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COMPUTATIONAL EXPERIENCES ON THE DISTANCES OF 
POLYNOMIALS TO IRREDUCIBLE POLYNOMIALS 

A. BERCZES AND L. HAJDU 

ABSTRACT. In this paper we deal with a problem of Turan concerning the 
'distance' of polynomials to irreducible polynomials. Using computational 
methods we prove that for any monic polynomial P E Z[x] of degree < 22 
there exists a monic polynomial Q E 2[x] with deg(Q) = deg(P) such that Q 
is irreducible over Q and the 'distance' of P and Q is < 4. 

1. INTRODUCTION 

Let IPI denote the length of a polynomial P C Z[x], i.e. the sum of the absolute 
values of the coefficients of P. By the distance of P, Q c Z[x] we mean IP - Q. In 
1962 P. Turan proposed the following problem (cf. [10]): 

Does there exist an absolute constant Ci such that for every P(x) c Z[x] of 
degree m, there is a polynomial Q(x) C Z[x] irreducible over Q, satisfying deg(Q) 
< mand P-Ql<Cl? 

This is a very hard problem. It becomes easier if one removes the condition 
deg(Q) < m. A. Schinzel [11] proved that for every P C Z[x] of degree m there 
are infinitely many irreducible Q c Z[x] such that 

IP Ql < {2 if P(O): 0 O 
IP-QI?{ otherwise. 

Further, one of these irreducible polynomials Q satisfies 

deg(Q) < e(5m+7)(1P12+3). 

This deep theorem gives a partial answer to Turan's problem. 
A similar problem was proposed in 1984 by M. Szegedy (cf. [4]): 
Does there exist a constant C2 depending only on m such that for any P C 2[x] 

of degree m, P(x) + b is irreducible over Q for some b C Z with lbl < C2? 
This problem was partially solved by K. Gyory [4]. He proved the following: Let 

P c Z[x] be a polynomial of degree m with leading coefficient ao. There exist an 
effectively computable constant 03 depending only on m and w(ao), and b c Z with 
bl < 03 for which P(x) + b is irreducible over Q. (Here w(ao) denotes the number 

of distinct prime divisors of ao.) 
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If P is monic, then w(ao) = 0. Hence for monic polynomials this theorem gives 
an affirmative answer to Szegedy's problem. 

Results on the distribution of irreducible polynomials (mod p) (see e.g. [1], [2], 
[3], [5]) can make it easier to determine the Turan constant and Szegedy constant, 
at least for fixed degree. Using this approach, we give upper bounds for the Turan 
constant Ci for monic polynomials P of degree not greater than 22. More precisely, 
we prove the following. 

Theorem. If 0 < n < 22, then for every monic polynomial P C Z[x] of degree n 
there exists an irreducible monic polynomial Q c Z[x] of degree n such that 

IP-Q <?4. 

Our computations imply a slightly better result. The details can be found in the 
tables occurring in Section 3. 

The main idea of the proof is as follows. If Q c Z[x] is a monic polynomial 
which is irreducible (mod p) for some prime p, then Q(x) is also irreducible in Z[x]. 
Hence, given a monic polynomial P C Z[x] and a prime p, for every Q c Z[x] 
which is (mod p) irreducible and monic and has the property deg(Q) = deg(P), 
there exists an irreducible monic polynomial R C Z[x] with deg(R) = deg(P) such 
that the distance of R and P in Z[x] is not greater than the distance of Q and 
P in Z[x] (mod p). (The precise meaning of the distance of the elements of Z[x] 
(mod p) will be given later.) This means that in order to obtain bounds for Turan's 
constant concerning monic polynomials (of fixed degree) it is sufficent to investigate 
the elements of Z[x] (mod p), for some prime p. 

The investigation of Szegedy's constants C2 by computational methods seems to 
be more difficult. 

2. NOTATION AND ALGORITHMS 

First we introduce our notation and some concepts that we need in the following. 
For every non-negative integer n let c* (resp. Cn) be the smallest integer such that 
for every monic polynomial P C Z[x] of degree n there exists an irreducible (resp. 
irreducible monic) polynomial Q C Z[x] of degree not greater than n (resp. of 
degree n), such that IP - Ql < c* (resp. < cn). For every n > 0, c* and Cn 

obviously exist, and we have c* < Cn < n + 1. (The second inequality follows from 
Eisenstein's theorem. Namely, if P(x) = Xn + an1xn-1 +... + a1x + ao, P C Z[x], 
then there exists a polynomial Q(x) = Xn + bn- Xn-1 + ? +blx+bo, Q c Z[x] such 
that I bi-ai ? 1 if 1 < i < n - 1, bo-ao < 2 and bi is even for 0 < i < n - 1, 
but bo is not divisible by 4. Then, by Eisenstein's theorem, Q is irreducible, and 
P - QI < n + 1 clearly holds.) 

With this notation, our theorem asserts that 

Cn< 4 if 0 < n < 22. 

As is shown e.g. by P(x) = Xn if n is odd, and P(x) = Xn- x2 + x if n is even, we 
have Cn> 2 for n > 3. 

For a prime number p, denote by Zp[x] the residue class ring of Z[x] (mod p). If 
T C Z[x] is a monic polynomial, denote by Tp(x) the corresponding polynomial in 

k 

Zp[x]. Every P c Zp[x] of degree k has a unique representative of the form E bixi 
i=o 

with bi 2, P < bi < P, i = 0, ..., k. For i = 0, . .,kset ci = bi +p, if bi < 0 and 
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k 
ci = bi otherwise. The p-length of P c 7p [x] is defined as E bi , and is denoted by 

IPKp. By the distance of P, Q E Z[x] (mod p) we mean (P- Q)pIp. It is convenient 
to code the elements of 7p[x]. Using the above notation, let us define the function 
fp : 7p[x] - N by 

k 

fp(P) =E cipi. 
i=O 

Obviously fp is invertible; its inverse will be denoted by fp71. 
For every n > 0, denote by Cn (p) (resp. c* (p)) the smallest integer such that for 

each monic P E 74[x] of degree n there exists an irreducible monic Q E 7p [x] of 
degree n (resp. of degree not greater than n) with I P - QI <? cn (p) (resp. < c (p)). 
It is clear that for every n and p we have c* (p) < Cn (p). 

Description of the algorithm. To prove our theorem, it is sufficient to investigate 
the monic polynomials in Z[x] (mod p), where p is a prime. Let P E Z[x] be a monic 
polynomial of degree n. Then there exists an irreducible monic Q E Zp [x] of degree 
n such that IPp - Qlp < Cn(p). Clearly, if R E Z[x] is monic, and Rp(x) = Q(x), 
then R is irreducible. Hence we have cn(p) > Cn for all n > 0. If the relation 
C* (p) > c* holds, it is not so easy to prove, because for every irreducible monic 
Q c Zp[x] of degree k (k < n) there exists a reducible polynomial R E Z[x] of degree 
n with Rp(x) = Q(x). (For example, if S is monic in Z[x] with Sp(x) = Q(x), then 
one can choose (pxn-k + 1)S(x) as R(x).) So if we want to obtain a bound for c, 
then we must examine Cn (p). In our algorithms we took the primes p = 2 and p = 3; 
in these cases (especially when p = 2) the computations are relatively simple, and 
with the help of certain filter conditions they can be made relatively fast. 

Consider first the case p = 2. From now on by a polynomial we mean an element 
Of 2 [X]I 

It is sufficient to obtain the smallest number kn) for which for every monic 
P E i2 [x] of degree n with the property P(0) :& 0 there exists a monic irreducible 
Q E 22[x] of degree n, such that P - Q12 < kn. Then cn (2) kr, + 1 holds, 
provided that n > 2. (The case n < 2 is trivial.) 

For small degrees, say for n < 13, the values Cn(2) can be computed easily, even 
the 'compare everything with everything else' method is fast enough. (At this stage 
one can make use of tables containing irreducible polynomials. Such tables can be 
found e.g. in [6], [7], [9]. The description of a computer program making certain 
tables of this kind can be found in [8].) 

Suppose now that 14 < n < 22. Since in these cases the degree is relatively high, 
it is worthwile to use a further filter condition. 

We shall use the fact that if a polynomial is irreducible, then it has an odd 
number of nonzero coefficients. We shall need some lists in our algorithm. Let 
T1 be a list of those 2048 polynomials which have nonzero constant terms and 
whose degrees are, < 11. Those polynomials, whose 2-length is even are (in some 
order) in the first 1024 place, and the others (in some order) are in the remaining 
places. Denote by T2 a list of 2n-12 elements, consisting of zeros and ones. If 
k-1 = Sn-132n-13+ ?+j2+so, Ii C {o, 1}, i = 0,. ..,n-13, then the kth element 
of T2 is 1 if the 2-length of the polynomial Pk(x) = nr-13Xn-13 + ... + E1X + So is 
even, and 0 if it is odd. (By the help of the function f2, these lists can be obtained 
by using a simple recursion.) 
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Our algorithm is the following. Consider the polynomials 

+X12 Xn 
+X13 In +x13 +X12 xn +X14 xn+Xn-l +...+13 +12 

At the kth step we work with the polynomial Bk(x) = Xn+Xl2Pk(X), 1 < k < 2n-12. 
Consider the polynomials Bk (X) + C(x), C(X) E T1. Using the lists T1 and T2 
the parity of the 2-length of Bk (x) +C (x) can be determined easily. Hence it is 
sufficient to change the coefficients of Bk (x) C (x) either at one or three, or at zero 
or two places, and determine the irreducibility of these transformed polynomials. 
(We have tested every occurring polynomial only once; we had a list in which we 
indicated whether a polynomial was tested yet, and if it was, then it is irreducible 
or not.) If every polynomial Bk (x) + C(x) can be transformed into an irreducible 
polynomial, then we have cn(2) < 4. If for some polynomial Bk(x) + C(x) all the 
polynomials obtained by a transformation are reducible, then we have Cn(2) > 4. 
Our computations proved the first assertion, that is, we have Cn(2) < 4, if 14 < n < 
22. If we change the coefficients of the polynomials at most two places, then we get 
Cn(2) > 3, 14 < n < 22, and we obtain the extreme polynomials given in our tables. 
(If n and p are fixed, then by an extreme polynomial we mean a monic P E Zp [x] 
of degree n for which IP - QIp = cp(n) for some irreducible monic Q E Zp[x] of 
degree n, and IP - Q'Ip > cp(n) for every irreducible monic Q' cE p[x] of degree 
n.) 

Consider now the case p = 3. From now on a polynomial means an element of 
Z3 [X]I 

In this case, if n > 2, it is sufficient to compute the smallest integer kn, such that 
for every monic polynomial P of degree n With the property P(O) = 1 there exists a 
monic irreducible polynomial Q for which (P - Q)313 < kn or I (P + 1- Q) 13 < kn 
holds. Then we have cn(3) = kn + 1, if 2 < n < 12. (The case n < 2 is trivial.) In 
case p = 3, the filter condition used in case p = 2 could not be applied easily, hence 
our algorithm for p = 3 was simpler (but less efficient) than for p = 2. It worked 
in the same way as in the case of p = 2 (using similar lists), but of course without 
the mentioned filter. O 

We would like to mention that in our programs we have dealt with the codes of 
the polynomials instead of the polynomials themselves. (The codes were given by 
the functions f2 and f3, respectively.) 

The algorithms were written in MAPLE. The computation time for p = 2 and 
n = 22 was about 180 hours on a SUN Sparcstation 10. 

We finish this section with a few remarks. 

Remark 1. Our experiences suggest (which is not surprising) that the computation 
time (using these algorithms) is exponential in the degree. That is why we stopped 
at n = 22. Using probabilistic algorithms one can hopefully get bounds for Turan's 
constant for higher degrees as well. 

Remark 2. The use of primes greater than 3 would probably give better bounds, 
but, of course, it would increase the computation time. We have no experience in 
this direction. 

Remark 3. From our computations a similar result follows for polynomials in 2[x] 
with leading coefficients divisible neither by 2, nor by 3. Using other primes, more 
general results could be obtained. 
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3. TABLES 

We created some tables by means of the above algorithms. 

TABLE I. p = 2 

n Cn, (2) Extreme polynomials A nearest irreducible 
(and their number) polynomial 

0 0 (0) 
1 0 (0) 
2 2 x2 (1) x2+ x + 1 
3 2 x3 (1) x3+x+1 

4 3 x4+x (1) x4+x+1 

5 3 x5 +x (2) x5+X2+1 

6 3 x6 + x2 (7) x6+ x +1 
7 3 x7 + x2 (17) x7+ x +1 

8 4 xx (1) x8+X4 + X + 
9 3 x9 + x2 (72) x9+ x + 1 

10 1 4 | . z4 + x 
3 + x72 x6) 1 10 + 8 +7 + 6+ 10 4 +x4 + X7 2 (1) Xl +X +X5 +X + 

3 4 x1~~~43 21) X3+X6+X 

11 9 8 7 +5 (4) +X9+X Z +X 11 4 x +X +X +X +X 2+X 3+ x+ 1 

12 4 x12 +X 75 +X+X (4) x12 +x7++x5 +x+1 
13 4 x13 (16) x13 +x6 +x4 +x +1 

4 917 6 87 +Xz4 X2 Z14 +X7+4 Z +5 
4 

14 4 x1X + x+0 + x6 + x3+ (48) +X 3 +X2 + X1 

19 4 x19 x19 ~~~~~~~+ x3 + x2 + x+1 

15 4 x15 +x 7+x 5+x3 +x (83) x15+x7+x 4+x+1 
16 4 x1 (168) x16+X+x++ 

x17 X8 X7 X4 1 17 4X +X3 +X2 +X (334) x17+X +X +x+1 

18 4 x18 +x 10 +X8+X3 +X x 18 +x 10 +X9 +x+1I 
19 4 x9 x9 +X 9 x+ 
20 4 x20 +X1 X7X+ x 20 + 17 +X O + x+1I 

21 4 x~21 + 9 + 8 + 5 +4 21 + 10 +9 + 4+ 
21 4 x2 zX +X zX +22 +l +X z +61 

2212 9 7 6 3 X2 +X 15+X7+X6 22 4 x22+X +X +X +X +X +X +3++ 

Description of the tables. 
I. We computed the values of c,(2) for 0 < n < 22. In the third column we 

include polynomials, which show that the corresponding values of cn(2) are sharp. 
Except for degrees 0, 1, 4, 6, 7 and 9 we choose an extreme polynomial P(x) of degree 
n, n < 22, for which P(x) -Xn + 1 is irreducible. (For the excluded degrees there 
are no such extreme polynomials.) We conjecture that for every n > 10 there exists 
an extreme polynomial having this property. For n < 17 we gave the number of the 
extreme polynomials as well. In the last column of the table there are polynomials 
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TABLE II. p = 2 

Degree All extreme polynomials 
2 x2 
3 X3 

4 X4 

5 X5 +x 
X 5+ X 4 

x6 x2 

x6 +x3 +x2 +x 

x6 X4 

6 X6 + X4 + X3 + x2 

x6 +X5 +x3 +x 
6 + x5 +?x4 + x3 

x6 +X5 +X4+ x3+ +x2+ x 

TABLE III. p = 3 

n Cn (3) Extreme polynomials A nearest irreducible polynomial 
0 0 

1 0 

2 1 x2 x2+1 

3 2 x x3 -x2 +1 

4 2 x4 - x2 + x x4-x2_1 

5 2 x5 x5 -1 

6 2 x6 _ 2+x x6+x-1 

7 3 x7 +X4 +x x7 +x5+x+ 

8 7 6 x~8 _ 7 _ 6 
x5 8 3 x8-x7_x6+X5+x3-x XX+X +x 3_x2+ x+1 

9 3 x9-x5 +x3+X x9-x8 -x7-x5 +x3+ x +1 

10 3 x10- x7 -x6 x5 ?x3 - X10 - 9-x8-x7-x6+ 

11 3 x11 +X5-x3_-x x11 -x10 -x8 +5-x3 -x?+ 

212 311 x10 x9 x8 x7 x12 + x 1-x10 + x9x8 x7 
1 3 

6 5 4 3 + x2 + X 6 5 4 3 + x2 + X -x-x -x +x +X + -x - x -_ +x +X +x1 

which are irreducible, and whose distance to the extreme polynomial occurring in 
the preceding column is cn(2). 

II. This table contains all the extreme polynomials of degree 2 < n < 6 in case 
p = 2. 
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TABLE IV 

Degree n Bound for cn_ 
0 0 

1 0 
2 1 

3 2 

4 2 

5 2 

6 2 

7 3 

8 3 3 

9 3 3 

10 3 

11 3 
12 3 

13 4 

14 4 

15 4 

16 4 

17 4 

18 4 

19 4 

20 4 

21 4 

22 4 

III. We computed the values of cn(3) for 0 < n < 12. The extreme polynomials 
show that the corresponding values of cn(3) are sharp. The irreducible polynomi- 
als in the last column have the property that their distance to the corresponding 
extreme polynomial is cn(3). 

IV. Using Tables I and III we obtained bounds for cn (and hence for c*) for 
O < n < 22. 
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