X*I 

In practice, the qk'S can be very close to q after several iterations. If qj = q for 
j > k, then 

1xUx+1)-x* I = qlx(j)-x* I for j > k, 

and 

x X(k) + (x(k+l) - X(k)). 

So, at the kth iterate x(k), if linear convergence is revealed, namely qk > q3,2, then 
instead of performing the regular quasi-Laguerre iteration 

x(k+l) = x(k) + bk, 

where bk is the correction x(k+l) - x(k) to x(k) calculated by the quasi-Laguerre 
iteration with m = 1, one can accelerate the iteration by setting 

x(k+l) - X(k) + k 

1-qk 

To illustrate the efficiency of this acceleration device, consider a Wilkinson ma- 
trix W,+ with dimension n = 99. This is a symmetric tridiagonal matrix whose 
eigenvalues are mostly pairs of numerically indistinguishable real numbers [5, pp. 
308 - 309]. Let f be the characteristic polynomial of W+; namely, 

f (z) = det(W+ - zI). 

The zeros of f are the eigenvalues of W,+. The pair z1 = 11.0 + 5 x 10-15 and 
Z2= 11.0 - 5 x 10-15 is a pair of close zeros of f. To approximate z1, the starting 
points x(?) = 11.5 and x(l) 11.27 (one step Laguerre's iteration from x(?)) are 
used. For k = 1, 2, ..., k X X(k+l) - X(k) is evaluated using the quasi-Laguerre 
formula with m = 1. If qk < q3,2, then most likely z1 is neither a multiple zero 
nor a member of any cluster. Then x(k+l) is accepted and we continue onto the 

next iterate. Otherwise, let c= X (k) + k and check for possible overshoot by 
1 - q 

evaluating the Sturm sequence at c. If c overshoots, then reset c = X(k) + 8k(1- q) 
1 - q 

for 1 = 8,4,2, 1 until overshooting disappears. Then c is.accepted as x(k+1) and we 
continue onto the next iterate. 
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TABLE 1. Acceleration of the quasi-Laguerre iteration for W+. 
For each number in the table, the digits before a space are correct 

k x(k) (original) qk = - X(k) (accelerated) 
IX(k) -X(k1l) 

1 11 .500000000000000 11. 500000000000000 
2 11 .270700712327294 11. 270700712327294 
3 11 .149428542073966 0. 706618 11.0 13287361699255 
4 11.0 63735435125402 0.4 37604 11.000 124299930121 
5 11.0 26235830973979 0.4 17533 11.0000 61856842477 
6 11.0 10578521008206 0.40 3427 11.000000 198368395 
7 11.00 4261938886133 0.40 3112 11.0000000 99023529 
8 11.00 1715645778917 0.4025 55 11.0000000000 12077 
9 11.000 690622605815 0.4025 56 11.00000000000 6040 

10 11.000 277993423158 0.40252 7 11.00000000000 2304 
11 11.000 111899071095 0.40252 5 11.000000000000 156 
12 11.0000 45041905516 0.40252 3 11.0000000000000 64 
13 11.0000 18130368451 0.402522 
14 11.00000 7297872838 0.402522 
15 11.00000 2937554150 0.402522 
16 11.00000 1182429996 0.402522 
17 11.000000 475954003 0,402522 
18 11.000000 191581922 0.402522 
19 11.0000000 77115924 0.402522 
20 11.0000000 31040850 0.402522 
21 11.0000000 12494622 0.402522 
22 11.00000000 5029360 0.402522 
23 11.00000000 2024429 0.402522 
24 11.000000000 814877 0.402522 
25 11.000000000 328006 0.402522 
26 11.000000000 132029 0.402520 
27 11.0000000000 53145 0.40252 1 
28 11.0000000000 21393 0.40252 6 
29 11.00000000000 8612 0.40252 1 
30 11.00000000000 3467 0.402 477 
31 11.00000000000 1396 0.40 1680 
32 11.000000000000 565 0. 399604 
33 11.000000000000 233 0. 381937 
34 11.000000000000 107 0. 305425 

Table 1 gives the comparison between the original quasi-Laguerre iteration and 
the accelerated quasi-Laguerre iteration. Notice that the qk'S in the third column 
of Table 1 are identical up to six digits with q q99,2 0.402522. 
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