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A POSTERIORI ERROR ESTIMATE FOR THE MIXED 
FINITE ELEMENT METHOD 

CARSTEN CARSTENSEN 

ABSTRACT. A computable error bound for mixed finite element methods is 
established in the model case of the Poisson-problem to control the error in the 
H(div,Q) xL2(Q)-norm. The reliable and efficient a posteriori error estimate 
applies, e.g., to Raviart-Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas- 
Fortin-Marini elements. 

1. MIXED METHOD FOR THE POISSON PROBLEM 

Mixed finite element methods are well-established in the numerical treatment of 
partial differential equations as regards a priori error estimates to guarantee con- 
vergence [BF]. In practical applications, a posteriori error control is at least of 
the same importance to guarantee a reliable approximation. Moreover, a posteri- 
ori error estimators indicate adaptive mesh-refinement criteria [EEHJ, V1] for an 
efficient computation. 

In this paper we establish an efficient and reliable error estimator for the model 
example in the mixed finite element methods: Given f E L2(Q), the Poisson prob- 
lem consists in finding a function u E Ho (Q) that satisfies 

(1.1) div(AVu)+f=O inQ. 

Here, A E L? (Q; R22x) is symmetric and uniformly elliptic, Q is a convex bounded 
domain in the plane with polygonal boundary F. The Lebesgue and Sobolev spaces 
L2(Q) and Ho (Q) are defined as usual (e.g., as in [H, LM]). We assume below that 
(1.1) is H2-regular which, according to Q being convex, means certain regularity 
on A (A the unit matrix as for the Laplace equation is clearly sufficient). 

The mixed formulation is given by splitting (1.1) into two equations where u E 

Ho (Q) and p E L2(Q)2 are unknown and have to satisfy 

(1.2) divp + f = O and p = AVu in Q. 

It is well-known that (1.2) has a solution (p, u) E H(div,Q) x L2(Q), where, as usual, 
H(div,Q) := {q E L2(Q)2: divq E L2(Q)} is endowed with the norm given by 

ll1 HH(dl,2l) j(12 + divq12) dx (q E H(div,Q)). 
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The numerical approximation to (u, p) consists in prescribing finite dimensional sub- 
spaces Lh and Mh of L2(Q) and H(div,Q), respectively, and computing (ph, Uh) E 

Mh x Lh that satisfies for all (qh, Vh) E Mh X Lh 

(1.3) fQ(A1.Ph)*qhdx+fQUh*divqhdx = 0, 
Q Vh * div Ph dx = -Jf Vh f dx. 

It is well-known that the discrete problem (1.3) has a unique solution if a discrete 
inf-sup-condition holds for the discrete spaces Mh and Lh [BF] so we are interested 
in controlling the error 

(1.4) 6 = P-Ph E H(div,Q) and e := u-uh E L2(Q). 

Moreover, if the discrete inf-sup-condition holds uniformly in h we have a constant 
c1 > 0 such that 

(1 5) 11(e, e) H(div,Q)xL2(-) < Cl ( inf L p - qh, U Vh) H(div,O)xL2(Q), 
(qh,Vh) EMh x Lh 

i.e., the error is bounded from above and below by a constant times the best- 
approximation error. We refer to [BF] for the setting, examples, proofs, and more 
details. The Raviart-Thomas, Brezzi-Douglas-Marini, and Brezzi-Douglas-Fortin- 
Marini elements are also described in ?3.1. 

2. A POSTERIORI ERROR ESTIMATOR 

In the mixed finite element method, we consider a regular triangulation Th of Q 
satisfying the angle condition (cf. ?4 for explanations) and define, for each T E Th, 
hT as the diameter of T, and, for any edge E of T, let J(Ph * t) denote the jump 
of Ph * t across E with t being the tangential unit vector along E; hE denotes the 
length of E. Then, define 

2 flf ? iP 1 h2 L21cr(Alh 1 WT :=L2lf + divPhHl9(T) +'T| curl(A ph)IL2(T) 

+h2 min JA1ph 
- VhVh|122(T) + llhE/ J(A Ph * t)11L2 (T) 

TVhELh 
LEL 

for any T E Th and consider the sum of all element contributions 

7h =(S E T2)1/2 
T ETh 

It is the aim of this paper to establish the following a posteriori error estimate. 

Theorem 2.1. For the Raviart-Thomas, the Brezzi-Douglas-Marini, or the Brezzi- 
Douglas-Fortin-Marini elements there is a positive constant cl which only depends 
on A, Q, and on the shape of the elements and their polynomial degree k, such that 

(2.1) 11(E, e)11H(div,Q)xL2(Q) < C2 * 7h- 

Moreover, the reverse inequality holds as well provided that on each T E Th, 

A-1PhJT E Re and VhUhIT E Re; Rk denotes the set of polynomials in two variables 
of total degree at most k. (Again, A the unit matrix as for the Laplace equation is 
clearly sufficient.) 

Theorem 2.2. For the Ravi art-Thomas, the Brezzi-Douglas-Marini, or the Brezzi- 
Douglas-Fortin-Marini elements there is a positive constant c3 which only depends 
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on A, Q, and on the shape of the elements and the polynomial degrees k and X, such 
that 

(2.2) C3 r- h ? I(e, e)IIH(diV, Q))XL2(Q). 

The proofs of Theorems 2.1 and 2.2 will be given in ??4-6 under sharper but 
more technical assumptions while we first precede with some remarks in ?3. 

3. REMARKS 

Some supplements are in order to comment on the results displayed in Theorems 
2.1 and 2.2. 

3.1. Examples for mixed finite elements. The examples mentioned in Theo- 
rems 2.1 and 2.2 are briefly described for triangles T E Th by some Dk(T) c C(T) 
and Mk (T) c C(T) given in the following table where k > 0 and RT indicates entries 
for the Raviart-Thomas elements, BDM for the Brezzi-Douglas-Marini elements, 
and BDFM for the Brezzi-Douglas-Fortin-Marini elements. 

Element Mk (T) Dk (T) 
RT p 2 

+ X "Pk 'Pk 

BDM k+1 'k 

BDFM {q E Pk2+1 (q . n) &T E 7kk(&T)} 'Pk 

Here, 'Pk denotes polynomials of total degree at most k and lZk(OT) denotes 
(not necessarily continuous) functions on OT which equal a polynomial of degree 
at most k on each edge of T. With the above sets Dk (T) and Mk (T) we define 

Lh {Vh E L (Q): VT E Th Vh|T E Dk(T)}, 

Mh {Ph C H(div,Q): VT C Th VhIT E Mk(T)}- 

For more information, in particular about other elements in Rn and about practical 
implementations using multipliers, we refer to [BF]. 

3.2. Estimates in a weighted norm. The results in ??4-6 give the following 
estimate with a different scaling in the equilibrium residual. Indeed, with h: Q > 
(0, oo) defined by hIT= hT on T E Th and by hlE = hE on E E -Eh there holds 

C4 * ?7h, ,(Ph, Uh) ?< 1 A /2e HIL2(Q) + | h' dive IIL2(Q) + le IL2((Q) ? C5 * 7h,,c(Ph, Uh) 

where 0 < ti < 1 and (Sh denotes the set of edges in Th and Fh U Sh) 

?7h,, (Ph, Uh) h= ll * (f + divPh)HL2(Q) + |lh h curl(AlPh)HIL2(Q) 

+ min |h* (AlPh - Vhvh)flL2(Q) + IIh /2. J(A1lPh * t)flL2(rh). 
VhELh 

3.3. Estimates for the stress variables. The results in ??4-6 give the following 
estimate for the stress variable p - Ph, where 0 < ,s < 1, 

C6 *?7h,, (ph) ? | A 1/2e IL2(Q) + | h' dive IIL2((Q) < C7 * 7h,ri(Ph), 

?7h,, (Ph) = lh' . (f + divph)|L2(Q) + ||h * curl(A 1ph)flL2(Q) 

+Ih1 /2. J(AlPh * t)H|L2(rh)- 

We emphasize that this estimate holds also if (1.1) is not H2-regular, so Q may be 
an arbitrary bounded Lipschitz domain and Ai, C L?(Q) is sufficient. 
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3.4. On the term Ap -Ph VhVh. In the definition of nT, we may replace 

h/4 min ||AlPh-VhVhll2(T) 
TVhELhL2T 

by its upper bound 

h IIAlPh - VhUh12L2(T) 

without losing reliability and efficiency. Indeed, we conclude from Lemma 6.3 in ?6 
that Theorem 2.2 remains valid for this modified (less sharp but possibly simpler) 
estimator. 

3.5. Other estimates for the displacements. The preceding estimates for the 
stress variables and standard arguments in the theory of mixed finite element meth- 
ods give a posteriori bounds for 1Lh e and u - u* where u* is the improved displace- 
ment field taking Lagrange multipliers in a practical implementation into account. 
Following the lines in [BF, p.186] we can verify that 

II HLhU - Uh IIL2((Q) < C8 (11 h- A 1/2 IIL2(Q) + II h - dive IIL2(Q)) 
which proves the a posteriori error estimate, hmax :-II h IIL(Q)i 

II HLhU - Uh ||L2 (Q) < C9 hmax t)7h, I (Ph)- 

Furthermore, let :k' NC {Vh V L2(Q) VT E Th Vb E Rk (&T) Vh IT E Pk A 

f&TJ(Uh) - b ds = O}, let u* E J4,NC denote the improved discrete displacement 
field defined in [BF, p.187] and let Uh denote the L2(Q)-best approximation to u in 
tCi,NC. Then, as shown in [BF, Eq. (3.13)], 

||h - Uh 1IL2(Q) < c10 (|| h e 1IL2(Q) +11 I Lhe 1IL2(Q)) 

which results in the a posteriori error estimate 

II |h - Uh IL2(Q) < Cll hmax ?l7h,1 (Ph) 

3.6. Comments on the estimator by Braess and Verfiirth. Braess and Ver- 
fiirth established a posteriori error estimates for mixed methods in [BV] involving 
integration by parts in fQuh . divqdx (which appears, e.g., in (1.3)). Since Uh 

jumps across interelement boundaries those jumps count in their error indicator. 
Braess and Verfiirth designed an error estimator working in mesh-dependent norms 
which is reliable and efficient in those norms but, somehow, is not efficient in the 
natural norm of H(div,Q) x L2 (Q), seemingly because the displacement variable is 
overestimated in their mesh-dependent norm. In this paper, we outlaw any such 
integration by parts (with one well-chosen exception, cf. (5.12) below) and so 
jumps of displacements cannot arise at all. Instead, we emphasize a Helmholtz 
decomposition and are led to the estimator Tlh which is reliable and efficient in the 
natural norm and avoids the saturation assumption that is important in [BV]. 

3.7. Comments on A. To estimate e in the proof of Theorem 2.1, we need that 
(1.1) is H2-regular (see ?4.2 below for details). Since Q is convex, the condition 
A E C1'0(Q) is sufficient for that (see, e.g., [G, Thm 3.2.1.2] for a proof). Moreover, 
even some discontinuities are allowed, because we only need that the restriction ulT 
of a solution u to an element T belongs to H2(T) (cf., (4.2) below). The following 
example proves that there exist problems (1.1) which are not H2-regular but satisfy 
this assumption. 
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Example 1. Let A(x) = p(x) I2X2 (I2X2 the 2 x 2-unit matrix), and p(x) > 0 is 
piecewise constant (with polygonal lines of discontinuities), the possible singularities 
of such transmission problems are understood and some of them lead to H2-regular 
problems (see, e.g., [N, Sec. 2.4] and the references quoted therein). For example, 
consider a square Q :(0,1)2 and halve it along a diagonal D T1 n T2 into two 
(open) congruent triangles T1 and T2. Let p(x) = pj for x E Tj, j = 1,2, for two 
positive constants p1 # P2- 

Then any u E Ho' (Q) with div(AVu) E L2 (Q) satisfies uVT, E H2(Tj) for j = 1, 2, 
but (1.1) is not H2-regular. 

Proof. The natural interface conditions along D show that u V H2 (Q) (provided 
the normal derivatives (and hence their jump accross D) are non-zero which is 
generically the case). A careful study of the corner singularities tells us that ulTS E 
H2(Tj) for j = 1,2. (See, e.g., [N, Example 2.4] for a proof of that there, it 
suffices to check that D D(A) = 0 and A > 0 is possible only for 2 > A; cf., [N, page 
102] for details and notation.) LI 

In Theorem 2.2 we stated the condition that A-'ph is a polynomial on each 
element (but may be discontinuous on interelement boundaries). In the examples 
of ?3.1, PhIT is a polynomial so that A-1 is required to be a polynomial too. The 
analysis in ?6 shows that this restriction can be weakened. Actually, A-1 has to be 
approximated by some polynomial A-1 for which we precede as in the proof given 
below while some additional approximation error I A-1 - AT1 |ILO(Q) arises in the 
bounds. 

3.8. Adaptive algorithms. As in many contributions to self-adapting mesh- 
refinements (see, e.g., [EEHJ, VI, V2, V3] and the references quoted therein), 
based on an error estimator r/h we get an algorithm for efficient mesh-design: For 
each mesh ThL with a Galerkin solution (PhL,UhL) and local error estimators rT, 

we refine T e ThL (e.g., by halving its largest side) if (for example) 

T > 0.5- max WTI* 
T'EThL 

Then, further refinements to avoid hanging nodes lead to a new mesh ThL?l from 
which we start again. 

4. PRELIMINARIES 

Theorem 2.1 holds under the following weaker assumptions on Th, A, on Lh C 

L2(Q) and Mh C H(div,Q). We emphasize that the Raviart-Thomas, Brezzi- 
Douglas-Marini, and Brezzi-Douglas-Fortin-Marini elements satisfy all the assump- 
tions in this section. 

4.1. Assumptions on Q. The bounded Lipschitz domain Q is assumed to be 
convex with a polygonal boundary. Depending only on Q we have a constant 
c12 > 0 such that, for all v E H1(Q) with integral mean vo, Poincare's inequality 
reads 

(4.1) 1 V - VO 112,Q <? C12 11 VV 1l2,Q? 
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4.2. Assumptions on A. We assume that A E L? (Q; R 2Y2 ) is uniformly elliptic, 
i.e., A(x) is a symmetric and positive definite 2 x 2-matrix, with eigenvalues A3 (x) E 
R satisfying O < CA ? Al(x), A2(X) < CA for almost all x E Q. Then, by the Lax- 
Milgram lemma, the operator 

-div(AV-): Ho' (Q) H- '(Q) 

is invertible and the norm of the inverse is bounded by a constant c13 > 0 depending 
on CA and c12. Moreover, since Q is convex, A E C1'0(Q) implies that 

- div(AV.): Ho'(Q) n H2(Q) -, L2(Q) 

is invertible [G] and there is a constant c14 > 0 such that 

(4.2) 

11 V 112 22U ?, < C14* div(AVv) 112,Q (v E Ho'(Q) such that div(AVv) E L2(Q)). 

We emphasize that we only need an estimate on 11 V 112,2,T for each T E Th, i.e., 
the assumption on A could be weakened in the sense that only (4.2) is required 
(cf., Example 1 where A is piecewise constant and satisfies (4.2) but (1.1) is not 
H2-regular). 

Finally, we need that A is elementwise smooth assuming that there exists a 
constant c15 > 0 such that 

(4-3) max 11 (VhA)i3k Ijoo,UTh < C15- 
i,j, k= 1,2 

4.3. Assumptions on Th. The triangulation Th is assumed to be regular in the 
sense of [C] and satisfies the angle condition which means that there is a constant 
c16 > 0 such that for all T E Th 

(4.4) cj1 h2 < ITI < C16 *h 2 

where ITI is the area of T. We define So(Th) C L2(Q) as the piecewise constant and 
Sl(Th) C H1(Q) or So(Th) c Ho(Q) as continuous and piecewise affine functions; 
piecewise is understood with respect to Th. We consider Clement's interpolation 
operator [Cl] rh H1 (Q) -, S1 (Th) which satisfies 

(45) || V -rhV 112,T < C17 hT 1 V |12,ST (V E HO(Q)) 

|| V-rhV 112,E < C18 . h/ . |V |1,2,WE 

for each T E Th and E eE Sh, Eh being the set of element sides in Th. Here and 
below, 11 I 1p denotes the norm in LP(w) for w c Q as well as for some edge w = E 
while 11 * 11m,p,, and I im,P,w denote norm and semi-norm in Wm,P(w), respectively; 
in particular, we will occasionally write 11 112 instead of 11 I112,Q and Hm (w) instead 
of Wm 2(W). With T E Th and E Eh we associate neighbourhoods ST and SE 

WT :=U{TCETh T n T' :# 0} and wE := U{T E h: E c T}. 

Then, the positive constants c17 and c18 only depend on c16. Moreover, let c19 be 
the maximal number of elements in WT which is h-independently bounded by the 
angle condition (depending on c16). For all E E Sh we fix one direction of a unit 
normal on E pointing in the outside of Q in case that E C F. With Fh =U Sh we 
define J: H1(U Th) -* L2(Fh), for E C Fh and v E H1 (U Th) by 

J(V)IE := (VIT+)E- (V|T)E if E=T+nT_ (Ee ESh T+ T- E rh) 
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and nE points from T+ into its neighbour element T_; while 

J(V)IE :- (VIT)IE if E= Tn r (E E Sh; T E Th). 

We define Wm'P(UTh) :{= { cv LP(Q) VT E ThVIT E Wm',P(T)} and consider 
local versions of the differential operators div, V, curl (understood in the distri- 
butional sense, i.e., in 'D'(Q)), namely, divh,curlh W1h2(Uh)2 - L2(Q) and 
Vh : W1'2(UTh) - L2 (Q) defined such that, e.g., 

divhV|T:=div(vlT) inD'(T) (T E Th). 

If there is no risk of confusion the local meshsize h is defined on both Q and 
rh = USh by hiT := hT for T E Th and hIE := hE for E E Sh, respectively. 

4.4. Assumptions on Lh. We assume that Lh C H1(UTh) such that the L2(Q)- 
orthogonal projection Lh: L2 (Q) -> Lh satisfies 

(4.6) II v - HL,V 112,Q < C4 * II h * VhV 112,Q (v E H1 (U Th)). 

For example, if SO (Th) C Lh, the Poincare inequality (4.6) is satisfied with a positive 
constant c20 which only depends on the shape of the elements. 

Furthermore, for the lower bound (Theorem 2.2) we assume (Vhuh)IT e 1P2 for 
all T e Th. 

4.5. Assumptions on Mh. We assume that 

(4.7) S0(Th)2 n H(div,Q) c Mh c H1(U'Th) nH(div,Q) and divMh =Lh- 

Furthermore, in Theorem 2.2, we assume (A-1Ph)IT e P2 for all T e Th. 

4.6. Assumptions on an interpolation operator Hh* We assume that there 
exists an operator Hh: W -> Mh where W = H(div,Q) n LS(Q)2 for some s > 2 as, 
e.g., in [BF, ?111.3], such that the following diagram commutes 

di L2 (Q) w Lli 

(4.8) Hh I 1 ILh 

Mh div Lh 

where HLh is the L2(Q)-orthogonal projection. Let Id denote identity and let I 
denote L2(Q)-orthogonality. Then, the commuting diagram property in (4.8) reads 

(4.9) div(Id -lh)W I Lh- 

Further, we assume that the interpolant satisfies a local error estimate (note that 
H1 (U Th) n H(div,Q) c W) 

(4.10) fl h-. (Id -Hh)q 112 < C21 * q 11,2,UTh (q E H1(UTh) n H(div,Q)). 

Finally, we assume that Hh approximates the normal components on element edges 
such that we have, for any E E sh, for any Vh E Lh, and for all q E W, 

(4.11) jVh (Id-11h)q * nE dx = O. 

We refer to [BF] for proofs, further explanations and explicit definitions of Hh in 
the examples under consideration. 
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5. PROOF OF THEOREM 2.1 

Theorem 2.1 is a direct consequence of the following two lemmas and the fact 
that - div 6 = f + div Ph. We recall that the local meshsize h is defined on Q \ Fh 
by h|T := hT for T E Th and on Fh := USh by h|E := hE for E E Eh- 

Lemma 5.1. For C22 :=max{V'C12 C18 CA, VC12 C17 C19 CA, C20 C1} we 
have 

fl A/2e 1l2,Q ? C22 (11 h * curlh(A-lph) 12Q 

+11 h (f + divPh) 112-Q + 11 h1/2 J(A-12ph t) 1l2 )1/2 

Proof. We consider a Helmholtz decomposition of A-lph fixing ae c Ho' (Q) with 

(5.1) div(AVae) = div Ph in D'(Q). 

Then, there is some 0 E H1(Q) satisfying fQ /3dx 0, Curl3 I VHO (Q), and 

(5.2) Ph = AVoa + Curl 

(I denotes L2(Q)-orthogonality). From (1.2) and (5.2) we obtain 

(5.3) 6=AVz-CurlO with z:=u-aoEHo(Q) 

and hence the error decomposition 

(5.4) j(A1E). edx =(AVz). Vzdx+ (A-1 Curlf) Curl 3 dx. 

To estimate the first contribution of the right-hand side in (5.4) we integrate by 
parts and utilize dive I Lh (which follows from (1.2) and (1.3)). With (4.6), this 
leads to 

j(AVz) Vzdx = Vz* e dx - z dive dx 

(5.5) =-j (z-HLhz) * divedx?c2o<c lCC1 * 11 h *dive 112 | 1Al/2Vz 1 2Z 

To estimate the second contribution to the right-hand side of (5.4) we define Oh 
rh3 E S1 (Th) c H1(Q) utilizing Clement's operator rh. Note that Curl h/h 

Curl Oh C S0(Th)2 c L'(Q)2 and Curl Oh I VHo (Q), whence divCurl/3h = 0, and 

Curl /3h c H(div,Q) n Lc*(Q)2 n Mh 

according to (4.7). Therefore, (5.3) and (1.2)-(1.3) show 

j(A-1 Curl /). Curl Oh dx =-- (A-1') Curl Oh dx 

(5.6) j e div Curl Oh dx 0. 

From the integration by parts formula 

0zj )X = + * * nj ds 

(say, for 4, +/ E H1(w), j = 1,2, nr (nr,r,n2)T E jR2 the exterior unit-normal to the 
Lipschitz boundary Ow) we gain 

(5- 7) (f -n Curl1 
I 

+ crl1 n1) dx 1 - t) ds { nl Ib Er IIn^n, W , 
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where t is tangential on ow: t =--n2, t2= nl, and where we differentiate between 
curls involved as 

&'~P2 _ O'bi 00 __T curlf _ _ and Curlq =( , 
aXl 09X2 OX2 aX 

Utilizing (5.6), (5.2), and (5.7) we infer (recall rh = Ugh) 

j(A-1 Curl 3) Curl 0 dx = A-1ph Curl( - /3h) dx 

= -jC3 -/3h) * curl h (A-lPh) dx + J(A1ph *t). (13-Ah) ds. 
R r~~~~~~~~~~~h 

According to (4.5), and since the number of elements in WT is bounded by c19, 

j(3 - h) curl h(A Ph) dx < C17-C19 * ||h curl h(A Ph) l12 * |3 111,2,Q, 

J J(A1Ph . t)- (/ - /h) ds < 2c18 fl h /2 J(A1lPh t) 112,rh /3 11 1,2Q 
h 

With Poincare's inequality (4.1) and ellipticity of A we deduce 

11f 11,2Q ?< C12 fl V1 112,Q = C12 fl Curl/ fl2,Q < C12 CA fl A-1/2 Curl /ll 2,Q. 

The above estimates verify 

j(A-1 Curl 3) Curl/ 3dx < C23 * f A-1/2 Curl13 1l2,Q 

. (1 h1/2 J(A1Ph * t) 112,rh + fl h curl h(A Ph) 112) 

where C23 := C12 CA * max{2c18,c17 * C19}. Together with (5.4) and (5.5) this 
establishes 

A-1/2E 112 < (C20 * C-2 * 1 h . dive 112 + 2C23 11 hl/2 J(A-'ph t) 112 rh 

+2C23 fl 112)1/2 .I A-1/2, fl 

and concludes the proof. O 

Lemma 5.2. For C24 (C20 cA2 + c14 2 (CA + 4C25))1/2 we have 

fl e 112,Q < C24 (11 h* (f + divph) 112,Q + min fl h * (A1Ph -VhVh) 112,Q)1/2. 2 
VhELh2 

Proof. There exists exactly one r1 E Ho' (Q) with div(AVr1) = e. According to (4.2), 
we have r E Ho' (Q) n H2 (U Th) and 

- 1 (5.8) max{ c-p11 f ~77122, h C13 - 7 11' 112 CA - 7 I'11,2,Q} K< 1 e- 112,Q. 
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By construction of rq, integration by parts and with (1.2), (1.3) and (4.9) we infer, 
for any Vh E Lh, 

2e 1 - j(U - Uh) * div(AVr1) dx 

p-jp Vr dx - Uh * divllh(AVT) dx 

=- ~je Vr dx - (A-lph) (Id-Hh)(AV1) dx 

(5.9) =j 71 div edx + j (VhVh- A-1ph) . (Id -Hh)(AV71) dx 

- hj Vh (Id-HIh)(AVr7) dx. 

Letting rnh :ILhr we get from (1.2), (1.3), and (4.6) that 

(5.10) j 7 divedx = Xj(q - n h)d divedx< C2011 Vhq7112,Q 11 h .dive ll2 Q 

The second term on the right-hand side of (5.9) is 

j(VhVh- A-lph) (Id-HIh)(AVT1) dx 

< f h. (VhVh- A-1Ph) 112 11 hl (Id -Hh)(AVT7) 112 
According to (4.10) and letting C25 := C21 (CA + 4C25)1/2 we obtain 

11 h-1 (Id-HIh)(AVq) 112,Q < C21I AVr 1,2,U Th < C25 17f112,2,UT!h 

and conclude 

j(VhVh- A-lph) . (Id-HIh)(AVT1) dx 

(5.11) < C25 fl h* (Vhvh - A1Ph) 112 l 117 l2,2,U Th 

The last term in (5.9) vanishes because the integral on Fh in the integration by 
parts is zero by (4.11) and so 

(5.12) j Vhh (Id-h)(AVT1) dx j X div(Id-Hh)(AVT1) dx 0 

because of (4.9). Putting (5.9) (5.12) together with (5.8) we have 

|e12 ? ef 112 (C20 CA ||1 h fldive 112 + C14 i C25 f lh * (VhVh-APh)f12) 

and conclude the proof with Cauchy's inequality. E 

6. PROOF OF THEOREM 2.2 

As indicated by the additional hypothesis A-1PhjT E P and VhUhIT E P, the 
lower bound is proved by inverse inequalities a technique already elaborated in 
[Vi, V2, V3]. The setting is simple: various weighted norms on polynomials on the 
reference element are equivalent and that by transforming backwards and forwards 
the equivalence constants of the current element only depend further on the change 
of the shape (i.e. on c16) and the scaling (i.e. on hT) during these transformations. 

The proof of Theorem 2.2 is divided into Lemmas 6.1-6.3 where the positive 
constants C26,.. ., c36 arising below only depend on the shape of the elements, their 
maximal polynomial degree, and on f. 
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Lemma 6.1. For each T E Th and with 3 as defined in (5.2), 

(6.1) hT fl curl(A1Ph) l12,T < C26 || A- 1/2 Curl / 112,T 

Proof. Fixing f/T E P3 with 0 < 'bT < 1 = max f and zero boundary values on T 
we learn (e.g., from [Vi, Lemma 1.3], or [V2, Lemma 4.1], or [V3, Lemma 5.1]) 

(6.2) C27 fl curl(A1 Ph) 12,T T curl(A 2p,) 112T 
Integration by parts, curl h (A- lph) curl h (A-1' ), and (5.3) verify 

| 
1/2* curl(AlpPh) 112 T j(A le) 

. 

Curl(~PT 
. 

curl(A1Ph)) dx T 2~~~~ 

(6.3) - j(A Curl 3) . Curl(+T curl(A Ph)) dx. 

Since 'bT curl(A-1Ph) E Pe+2 with zero boundary values on T we have 

(6.4) | XbT curl (A -Ph) |11,2,T < C28 * hT 
- || , IT curl (A -Ph) 1 2, T 

(as, e.g., in [V2, Lemma 4.1] or [V3, Lemma 5.1]). Finally, Cauchy's inequality, 
(5.4), and (6.2)-(6.4) prove the lemma. E 

Lemma 6.2. For each E E Sh, 

(6.5) |lhl /2 J(A1Ph * t)f|L2(E) < C29 * || A- 1/2 Curl / 2,,WE 

Proof. Let 'bE denote that continuous function satisfying 0 < bE < 1 = max PE 

on WE and fbE|T E 72 for each T E Th with T C WE. Put u := J(A-1Ph * t) 
which is a polynomial of degree < k along E. As defined by backward and forward 
transformation and by continuous extension on the reference element in [V2, V3], 
there exists an extension operator P: C(E) --> C(WE) satisfying PuIE = o- and 

(6.6) C30 hI flu ff 12,E < 11 ? E Pu 112fwE < C31 h/2_ 11 f 112,E. 

Similar to (6.2) (again established in [VI, V2, V3]) we gain 

(6.7) C32 u ff lE ? 11 uI12 .f 112 E= - ('bE Pu) J(A-le t) ds. 

An application of (5.7) to each element T C WE and of (5.3) result in 

- (E . Pu) . J(A-1e t) ds 

- - L(A-le) Curl(+E. Pu) dx - (+bE . Pu) . curl(A1e) dx 
WE WE 

- LE(A-1 Curl/3) Curl(+E. Pu) dx + j(+bE Pu) . curl(A-1Ph) dx 
WE WE 

< |A- Curl/o 12,WE | Pu 1,2,WE + || bE Pu 112,WE * | curl(A1 ph) 112,WE_ 

Using (6.1) and (6.6) we infer 

(6.8) - JE . Pu7) J(A-1E t) ds < II A` Curl/ I12.WE ' | Pu 11,2,wE 

+C26 * C31 .h /2 flu f12,E 11 A 1/2 Curl/ fl2,WE 

Since ' E . Pu is a certain extension of a polynomial it follows as an inverse inequality 

|V)E .Pu11,2,WE < C33 hE 11 XE Pg 112,WE 
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(see, e.g., [V2, p.76] or [V3, Eq.(5.6)]). With (6.6), this proves 

(6.9) 1PE Pu 11,2,WE < C31 * C33 * h * 11 f 112,E- 

After this, the lemma follows from (6.7)-(6.9). E 

Lemma 6.3. For each T E Th, 

(6.10) hT * || A1Ph -7VhUh 12,T ? C34 (|| e 112,T + hT || A- / fl2,T) 

Proof. As in (6.2), there holds 

(6.11) C35 * || A1Ph - VUh 112T < _| T (A lPh -VUh) 112,T 
and integration by parts gives 

(6.12) 

|| 1/2 
(A-lPh -VUh) 112,T 

=- *A6T .A (Alph -Vuh) dx-J e div(bT. (A1Ph -VUh)) dx 

< || A1E 1l2,T 11 bT (A Ph - VUh) fl2,T + e1e f2,TT |bT (A Ph -VUh) 11,2,T- 

As in (6.4), we deduce 

(6.13) 1 T * (A-Ph - VUh) 11,2,T < C36 * h-1 *|T * (A1Ph - VUh) 112,T 

and, finally, conclude the lemma from (6.11)-(6.13). Ol 

The lower bound in Theorem 2.2 is a direct consequence of Lemmas 6.1-6.3 and 
the (global) error decomposition (5.4). 
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