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ON SOLVING RELATIVE NORM EQUATIONS 
IN ALGEBRAIC NUMBER FIELDS 

C. FIEKER, A. JURK, AND M. POHST 

ABSTRACT. Let Q C ? C F be algebraic number fields and M C F a free 
o8-module. We prove a theorem which enables us to determine whether a 
given relative norm equation of the form I N/18 (r)j = IO1 has any solutions 

C M at all and, if so, to compute a complete set of nonassociate solutions. 
Finally we formulate an algorithm using this theorem, consider its algebraic 
complexity and give some examples. 

1. INTRODUCTION 

Solving norm equations is a central problem in the area of algebraic number 
theory. Although there is an algorithm for solving absolute norm equations (e.g. see 
[1] or [8, ??5.3, 6.4]), none (except the absolute one) exists in the relative case. We 
outline a new algorithm to decide whether a relative norm equation has solutions at 
all and then, if there are solutions to compute a complete set of nonassociate (with 
respect to units of relative norm 1) solutions. Finally we discuss the complexity of 
this algorithm and give some examples. 

2. PRELIMINARIES 

First, we introduce several definitions and notations. We consider the following 
situation: 

F = srn) Let a 
- o=(1), .. ., am) be the roots of the monic irreducible 

polynomial f E Q[t], 9 := Q(a). Furthermore, let 3 be a root 
of a monic irreducible polynomial g E E[t] and F : (p). We 
assume that a1), ..., am() denote the real roots of f and that 
a(mi+1) = a(mi+m2+1) . (m1+m2) = a(m1+2m2) are in C\It. 

= Q(a) For an arbitrary T1 E 9 we define 7(i) (1 < i < m) as the image 
of T1 under the Q-isomorphism from ? to E(i) := Q(ai)) which 

m maps ae to ('i). The norm of an element 71 of ? is defined in the 
usual way: N(r,) := NS/Q(7) := Him 1(i)* The definitions for 

Q F are essentially the same, but here we have to be careful about 
which field we are using as base field. In general, the conjugates cannot be ordered 
in real and pairs of complex ones and - of course - we get different conjugates 
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when we consider F as an extension of ? rather than as an extension of Q. We will 
discuss this in detail later. 

The ring of integers of a field K is denoted by 0K in the sequel. 

3. ABSOLUTE NORM EQUATIONS 

In this section we give a short review on the Fincke-Pohst algorithm to solve 
absolute norm equations. 

Given an arbitrary, but fixed k E 2>o and M c ? a free Z module of ?, we want 
to find all 71 E M subject to 

(3.1) N(rj) = k 

or 

(3.2) N(i)l = k, 

i.e., we want to determine if solutions exist and, if so, compute all of them. 
If M is of full rank m, we fix a maximal system of independent units e1, 

6r (r = mI + m2 - 1) of its ring of multipliers. For practical computations it is 
advisable to use LLL-reduction in the logarithmic lattice to produce units for which 
the absolute values of each of their conjugates are close to 1. The next lemma gives 
explicit bounds for a complete set of nonassociate solutions. 

Lemma 3.1. Let 7 be a solution of (3.2). Then there exists a unit 6 and a solution 
7= subject to 

(3.3) R< | s < Ri (1< i <m), 

where 
(1 ml+m2-1 

Ri := exp > log(VPW 1) . 

Proof. See [1, (6.3) Lemma] or [8, Theorem (4.2), Chapter 6]. D 

If M is not of rank m, then it is not known how to compute realistic bounds on 
the conjugates of the (finitely many) solutions of (3.2). Hence, in that case we need 
to stipulate bounds Ri such that any solution i1 satisfies (3.3). This works well if 
we are only interested in "small solutions", say with coefficients bounded by 106. 

Furthermore, we need the following, rather technical, lemma from [1, (6.23) Satz] 
or [8, Theorem (3.8), Chapter 5]: 

Lemma 3.2. For arbitrary y, r E R>o define the functions h: R>l R- : t 
t- It and g-: R>l R : t (1 - h(t))th(t) + h(t)th(t)-1. Then there exists a 

unique zero A = A (-y, r) of g(t)- (1 + -)2/m. 

Using the previous two lemmas, one can prove the following theorem, which will 
allow us to solve absolute norm equations of the type (3.2) or (3.1). 

Theorem 3.3. For arbitrary -y E R>o let A = A(-y, k) as in Lemma 3.2. Define 
constants Li := 2 1 := 2logRi] (1 < i < m) with Ri as in Lemma 3.1. 
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If (3.2) is solvable, then there exists r = (ri,... ,rm) E Zm and a solution 71 of 
(3.2) subject to (3.3), and 

m 
(3.4) E SArj 171(j) 12 < m(k + y)2/m. 

j=1 

The coordinates of r satisfy Zm 1 rj = 0, Lj < rj < Uj (1 j < m) and rm,+j = 
rml+m2+j for all 1 < j < m2 with at most one exception, where we have rmi +j +1 = 

rml+m2+j. For rank M = m, any solution of (3.2) is associate with one satisfying 
(3.4). 

Remark 3.4. Representing 71 in a basis of M, the left-hand side of (3.4) becomes a 
positive definite quadratic form over M, so that the solutions of the inequality are 
lattice points inside an ellipsoid. 

The basic idea in the proof of the theorem above is an observation due to M. 
Pohst which guarantees (under certain conditions) the existence of some vector 
A E ]Rm0 with mI Aj 17A(j)12 = mk for every solution 71 of (3.2). The main task in 
the proof then is to obtain a finite set of candidates for the A's. This was achieved 
by U. Fincke [1] who transformed our problem into a discrete one by considering 
only vectors of the form (Arl, . .., Arm), rj E 2. In the next step, we obtain bounds 
for the rj's from the bounds for the solutions. Finally, we reduce the set of the 
admissible exponent vectors r = (ri,... ,rm). 

To use this theorem for solving (3.2), one has to calculate the set of all admissible 
r E Zm, for each such r to compute the set of all 71 E M subject to (3.4) and, finally, 
to determine the solutions of (3.2) among them. 

The following statement concerns the algebraic complexity when using the 
Fincke-Pohst method to enumerate the points of the ellipsoids. 

Theorem 3.5. Let k E Z and the signature (mI, iM2) be fixed. Then there exists 
a v > 1 depending only on the conjugates of a Z basis of M and a sufficiently 
large U > maxjLi Uj, Uj as in Theorem 3.3, such that the number of arithmetic 
operations (addition, multiplication, division, calculation of square roots) used to 
solve (3.2) with the algorithm described above is bounded by 

4logk + 4logU )ml+m2-1 (2Um2/3vA1/2 (1 + A)l/m)m/2 (2m3 +24m2). 
in log A log A k 

Proof. See [1, (7.5) Satz]. D 

4. RELATIVE NORM EQUATIONS 

Before we sketch the theory and the algorithm, we make some further definitions. 
Let M c F be a free oc-module. As above, we assume the rank of M to be n in 
order to produce bounds. For an arbitrary 0 E oc we want to decide if there are 
any 7 E M satisfying 

(4.1) Npy8(r) = 0 

or 

(4.2) 1NT/8()1IO 1= 

and, if so, we will compute a complete set of -nonassociate solutions. 
Although the algorithm described in the previous section could, in principle, 

be used to accomplish this (certainly one can solve N(77) = N/Q(N/8(r)) = 
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y(l) y(n) y((m-l)n+l) y(nm) 
\ 

/ 
. . .\ 

g(1) g(m) 

o~~~~.. 

Q 

FIGURE 1. The ordering of the conjugate fields 

N?,,Q(0) and then test the solutions), it turns out to be far too expensive in terms 
of computation time. Hence, the approach for the absolute case needs to be changed 
appropriately. 

To deal with the difficulties concerning the conjugates of F arising from the fact 
that we can consider F both as an extension of 8 and of Q, we fix the ordering of 
the conjugate fields as described in Figure 1. To simplify notation, we define the 
following abbreviation: N(j)S(y) := Ny(j)n?i)/gj) (Y((j-l)n)) = ll1 ((j-l)n?i) 

We require that the conjugate fields g(l), . (m) of V are ordered as described 
in ?2. 

For the real conjugate fields E(i) (1 < i < m1) we stipulate furthermore that 
the conjugate fields of F, which are extensions of these, are ordered in a similar 
manner. For 1 < i < m1 we require that $.((i-l)n+j) C R (1 < j < si) and 
)7((i-l)n+si+j) = F((i-l)n+si+ti+j) Se R (1 < j < ti), si + 2ti = n, where (si,ti) 
denotes the relative signature of F((i-l)n+l) over E(i) [4, Lemmas 3.1-3.4]. 

As in the absolute case, the first task is to obtain bounds for a set containing 
all non-associate solutions of (4.2) or (4.1). In the previous section we used units 
of the ring of multipliers of M to transform arbitrary solutions to those contained 
in a bounded region. In order to preserve (4.1), one has to use units e where 
N.F/ (e) = 1, whereas for (4.2), it suffices to require that N;1? (e) is a torsion unit 
of 8. Here we will restrict ourselves to units of the form En/ N/I(e). Clearly, we 
have Ny/&(e_/NF/8(E)) = N /8(6n)/N_/g(e)n = 1. Let 6i, ..., Er be a maximal 
system of independent units of the ring of multipliers of M. We have the following 
lemma, which corresponds to Lemma. 3.1: 

Lemma 4.1. Let ij be a solution of (4.2) or (4.1). Then there exists a unit e and 
a solution qE = ne of (4.2) and (4.1) subject to 

(4.3) 1 < ( I)n?i ? < R(j-ln+i (1 < i m, 1 < j < n), 

where 

R ( j-ln+= exp ( log(e((jl)n+i + 2 Z Jlog(IN(j),>(el))J)J 
1=1 z ~~~~1=1 
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Proof. The proof is essentially the same as in the absolute case. The bounds are 
worse than those in Lemma 3.1 because of the restricted set of units used for the 
transformation [4, Lemma 4.1]. E 

Assuming that we have bounds for the conjugates of solutions from a different 
source, we can again generalize the method to modules M of rank less than n, as 
in the last section. 

We note that the bounds here are not a generalization of those obtained in 
Lemma 3.1. Having established this lemma, and using Lemma 3.2 of the preceding 
section, we obtain the following theorem: 

Theorem 4.2. For arbitrary ?yj E R>o let Ai = A(Qyj, 10(i)j) (1 < j < m) as in 
Lemma 3.2. Define constants L() 2= L log _j =2logR1j 1 
(1 ? i ? n) with R(j_l)n+i as in Lemma 4.1. Then for every soluttion v of (4.1) 

there exists a unite with NF/?(e) = 1, Zn = ( . . . E (1 < j < m) and 
a solution r1 = ev of (4.1) subject to (4.3) such that 

(1) En=1 Ar [((j-l)n+i)12 ? n(10(j)I + yj)2/n, 1 < j < m; 

(2) Zir=l -0, 1 j ?m; 

(3) L(i) < r(P) < U(j) I < i < n, I < j < m; t _ t _ i , _ _ _ 

(4) For 1 < j < ml we have in addition r(i) = r(i) for all 1 i t with sj?i sj?+tj?+ifoal <i<tjwh 

at most one exception, where we have r($j)F + 1 = r(i) 
sj + sji?tj +i. 

Proof. Let e and r1 = i be as in Lemma 4.1. For 1 < j < m and 1 < i < n 
define y(i) = 0(j)J-2/n1l((j-l)n+i)12. Clearly, lm7 ,1y(j) = 1. Since y() and Aj are 

positive, we can find ri{) E 2, e(j) E [0,1) with 

(4.4) (.i) ( A- i) 

and 0 = Ej n i() = EL e(j). By performing some lengthy computations, we can 
change the e's and the r's to fulfill conditions (2) and (4) and then verify (3) using 
(4.4). As in the absolute case, the validity of (1) is a consequence of Lemma 3.2 [4, 
Satz 4.4]. I 

A straightforward computation gives J N(j),(7)J <] U(j)I + yj for all q satisfying 
(1) of Theorem 4.2. 

Analogous to the description given in the paragraph after Remark 3.4, we get 
an algorithm for solving (4.2). We note that the inequalities (1) describe ellipsoids 
defined via the positive definite quadratic forms [4, Lemma 4.6] 

n 

X = (XI) ... Xn ) |- EA rt lXj| ( < j < m). 
i=l 

Their lattice points can be calculated with a modified Fincke-Pohst enumeration 
algorithm. 

5. A MODIFIED FINCKE-POHST ALGORITHM 

A main part in solving norm equations is the enumeration of all points in suitable 
ellipsoids. In this section we present a modification of the Fincke-Pohst method 
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adopted to relative norm equations. We consider the following situation: Let A(i) E 

C?nx be positive definite, C(i) > 0 subject to A() - A(i+m2) C(i) = C(i+m2) 
(M1 < i < ml + M2). We present an algorithm to calculate all x E M subject to 

X-(ir)A(')x(i) <! C I) 

where x(i) = (x((i-1)n+1) ,... I x((i-)n+n))tr. Let v1,... , Z/n be an og-basis of M. 
For x c M we have X=Zn zl Vl with zi E o? and X((i-l)n+j)=En z(i) I((i-l)n+j) 

Defining Vi = (Vf(il)T+a)) 1<<n, we set 

Q (x) :=Xtr A(.x(i) = (z .... I Zn)V) A(i)Vzi, ... IZn)t 

-tr 

Let Bi := Vi A(')Vi. Using the algorithm for quadratic supplement (see [3, (2.3)]), 
we obtain ZtrB-z = En 

I q?IZW +En 1+ q(f)z(') 12. (Note that we have q(' > 0 
since Bi is positive definite.) This yields the following straightforward algorithm: 

Algorithm 5.1. (Relative enumeration) 
Input: qi(i, () as above 
Output: All x E M subject to Qi(x) < C( 

Init: I := m T(C) := (i) U():- 0(1 < i < m). 

Step 1: S :={Z e0o I JZ(i) UWi)12 < T 1 < i< m}. 

Step 2: If S1 =A 0 goto Step 4. 

Step 3: Set I := 1 + 1, if 1 > m then terminate else goto Step 2. 

Step 4: Choose z1 in S, arbitrary and delete z1 from Sl. 

Step 5: If 1 = 1 print x := Enzs goto Step 2. 

Step 6: 1 := 1 1 T() := T(i) - ql(+)+(ZW+ + UT(i) U(i) := Ens-i+ qW 
M 

(1 < i < m) goto Step 1. 

It remains to give an algorithm to compute the set Sl in Step 1. We will do this 
using a modified Fincke-Pohst algorithm. Instead of computing Si, we compute a 

set S Z = {Z Oc I Eoml, LZ(i) -i)2 CI} with Cl := i qQ) Let t1,... ,Ilm 

be a 2-basis of Og and define 

(1) .. (1) u(I) 

Wl := , , . | E ?:mx(m+1) 

(m) (M) 

Now we have E i lx(') - U) 12 = (z1,... ,Zml 1)W Wl (Zl,. Zm, Z1)tr for every 
X = E l zst, E o0, zs 2. Clearly, Wr Wl is positive semidefinite and real, so 
the Sl can be calculated with the classical Fincke-Pohst algorithm if we fix. the last 
coordinate to be 1. 



SOLVING RELATIVE NORM EQUATIONS IN ALGEBRAIC NUMBER FIELDS 405 

6. THE ALGORITHM 

We are now able to present a complete algorithm for solving (4.2). 

Algorithm 6.1. (Computing a complete set of nonassociate solutions of (4.2)) 
Input: 0 E oc, y E RI , M and a complete set cl,... , 6, of independent units of 
the ring of multipliers of M. 
Output: A complete set of nonassociate solutions of (4.2). 

Init: Compute Aj = A(%j, 10(j)I) as in Lemma 3.2, R(j-l)m+i as in Lemma 

4.1 and L$P) and U(j) as in Theorem 4.2. Let S := 0. 

Step 1: Compute I {:= (r(i)) ) E Znxm 1 (2)-(4) of Theorem 4.2 hold }. 

Step 2: While (I 0 0) do 

Init enumeration: Choose r E I arbitrary, and delete r from I. 

Enumerate: Determine all 71 E M satisfying (1) of Theorem 4.2 (e.g., using 
Algorithm 5.1). 

Check: For each solution of the previous step, check (4.2). If we have a 
solution, check whether it is associated with one already in S. If 
we have a new solution, store it in S. 

Step 3: If S = 0 return "No solution" else return S. 

In order to solve (4.1) instead of (4.2), one simply has to change the condition 
in "Check". To estimate the algebraic complexity of this algorithm, we introduce 
the T2-norm: T2: ? -) R : 711 ' Zm 1 (i) 2 and the so called "relative T2-norm" 
T!F/s - ,-: R En Z ((j-1)n+i)12 (1 < j < m). 

Let u1, ..., Zn be an oc-basis of M and u*, .., in the corresponding dual basis 
subject to T./i (izvj*) = &i,j. Define 

dj x := max T?(Vi ) (1 < j < m), Lj := max{A3 r% I r E <,1? i < n}, 

m 

C := ZdjLj(njO(i)I +zyj)2/n 
j=1 

Furthermore, let pul,. . ,Um be a 2-basis of oc and tt*, ..., [4* its dual basis 
subject to Trj/Q(bt4tJ) = &.j Let d := maxl<l<m T2(14*). 

We begin with the complexity of Algorithm 5.1. 

Lemma 6.2. (1) The algorithm for computting one set Si in Step 1 of Algorithm 

5.1 calculates 0 ((2L 
dCJ + 1) ((L4dczrj m-1) + i)) points. For each point it 

needs O(m2) operations, and additional O(m3) operations for precomputing. 

(2) Algorithm 5.1 needs 0 (mn2+M3)(2 + ) (L 4dC4 + ) 

operations. 

Proof. In the same way as in [3, Proof of 3.15] (cf. [4, Lemma 3.17] or [4, Lemma 
4.13]) we normalize the task to q(i) > 1. Now C is an upper bound for all Si. 

(1) Since we fix the last coordinate, we effectively enumerate an m-dimensional 
ellipsoid, so the statements follow at once from [3]. 
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(2) Clearly, we consider at most 0 (((2L dCj +1) ((L4dCj+m-1)+i))) points, 

and for each point we need O(mn2 + m3) operations. 

We note that we need O(mn3) operations for calculating the matrices Bi and 
(i) the q1z* 

Theorem 6.3. Define Dj := 2 maxl<i<n log R(j1l)n+iy R(j1)n+i as in Lemma 
4.1, 1 < j <m, 

Q:= mn3 + (mn2 + m3) ((21 dCJ + 1) (L[4dC + ) + 1>. 

The set 

{(r(i)) i<n E Znxmm 1 (2)-(4) of Theorem 4.2 are valid } 

contains at most 
ml 2 m +m2 

J7J((t +?1)(loADj +3) si+t 1) 
ml 

(og D+3)n- 
j=1 g-+=I?lo1 

A 

elements. For each (r(j)) <<n I (i.e., for each quadratic form considered) the 

algorithm needs O(Q) arithmetic operations to enumerate all 77 with (1) of Theorem 
4.2. Hence Algorithm 6.1 requires 

0((WI)Q) 

arithmetic operations. 

Proof. See [4, Lemmas 4.12 and 4.13]. We note that the estimate for OI is a straight- 
forward computation using only (2)-(4) of Theorem 4.2 and Lemma 4.1. I 

7. EXAMPLE 

Let ? := Q(oa), ae a zero of 

f(x).:=x3 +-2x2 -x_x+2. 

We consider the extension F := E(p) of absolute degree 9, where 3 is a zero of 

g(x) := x3 + x2 + I(1 + 2a + a2)x + (-2 + a 2). 

The signature of ? is ml = M2 = 1. Since fF has only one real embedding, the unit 
rank of fF is 4. A system of fundamental units of o0F is 

e2 := -(a+ a 

62 := 2 (2 + 2a + (2 - a - a2) 
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63 :=(-3 + a2 + (2 - 2ca - a2)X + (1 + ag)3), 

64 := -(-20 + 5a + 5a2 + (16 + 29a + 9a2)/ + (14 - 19a - 9a 
2 

We consider the following problems: 

(1) Solve I N./Q(x)I = k for x E oF, k E Z>O, using the absolute method. From 
Lemma 3.1 and Theorem 3.3 we obtain bounds (after an LLL-reduction of 
the unit lattice): 

i 11 2 1 3 4 5 6 7 8 9 
-Li=Ut 8114 1 8 14 7 14 18 14 7 

This requires us to consider 328290 ellipsoids if all solutions of the norm 
equation are to be determined. 

(2) Solve I NF/(x)I= 101 for x E on and 0 E og by 
(a) the absolute method: 

Lemma 4.1 and Theorem 3.3 yield bounds: 

i 1 2 3 14 5 6 7 8 19 
Li -14 -14 -11 -11 -19 -14 -11 -11 -19 
Ui 13 15 10 11 20 15 10 11 20 

A total of 494526 ellipsoids need to be enumerated. 
(b) the relative method: 

Over g(1) we have the relative signature t, = si = 1. By Lemma 4.1 and 
Theorem 4.2 we obtain: 

j 11 1 1 2 3 
i 11 2 3 2 1213 1213 1j2 3 

-Lj) =U(j) 16 12 12 12 915 12 9 15 

that is a total of only 14289 ellipsoids. 

We note that we actually computed all these ellipsoids, so that the numbers Li, 
Ui given above are exact. 

8. TABLES 

All computations were carried out on an HP9000/735s with 96MB memory using 
software developed under KANT V4 [5]. The operating system on the machine was 
HP-UX 9.01. 

F. Grunewald in Dusseldorf asked us the following question: Let ? = Q(a), 
a E v-_11, /=-2, /-3}, 3= abafor-3 < a, b < 3 such that F = ?(p) is of 
absolute degree 4. How many nonassociate solutions do exist for (4.2) with "small" 
0, where nonassociate means "modulo units of relative norm 1"? In Tables 1 and 
2 we can only present a part of our results because of limited space. 

Another problem of W. Plesken in Aachen and H. Bruckner in Hamburg was 
to solve several norm equations in cyclotomic fields (see Table 3 for details). We 
present solutions of (4.1), "-" meaning that no solutions exist, and (k denoting a 
primitive kth root of unity. 
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TABLE 1. Examples 

. 9 solution rel. norm 

(-2 ( -) 1 -1 1 

___ (V/ - -1) /-2 -1 

-/2 (2 - F--2(1 + -1)) -A-2 

2(2 /-1+ -/=2(1+ /1)) -2 

3 I1 - r-2 -1+ T 2A/2 

(2 (1 - -/1) -/2 - 2/ -1) 1+ 2A/=2 

E( -3) S( -1) 1 -1 1 

21 (?I1 - v 3) 2 (-I v/ -) 
_ 2(2 +(1- /) 2 ( /g 

2(-1 +-3--(1 +-)) -1 

-1- 2A -3 ~(+3+ -3=+ -1=(+1 - -3=)) 12 -32/= 

1(2 -3+ -1(+1 - -3)) 3 (-7 -3) 

(-I + v/3 - 32 -1( ) (53 - 3) 
-I - 2,v/-- -3 2 ( 4 + v/ = (+ +/ -- ?I- /--)) 2 - T 2,-3 ) 

0 2 (2 + 10/=3 + /- 1(?I-2 + 20/=3)) 2 (-7 T Nf=3) 

1 +\/- 0/=t -1 + 2 

- + A/=3 - 4 -/1) 2(7 - -/ 3) 

1- -1(-1 + /--3) -1 - 2 V-3 
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TABLE 2. Examples 

? F solution rel. norm 

Q( -) E(X) 1 -1 1 

2V(?i - -1) +--1 

-1 - 

1 + -/- 1 (2 / -1+ -/2(T1 + -/1)) -1+i - 

2 + -/=2(+1 - -/1-)) 1 -1 

-2+1 I 

-5 1Xv(-3+ -1I) -4+3v/ - 

V2(+1 -3 /-1) 4+3/ -1 

+2 - -1 3T4V-1 

+1-i- -3+4 -1t 

E( -) -1 -1 1 

-A-1 -1 
- -1 -1 

1/- -1 +- - -1 

1+ -1 - ~/-1-I V-1V- -1- -1+ V-1-- 

-1 - v-1 1 - v-1 

--1 -1 

1+ 1- --- 

- -1- -1 1 +-11 V-1 
1+ -1 - 1+ -1 -1 - 

- 
- 1 + - 1 1+--1 

-- -1- 1+ -1 -1+ - 

-+-1+- + - 1- - 
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TABLE 3. Examples 

S 3 solution 

Q(2(5) n R (Q(5) 2 - 4 - (5 

-1- Q(-7) n R Q(7) 2 - 
-7 C-1 -7 

-1- 

Q(2(8) n R (Q((8) 2 - (8 c- 81 ( 8 

-1- 

Q((9) n R Q((1) 2 - 19 - (9 

Q((jo) n R (Q((1o) 2 = (lo=4o - (lo 

(Q((11) n R (Q((11) 2 - (11 - I1l - (11 

Q((12) n R (Q((12) 2 - (12 - (1 12 

Q(2(16) n R Q((16) - 

Q((32) n R Q((32) -1 

Q((64) n R Q((64) -1 
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