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ANALYSIS OF AN ALGORITHM FOR GENERATING LOCALLY 
OPTIMAL MESHES FOR L2 APPROXIMATION BY 

DISCONTINUOUS PIECEWISE POLYNOMIALS 

Y. TOURIGNY AND M. J. BAINES 

ABSTRACT. This paper discusses the problem of constructing a locally opti- 
mal mesh for the best L2 approximation of a given function by discontinuous 
piecewise polynomials. In the one-dimensional case, it is shown that, under 
certain assumptions on the approximated function, Baines' algorithm [M. J. 
Baines, Math. Comp., 62 (1994), pp. 645-6693 for piecewise linear or piece- 
wise constant polynomials produces a mesh sequence which converges to an 
optimal mesh. The rate of convergence is investigated. A two-dimensional 
modification of this algorithm is proposed in which both the nodes and the 
connection between the nodes are self-adjusting. Numerical results in one and 
two dimensions are presented. 

1. INTRODUCTION 

The interest in piecewise polynomial approximation on non-uniform meshes has 
grown enormously in the last two decades. The motivation is obvious: by allowing 
arbitrary rather than just uniform or quasi-uniform meshes, many more functions 
can be approximated to a high order by piecewise polynomials [14]. This is of 
special relevance to the numerical analysis of partial differential equations by finite 
element or finite volume methods: even if the solution is quite rough, good results 
can often be obtained by carefully adjusting the mesh [1], [13]. 

In the one-dimensional case, the concept of equidistribution [19], [5], [11], [17] has 
proved useful in constructing good meshes. However, in spite of recent advances [6], 
[7], [18], the extension of this idea to higher-dimensional domains with a non-trivial 
geometry remains problematic. 

Another approach is to construct the mesh by seeking to minimize the error 
functional directly. This has been investigated by several authors in the context 
of continuous piecewise polynomial finite element approximations (cf. Delfour et 
al. [12] and the references therein). The main disadvantages of this approach are: 
firstly, the complexity of the resulting (nonlinear) optimization problem; secondly, 
the possibility (and, in higher dimension, common occurrence) of mesh tangling. 
D'Azevedo and Simpson [9], [10], [21] consider the simpler case of a given function 
defined on the whole plane and present an elegant solution of the optimization 
problem, based on geometrical considerations, which avoids those difficulties. The 
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impact of their findings on numerical practice in the case of a bounded domain is 
still unclear. 

In many applications, a continuous piecewise polynomial approximation is re- 
quired. However, it has been noted by some authors that the best L2 approximation 
by discontinuous piecewise linear polynomials on the optimal mesh is often contin- 
uous (for instance in the one-dimensional case of a convex function [3]) or "nearly 
continuous" [20]. On the basis of this observation, and with a view to making the 
optimization problem as local as possible, Baines [2] recently promoted the use of 
discontinuous piecewise polynomials as the basic approximation tool. Baines de- 
scribed an iterative algorithm which, for a mesh with a fixed number of nodes and 
a given connectivity between the nodes, seeks the nodal positions which provide 
the best L2 approximation to a given function by piecewise constant or piecewise 
linear polynomials. Loosely speaking, each iteration of the algorithm consists of 
two stages. In the first, linear stage, the function is projected onto the finite- 
dimensional space induced by the current mesh. In the second, nonlinear stage, 
the nodes are updated by requiring that some "approximate" gradient of the error 
vanish. The remarkable feature of the algorithm is that the second stage, which 
involves the solution of nonlinear systems of size equal to the domain's dimension, 
is generally much cheaper than the first stage. In terms of computational cost, we 
may therefore think of each iteration as being dominated by the linear projection 
stage. 

This paper is primarily devoted to the analysis and development of Baines' algo- 
rithm. We first show that this iterative procedure reduces the error monotonically. 
For piecewise constant or piecewise linear polynomials in one dimension, under some 
assumptions concerning the function to approximate, we can use the monotonicity 
property to prove that the mesh sequence converges to the optimal mesh. For the 
many-dimensional case, we propose a modification of Baines' algorithm which ad- 
justs the nodes in such a way as to retain the monotonicity property. Combining 
this algorithm with Lawson's local optimization procedure [15], [16] for connect- 
ing the nodes, we obtain an effective tool for the computation of locally optimal 
triangulations. 

The remainder of the paper is structured as follows: in ?2, we introduce some 
notation, describe the one-dimensional version of the algorithm and demonstrate 
the monotonic behaviour of the error. Convergence results are proved in ?3 for 
piecewise linear polynomials. The basic ingredients of the proof extend easily to 
the piecewise constant case and the corresponding results are stated. In ?4, we 
examine the behaviour of the algorithm as the number of iterations increases. It 
turns out that the convergence slows down once the residual (the gradient of the 
error at the current mesh) becomes dominated by the "low-frequency modes" (par- 
ticular eigenvectors of the hessian at the optimal mesh). A strategy is suggested to 
speed up the convergence and numerical results are presented. We also study nu- 
merically the order of convergence of the best L2 approximation on the computed 
meshes (as the number of nodes increases) in the case where the given function 
cannot be approximated to an optimal order on uniform meshes. The results are 
compared with those obtained by use of equidistributing meshes. This confirms 
the well-known fact [19] that, for a correct choice of the "distribution function", 
equidistribution yields an optimal mesh as the number of nodes tends to infinity. 
The two-dimensional modification of Baines' algorithm is presented in ?5. In ?6, 
a description of Lawson's procedure for optimizing the connectivity between the 
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nodes is given. We also suggest a recipe for removing redundant nodes and el- 
ements when mesh tangling would otherwise occur. In ?7, numerical results are 
discussed for the approximation of some interesting "test" functions defined on the 
unit square. Finally, ?8 is devoted to a summary of our conclusions. 

The calculations reported in this paper were carried out on a Silicon Graphics 
Irix machine purchased with the EPSRC grant GR/J/75258. We are grateful to 
Chris Budd and Andy Wathen for generously providing access to this resource. 

2. THE ALGORITHM IN ONE DIMENSION: BASIC PROPERTIES 

Let f be a given continuous function defined on the interval [0, 1]. In this section, 
we shall describe an algorithm for finding a locally optimal L2 approximation of f 
by piecewise polynomials with free knots. 

We begin by introducing some notation. For N c N, let A be a partition of [0,1] 
with N interior points, i.e. 

A: 0 = X0 < X1 < ... < XN < XN+1lI 

The set of all such partitions will be denoted by TN. Let K1 = (xyji, xj) and, for a 
positive integer r, let S7 (A) be the subset of L2 [0, 1] consisting of those functions 
which, when restricted to the subintervals Kj, are polynomials of degree less than 
r. The L2 projection of f onto S' (A) is the unique element u = u(A) c SN(A) 
which, forj = 1,... ,N+1 and s=0,... ,r- 1, satisfies 

(2.1) I(u- f) xs dx = 0. 

Our aim is to find the partition in TN which minimizes the error functional 

E(A) = 11 u(A)_f 1121 

where . * denotes the L2 [0, 1] norm. It is known [3] that, save for the trivial case 
where f is a polynomial of degree less than r, the optimal partition Aopt satisfies 

(2.2) E/(AoPt) = 0, 

where E' is the gradient of the error. More precisely, E' is the mapping from TN 
to RN with components 

Ej (A\) = aE (A) = [u(xj-) -f (xj)]2 _ [U(Xj+)_f (Xj)- 2 

= [u(xj -) - u(xj+)] [u(xj -) + u(xj+) - 2f (xj)] . 

It is obvious from the last equality that, at each node of the optimal mesh, the best 
approximation is either continuous or else the average of its right and left limits 
equals f. For instance, in the special case where f(x) = xr, we obtain 

u(xj-) = f (xj) - hj )Lr (1) and u(xj +) = f (xj) - (lhj+l )Lr (-1), 

where, hj x= - xjpl and Lr is the monic Legendre polynomial of degree r. Note 
that Lr has the same parity as r. The uniform mesh is therefore a stationary point 
of the error functional: u is continuous for r even, and has the averaging property 
for r odd. 

In the general case, we shall seek to solve eq. (2.2) iteratively by constructing 
a sequence {ATh}~cn C TN with nodes xjn, subtintervals Kj7 and corresponding 
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projections u' = u(Az) C S, (An). For j = 1,... , N, it is convenient to introduce 
the functions C: [x>1, x>] -* Et defined by 

?1 (x) = L ! (-xJ)s dxs (j)f() 

[ids ( nSds 

Note that b(xj) = E(Atm) . The scalar b7(x) may therefore be viewed as an 
approximation, obtained by "extrapolation" in the interval (xL1, vx41+), of the 
jth component of the error gradient evaluated at the mesh obtained from A\n by 
substituting x for xjn. 

By eq. (2.1), the restriction of uT- f to 17 is a continuous function with at 
least min(r, 2) zeroes in 1?7. Let x be the zero of this function in the closure of 
1?7 which is nearest to x7n. Likewise, we denote by xnthe zero of uTh-f in the 
closure of K7n+i which is nearest to x7n. It follows from those definitions that 

(2.3) ,fi(xj) ? 0 and bj(xn > 0. 

The algorithm for obtaining the mesh A '(x) from At may then be described as 
follows: 

Algorithm 1 (Baines). 1. (Linear stage). Project f onto SN(Atm) and obtain uTh. 
2. (Nonlinear stage). For each j from 1 to N, there are three possibilities: 
(a) bj>x7n) = 0. In this case, set x+ = xnj 
(b) bj>xjn) >O, so that bnhas a zero in [x) xn) . Let X+ be the zero, in that 

interval, which is nearest to xjn. 
(c) a (xi ) <0O, so that byhas a zero in in Let xntrvlbe the zero, in that 

interval, which is nearest to xgn. 

With this choice of v we have 

3 

xj+1 < Xj < XTh1< XT+l 

For r > 1, the second inequality is strict and therefore mesh tangling cannot occur. 
For r = 1, the equalities 

n+-l _-m +l 
3j 3x -3j1- 3+1 

imply 

utm(xjn) = f(sj) = un(xn?) 

and therefore bj(xjn) = 0. This yields xjn+1 - xTh and we obtain the contradiction 

3~~~~~ 

xn= xjn < X>+. We conclude that Atm+l does indeed belong to TN. 

Note that this particular way of defining xfoll yields the inequality 

(2.4) (x,jn+ < xn) Fa (yn) > 0 

with equality if the partial derivative of the error vanishes. We may thus think of 
the algorithm as a gradient method with "optimal" step. The attractive feature, is 
that, at each iteration, the nodes can be updated without the need for intermediate 
local projections. The above inequality has the following important consequence: 
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Theorem 2.1. 

E(An+l) < E(An) 

with equality iff E'(ATn) = 0. 

Proof. We introduce the one-parameter family of partitions {A(t)}o<t<j C TN 
where 

x (t) = tXn+1 + (1 - t)xn 

For each t c [0, 1], define u2(., t) c S (A (t)) uniquely by means of the relations 
r-1 1 dsunh 

ui(x, t) =Z _ s(x-x ) dxs (x-) for x c Kj (t). 
s=0 

Note that 

ui(., 0) = un c SN(,AT) and fu(., 1) c SN(An+1) 

We may write 

E(An+1) - E(An) = 11 Un+1 _ f 112 _ 11 U,(, 1) _ f 112 +?j I d1u(_, t) -f 112 dt. 

By definition of un+1, we have 

| Un+1 - f 12 < 11 fi( 1) - f 112 

Hence 

1N+1d 
(2.5) E(An+)-E(n) < Jt [(x,t)-df(X)]2 dxdt. 

Now, since aiu/lt obviously vanishes for x C Kj1(t), we obtain 

d J [a(x, t) _ f (x)]2 dx = [,(xj (t)-) -f (xj (t))]2 2j (t) 
dt K t 

-[,(Xj_j (t)+, t)-_f (Xj_l (t))12 ~j_1() 

where the dot indicates differentiation with respect to t. Eq. (2.5) then yields 

E(A\n+) - E(An) 

? E3Jo {[U2(Xj(t)-,t) - f(xj(t))]2 - [i2(xy(t)?,t) - f(xj(t))]2} Ij(t) dt. 

Recalling the definitions of u~ and bj, we find that 

N 1 

(2.6) E(Ain+1) - E(ATh) ? Z(Xj?t-xj2 ) ] fXjn(tx) 1 ? (1 
2 t)xj 7) dt. 

j=1~~~~~= 

By construction, there is no zero of bnbetween Xjn and Xjn+. The theorem is then 
a consequence of the inequality (2.4) Cl 

It follows immediately from this theorem that the sequence {E(ATh)}cN con- 
verges. Fiurther, since, in the inequality (2.6), each individual term in the sum is 
non-positive, we easily obtain the 
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Corollary 2.2. For each j = 1, ... , N, 

lim (x>n+ _ X)I 4)n(tXn+l + (1 - t)xi') dt = O. 

3. APPROXIMATION BY PIECEWISE LINEAR AND PIECEWISE CONSTANT 

POLYNOMIALS IN ONE DIMENSION 

Theorem 2.1 and its corollary hold for any f C C[0, 1] and any r C N. From 
the theoretical point of view, the outstanding questions are: (1) does the sequence 
{fAn} cn converge to a limit in TN? (2) If so, is the limit a stationary point of 
the error? Is it a minimum or, at least, a local minimum? In this section, we shall 
provide a partial answer to those questions in the special case where r = 1 or 2 and 
the derivative d'f is bounded away from zero. More precisely, we shall prove the 
following 

Theorem 3.1. For r = 1 or 2, let f c Cr[0, 1]. Assume that there exist two 
constants m and M such that 

0<m< f(r)(X) < M < klVxC [0,11. 

Then { An} en has a limit point A* c TN such that E'(/\*) = 0. 

With some additional assumptions, we can elucidate the nature of the stationary 
point and the type of convergence. 

Theorem 3.2. In addition to the hypothesis of Theorem 3.1, assume either that 

1. f E C'+1 [0, 1] and f (r+l) /f (r) is non-increasing 
or 

2. f E Cr+3 [0, 1] and N is sufficiently large. 
Then the entire sequence {fAn}nEN converges to a global minimum Aopt E TN. 
Further, there exists two constants 0 < aN < 1 and CN > 0 independent of n such 
that 

max X-XPt< CN (CN), 

where xiop is the jth node of AoPt. 

Even under such strong assumptions, the proofs are somewhat intricate. Before 
addressing the technical details, it is helpful to sketch out the basic ingredients. 

For the first theorem, the proof's main inspiration is the analysis of the gradient 
method (with optimal step) for the minimization of a quadratic functional [8]. We 
use the relation 

(3.1) (Xn+l -X),j n (1-t)xn)dt= t 1 j n dV (3-1) X~l + (1 - t)x`~) j (x~ _ X) d3 (x) dx, 

together with the fact that d?jV/dx is strictly positive, to conclude that 

lim (x+1 -_xn) = 0. 
n -*oo 

We can invoke a compactness argument to extract from { An} Cn a subsequence 
which converges and use the above result to show that the limit is a stationary 
point of the error. The unusual conditions in the second theorem ensure that there 
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is only one stationary point [3]. Those conditions also yield favourable bounds on 
the eigenvalues of the error hessian, and the inequality in the theorem follows easily. 

We shall carry out this program in detail only for the case r 2, which cor- 
responds to piecewise linear approximation. The case r = 1 can be treated in 
essentially the same way (the calculations involved are in fact simpler). Hence, for 
the remainder of this section, let r = 2. In this case, the algorithm reduces to the 
simple recurrence relation 

(3.2) +1 _ -=n(3 
+ 

dx 3x? dunxT) 

The proof of the following lemma follows easily by mapping the subinterval to [0,11, 
using the convexity of f and the definition of un. 

Lemma 3.3. Under the hypothesis of Theorem 3.1, the function Un - f has exactly 
two interior zeroes -x I < xjn in Kjn. We have 

u-f >0 in (- 1,n) and un-f < 0 in (xX1,j_ ) U (xj /,Xj/). 

Further, there exists a constant c, depending only on m and M, such that 

,n. - Xj- 1_ > c h n 

where hn = xj-x_. 

Lemma 3.4. Under the hypothesis of Theorem 3.1, we have 

lim ( 1-xS) = 0 for j = 1, N. 

Proof. Assume the contrary. Then, there exists 1 < j < N, e > 0 and a subsequence 
{xnk}kEN C fXJn}N such that 

(3.3) X?nk+l _Xnk >6 VkEN. 

There are two possibilities: 

1 Xnk+l xnk > or 2 x nk+l _xnk < -E 
- 3 3- 3 3- 

To simplify the notation, let us drop the subscript k. Consider the first possibil- 
ity. In this case, since x>n+' c (xv', Xjn], we have 

(3.4) h >6. 

Now, for xC ExiX, xn+1], we can write 

dIjn (x) = 2 [u n(x>,-) + (x -Xn) dUn n-)_f (X) [dUn ' - (x) 

-2 [Un(X) - f(x)][ (x n+)-f'(x)] 

For x c (xjn,Tjn), we can use the mean-value theorem and the fact that f' is 
monotonically increasing to obtain 

f (x) n (x)-f_(j _ Umn (x_)-UT (jn_ 1) duX 
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Thus, 

du' du' 
f(x) - u (x ) - (x - xn) dx (xl) -f Wn) un(xjn) - - Xjn) dx (x,-) 

fX du' nT\l fXr; dUn 
+ ?] [f '(S)- d Xji-)] ds nJ[f '(S)- dx (x-)]ds > O, 

for x E (xjn,xjn). We conclude from (3.5) that 

d (x) > -2 [un(x) f(x)] [du(x) dx ~~~~dX 
f'(x) 

Now, 

[dU 
(in~+) 

- f I (x)]- -j+J f>"(c) du ds 

where we have used Lemma 3.3 and eq. (3.4). Hence, for xan < x < x1n+ < Tjn 
3 -3' 

d j (x) > mce [f (x) _ un(x)] dx - 

On the other hand, we may write 

f(x) _ Un(x) -(yn X) (xjn+i x) f - ( ) 

where (x lies in the smallest interval containing x, yn and xjn+1 Thus, by eq. (3.1) 
and Lemma 3.3, 

(xn+1 n) x y, q(tXn+1 ? (1 -t)x)dt =X1 d (V 

(X x > + (1 - t)xl-xJ dt (x dxxxn(n )d 3>i 3 1 (x -x x) dx 

33Jnx3~~~~~~~~ 

n n 
xn+1 ~ ~ ~ n+ 

2 n~~~1 02f3 
3~~~~~~ 

We conclude that 

(3.6) A m2c2E2 xn+l - xn < <-(XQ+1 _ Xn) j bn(tXn+l + (1 - t)xa) dt. 

If we consider the second possibility instead, namely x XJ?1 - < ?- then hj >, 6. 

By a similar calculation, we arrive once again at the inequality (3.6). However, by 
Corollary 2.2, the right-hand side tends to zero as n -* oc. This contradicts the 
assumption (3.3) and the proof is complete D 

Proof of Theorem 3. 1. With these lemmata at our disposal, the proof of Theo- 
rem 3.1 is now straightforward. Using the definition of un and integration by parts, 
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we may deduce [3] 

un(xn-) - un(xn+) = (h n+)2 j f"(x: + sh n 
1) s(l - S)2 ds 

(3.7) o 
- (hV)2 j f"(x>i + shin) s2(1 - s) ds 

and 

d (x - d (x-) (x + sh 2(2s + 1) ds 

(3.8) 1 
? h} j/0 f"'(x>i + shy) s2(3 - 2s) ds. 

Since the sequence {XJ}nEN lies in the compact interval [0, 1], we can extract a 
subsequence {XJk}kE which converges to some x* E [0, 1]. N is a fixed number, 
so we can use the same subscript k for all j = O,... , N + 1 and conclude that 

lim max Xnk-X* =0. 
k--oo O<j<N+l 3 3 

By construction, h7nk > 0 and thus h* = xj*- x_, > 0. We will now show that 
W >0. 

Replacing n by nk in eq. (3.2) and using Lemma 3.4, we may take the limit as 
k - oo to obtain, for j = 1, ... , N, 

(3.9) 

(h+ |)2 jf1(x +?sh +1)s(l- s)2ds = (h*)2 j f"(x>i + sh*) S2(1 - s) ds. 

Note that this equality is valid even if h* or W vanishes. Since 

N+1 N+1 

S h> lim E h nk = 1, 

j=l j=1 

ht > 0 for at least one j. Because 0 < m < f"(x) < M < o0, it follows from eq. 
(3.9) that none of the hW's can vanish. Hence, if we let A4\ denote the partition 
with the nodes x> , we have proved that the sequence {\A}nEN has a limit point 
A* E TN. 

To complete the proof, let u* = u(A*) E SN/(A*) denote the projection of f. By 
(3.7) and (3.9), u* is continuous and A* is therefore a stationary point of E D 

Proof of Theorem 3.2. The proof of Theorem 3.1 uses a compactness argument. If 
there is only one stationary point of the error functional E, then the entire sequence 
{\A}nEN must converge to it. Barrow et al. [3] showed that the conditions in the 
hypothesis are sufficient for the uniqueness of the stationary point. 

In order to establish the rate of convergence, we shall use the notation x = 

(X1,... , XN) to denote the vector in RN with components equal to the interior 
nodes of the partition A E TN. In the neighbourhood of x?P', we can define a 
mapping 41 with values in RN and jth component 

1 
dj 

(X) u (x+- u (xj+) 

where u = u(A). The right-hand side of the above equality may be expressed 
directly in terms of x by removing the superscript n in (3.7) and (3.8). Note that 
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4(x'Pt) = 0. Since b is a smooth mapping in a sufficiently small neighbourhood of 
xoPt the theorem will be proved if we can show that 

(3.10) I + Ib(Xopt) 112 SUp I X + 1b'(XoPt)X < 1, 
IxI1< 

where is the usual euclidean norm in R N and 4b'(xoPt) is the jacobian matrix of 
1b at x?Pt. Upon calculation, we find that 

q '(xoPt) = diag(d3-1l) A, 

where 

d j?1 j f(x=Pt + shopt ) (1 -s (2s + 1) ds 

+ hoPt j "(xPt + shopPt) s2(3 - 2s) ds 

and A is the tridiagonal matrix with entries 

aj,j- 2 =hPt j2h f/I(xoPt + sh?Pt) s(l-S)2 ds, 

1 

hOpt j f 1 (xoPt + shop) (1 - s)2(2s - 1) ds 

- hopt fI(xOpt + shoPt) S2 (2s-1) ds 

and 

2 hopt J f/ (xoPt + shPt1 ) s2(1 - s) ds. 

Note that aj,j-1, dj and aj,j+l are all positive. It follows that A and 4b(xoPt) are 
tridiagonal quasi-symmetric matrices [22]. Such matrices are diagonalizable and 
have real eigenvalues. Thus, in order to establish (3.10), it will suffice to show that 
the eigenvalues A of 1b'(xoPt) satisfy 

(3.11) -2 < A < 0. 

Let us observe also that the hessian matrix H of the error functional E at xoPt is 
given by 

H = 2 diag(uopt - f (xOPt)) A, 

where uoPt = uoPt(xoPt+) = uoPt(xoPt -). We have uoPt- f(xoPt) < 0, so that 

@'(xoPt) = E H, where E is a diagonal matrix with negative diagonal entries. The 
hypothesis implies that AoPt is a minimum of the error functional, so that H is 
positive definite. We conclude that 1b'(xoPt) is negative definite. This proves the 
second inequality in (3.11). 

For the first inequality, we shall use Gerschgorin's theorem. We have 

1 

aj4+jdfu= 4(hopt X? )(xoptd+shsPt ?s)2shds 

+ ZIh7t / f (xj + Sh?P ) s (1- s) ds > -m(h7Pt + h?Pt) 
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and 

lm(hoPt + h Pt) < dj < !M(hPt + hopt). 

Thus 

ajvj > 21 -- 
dj - 3M 

and Gerschgorin's theorem yields 

A > 
I 

(aj,j- ajj- -aj,j+i) = 2d aj 4- (aj,ji + aj,j + aj,3?+ ) 

4m 1 
>-2+ 3-d (aj,j -1+ aj + a3J+ 1) 

Integration by parts leads to 

ajj- + ajj + aj,j+l - (hoPt )2J f/II(xZPt + shpt) s(l - S)2ds 

(3.12) 0 

- (hoPt)2 j/ fII(xopt ? shoPt) s2(1 -s) ds. 

We now use the fact that 

(h71)2 j f '(xZPt + sh?ptl) s(1l- s)2 ds 
(3-13) o 

( (ht)2 jfII(x0Pt + shPt) s2(1-s)ds. 

If f "'/f" is non-increasing, it follows easily that aj,j- + ajj + aj,j+l < 0. Then 
(3.12) yields 

4 m 
A > -2 + 3M 

and the first inequality in (3.11) holds. If, on the other hand, f E C5[0, 1] and N 
is large enough, then (3.13) implies that AoPt is a quasi-uniform partition [3]. By 
using Taylor's theorem, we readily obtain from (3.12) that 

4 m 
A > -2 + 4 -C N1 

- 3 M 

for some constant C independent of N. The first inequality in (3.11) therefore holds 
for N large enough. The proof is complete D 

4. THE RATE OF CONVERGENCE. NUMERICAL RESULTS IN ONE DIMENSION 

The previous theorem suggests that the mesh sequence generated by the algo- 
rithm converges geometrically. In order to gain further insight, let us consider the 
simple case in which a quadratic function f is approximated by piecewise linear 
polynomials. The algorithm then reduces to 

2n+1 n n +Xn 1 

where xn = 0 and Xn = 1 Vn. The optimal mesh is uniform. In vector form, the 
difference en = Xn- xoPt therefore satisfies 

en = (I + 1/ (xoPt))neo, 
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where I is the identity matrix and 1/(xoPt) = 6tridiag(1, -2,1). The eigenvalues 
of 1/(xoPt) are 

\k 
2 

si2 
k7r 

sn3 2(N + 1) 

for k = 1,... ,N, and the corresponding (normalized) eigenvectors vk have com- 
ponents 

k 2 )2 jk7r 
i i sin 

\N?+1J N? 1 

Hence, we may write 
N 

(4.1) en =Z(1+Ak)nc5 vk, 
k=1 

where ck = (e?, vk) and (,.) denotes the usual inner product in RN. 

It follows that, for N/2 < k < N, the components (en,Ivk) of en are damped 
adequately as the iteration proceeds. The "smoothing factor", or collective damping 
rate, of those high-frequency components is 

l = max 11 _ 2 
sin 2(0/2)1 = 

2 

Hence, for the first few iterations, the gradient E'(z\n) of the error functional, or 
"residual", should decrease rapidly. Soon, however, the low-frequency components 
(those corresponding to 1 < k < N/2) dominate, the residual becomes smooth and 
the overall convergence deteriorates. In fact, we easily find that 

2 2 7r-2 
aN = Mkax 1 + AkI = 1- sin 2(N ) = 1-O(N2) 

as N -, o0. This undesirable behaviour seems typical of gradient methods for mesh 
optimization and can be observed also in the numerical experiments reported by 
Delfour et al. [12]. 

In order to deal with the low-frequency components of the residual, it is natural 
to consider the possible application of multigrid techniques [4]. The basic idea 
of multigrid is to remove the low-frequency components by correcting on coarser 
and coarser grids until those components look sufficiently rough to be eliminated 
effectively by the basic iteration procedure. In view of the particular case (4.1), we 
may, in our context, think of the nodal values X7 as discrete unknowns defined on a 
uniform mesh with N interior points. Starting at a "fine grid" level, we might first 
apply the algorithm to smooth the residual and, when convergence slows down, 
seek to compute a correction at a coarser level involving only (N - 1)/2 points. 
Unfortunately, it is not clear how the algorithm can meaningfully be applied to 
solve for the correction at the coarser level. 

In this section, we shall adopt a different strategy, in which we begin at the 
coarsest level (corresponding to N = 1) and move to finer levels. At each level, 
Baines' algorithm is used to remove the high-frequency components of the resid- 
ual. When convergence slows down, Newton's method is attempted. If the error 
increases, the Newton step is rejected and Baines' iteration resumed. Otherwise, 
we continue with Newton's method. 

The starting mesh for the coarsest level is uniform. After optimization at a given 
level, the starting mesh for the next finer level is obtained by interpolation. 
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The motivation for this simple approach is that, at each new level, the difference 
eo has small low-frequency components, so that the first few iterations of Baines' 
algorithm are particularly effective. Thereafter, Newton's method should be suc- 
cessful, because convergence is at hand. At each Newton iteration, a linear system 
of equations involving the hessian matrix of the error functional must be solved. 
The calculation of this matrix requires the evaluation of the first derivative of f. 
Hence, this approach can, in principle, only be applied to functions in Cl [0, 1]. 
As the numerical experiments will demonstrate, however, this requirement may be 
relaxed in practice. Note that, in the one-dimensional case, the hessian matrix is 
tridiagonal, so that the resulting system may be solved directly in O(N) operations. 

In all the numerical examples reported in this paper, the integrals were computed 
to machine accuracy by standard quadrature rules. For this section, the size of the 
residual was measured in the norm 

max & (An) 

At each level, a minimum of five Baines iterations were performed. If the ratio 71n 
of consecutive residual norms exceeded a certain parameter r, Newton's method 
was attempted. If it failed, five more iterates by Baines' algorithm were computed. 
The stopping criterion which we have used is 

JE/(An)lK, < 10-10. 

Following Brandt [4], a sensible choice for iq is 
1 + 3i 

17= 

where ,u is the smoothing factor. Note that pt = 1/2 for r = 1 and pt = 2/3 for 
r = 2. In all cases, we have in fact used iq = 3/4. 

Example 4.1. 
7 9 

f (x) = tanh(160(x - ))- 2tanh(160(x - ) 
20 10 

We approximate this function by piecewise constant polynomials. The results 
displayed in Table 1 indicate that, while Newton's method is able to drive the norm 
of the residual to zero very quickly, it is Baines' algorithm which accounts for most 
of the reduction in the L2 error. 

Example 4.2. 

f(x) = x - X5. 

We consider the approximation of this strictly convex function by piecewise linear 
polynomials. Note that f/" 0 L2[0,1], so that this function does not have the 
required Sobolev regularity to be approximated to an optimal order on uniform 
meshes as N - * oc. The derivatives of f are in fact unbounded at x = 0 and, 
therefore, the analysis of the previous section does not strictly apply. Nevertheless, 
for each N, the Baines-Newton procedure described above yields a sequence of 
meshes which converges to a limit A* E TN. Alongside the corresponding result for 
the uniform mesh AUni, Table 2 shows the error E(A*) as N increases. The local 
order of convergence may be defined as 

log(eN/e2N) 
log 2 
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TABLE 1. Baines and Newton iterations for the best piecewise con- 
stant approximation of the function f(x) = tanh(160(x - 2))- 
2 tanh(160(x - 9 

N + 1 n VE(An) Io 77n ,/E(An) 

2 
0 0.13200000D+01 - 0.12796484D+01 
1 0.56282120D+00 0.43 0.11414127D+01 
2 0.58071911D-02 0.01 0.11412472D+01 
5 0.65471711D-08 0.01 0.11412472D+01 
6 0.68172079D-10 0.01 0.11412472D+01 

4 
0 0.15051471D+01 - 0.10320340D+01 
1 0.95839029D+01 6.37 0.22475654D+00 
2 0.53481130D+00 0.06 0.14627594D+00 
5 0.10154120D+00 0.58 0.14136375D+00 

10 0.76304214D-02 0.60 0.14106012D+00 
20 0.52471419D-04 0.61 0.14105798D+00 
40 0.28370944D-08 0.61 0.14105798D+00 
47 0.91710001D-10 0.61 0.14105798D+00 

8 
0 0.29079904D+00 - 0.13626575D+00 
1 0.13604911D+01 4.68 0.11138203D+00 
2 0.51343361D+00 0.38 0.75649228D-01 
5 0.10035160D+00 0.80 0.60005877D-01 

Newton +7 0.11657342D-13 - 0.58937702D-01 
16 

0 0.30122464D+00 - 0.43854817D-01 
1 0.59679981D-01 0.20 0.35114814D-01 
2 0.50296637D-01 0.84 0.31681540D-01 
5 0.31060265D-01 0.83 0.28822527D-01 

10 0.13419761D-01 0.86 0.28015346D-01 
Newton +5 0.98532293D-14 - 0.27753325D-01 

32 
0 0.33734554D-01 - 0.17546228D-01 
1 0.71400207D-02 0.21 0.15206486D-01 
2 0.60026248D-02 0.84 0.14424609D-01 
5 0.31082789D-02 0.82 0.13808575D-01 

10 0.18099425D-02 0.92 0.13657572D-01 
Newton +5 0.83093254D-14 - 0.13545728D-01 

where eN is the L2 error. The numerical evidence clearly suggests that 

V/E(Q\*) = Ilu(A*)-f 11 = O(N-2) as N - * oc. 

By contrast, we see that the order of approximation based on the uniform mesh 
\uni E TN is - = 11/10 and, hence, suboptimal. 

The algorithm that we have described may be used to evaluate the effectiveness 
of other approaches to the construction of good meshes. In the one-dimensional 
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TABLE 2. Decay of the L2 error as N increases for the approxima- 
tion of the function f (x) = x - x by piecewise linear polynomials 

N+ 1 VE(A*) YN VE(Auni) YN \E(Aequi) YN 

2 0.12530788D-01 - 0.18308897D-01 - 0.13519264D-01 - 
4 0.36478337D-02 1.78 0.85655148D-02 1.10 0.38607478D-02 1.81 
8 0.99265952D-03 1.88 0.39992837D-02 1.10 0.10263518D-02 1.91 
16 0.25955179D-03 1.94 0.18661729D-02 1.10 0.26427465D-02 1.96 
32 0.66375759D-04 1.97 0.87064854D-03 1.10 0.67033400D-04 1.98 
64 0.16796645D-04 1.98 0.40616257D-03 1.10 0.16881148D-04 1.99 
128 0.42249409D-05 1.99 0.18938208D-03 1.10 0.42356502D-05 1.99 
256 0.10594930D-05 2.00 0.88241833D-04 1.10 0.10608338D-05 2.00 

case, McGlure [19] has shown that the mesh ,equi such that 
equs 

J I 
(l 

d 1 j If(r+1)(X)I2?+1 dX 
JeqU%f(r?)(x)2r1 dx N?1 d 

for 1 < j < N + 1, is optimal asymptotically as N - ) o0, for the best L2 ap- 
proximation of f by piecewise polynomials of degree less than r. How good is this 
equidistributing mesh for finite values of N? For the special case considered in 
Example 4.2, a simple calculation shows that, for r = 2, we have 

25 

Xequz < j < N + 1. 

The L2 error for this mesh is shown in Table 2. The results confirm its asymptotic 
optimality. It is also clear that, even for moderate values of N, the equidistributing 
mesh would provide an excellent starting mesh for our algorithm. 

5. PIECEWISE POLYNOMIALS ON TRIANGLES WITH SELF-ADJUSTING NODES 

We now discuss the extension to higher dimension of the algorithm described 
in ?2. For simplicity, however, we shall confine our attention to the problem of 
approximating a given continuous function defined on the unit square Q = (0, 1) x 
(0,1). 

A triangulation A of Q is a set of non-overlapping triangles {Ki}jf=I such that 
no vertex of a triangle lies along the edge of another. For practical purposes, one 
usually represents A by numbering the vertices (nodes) {xj}MlI and forming a 
"connectivity matrix" such that the ith row lists (in counter-clockwise order) the 
number of each of the nodes which form the ith triangle. We shall denote by TN the 
set of all the triangulations of Q with N triangles. For A? E TN, let SN(A) be the 
subset of L2 (Q) consisting of those functions which, in each triangle Ki E A, are 
polynomials of degree less than r. As before, we denote by u = u(A) E SN(/\) the 
projection of f onto SN (A) and seek to minimize the error functional E: TN --R 

defined by 

E(A) = 1u(A) - f112. 

In practice, we shall seldom find the optimal triangulation. Rather, we shall 
have to be content with a mesh that is better than any "nearby" triangulations in 
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TN. Algorithms for computing such meshes in higher dimension must necessarily 
consider both the distribution of the nodes and the choice of connectivity between 
the nodes. In this section, we shall address only the problem of reducing the error 
by adjusting the nodes x3, j = 1, ... , M, for a given connectivity. A complementary 
algorithm for improving the connectivity will be described in the next section. 

As in the one-dimensional case, Baines' algorithm is an iterative procedure for the 
minimization of E. In order to describe the iteration step, we shall first explain how 
a particular node is updated, keeping all the other nodes fixed. Let then A E TN 

be a given triangulation. Consider the particular interior node xj associated with 
A. Let Qj denote the union of those triangles in A which share that vertex. 

Definition 5.1. We say that x E Qj is admrissible if a new triangulation A(x) 
{Ki (X)}N=cETN may be obtained from A by substituting x for xj. In this notation, 

Ki (x) K, unless xj is a vertex of Ki, in which case Ki (x) is the triangle obtained 
from Ki by substituting x for x7 (cf. Figure 1 (b)). 

We seek a new admissible position XfJew for the jth node such that 

(5.1) E(A (Xnew)) < E (/\) 

with equality if and only if the derivative e9E vanishes at A. 
For this purpose, we introduce the continuous piecewise linear function /, E 

SN (A) such that 

/j(Xk) = 3k for k = 1, ... , M, 
where 8jk is the Kronecker delta. Its counterpart in SN(,A(X)) will be denoted by 
q$3 (, x). In each triangle K, E A, the projection u = u(A) is a polynomial of degree 
less than r. Let u, 12 ,- IR denote the polynomial which agrees with u in Ki. For 
each admissible x, define 

= (x) E f/ t u,-f I2'$(.j ) nds, 

K, (x~) CQj K, 

where n is the unit normal pointing outward and s is the arclength parameter. As 
usual, the paths for the line integrals are in the counter-clockwise direction (cf. 
Figure 1 (a)). Note that 

OE 
D3 (xj) =X (,A) . 

O9xi 

We may thus think of (Dj (x) as an approximation of the derivative of E, evaluated 
at A(x). In Baines' original formulation [2], a new position xywew for the jth vertex 
is sought that satisfies 

q: ,(xnew) = 0. 

Unfortunately, in contrast with the one-dimensional case, the existence of an ad- 
missible zero of IDj is not guaranteed. Nevertheless, it is possible to obtain "ap- 
proximate" solutions by using a simple quadrature rule for the line integrals and 
choosing the new vertex position to make I >(x'ew) I as small as possible. We refer 
to [2] for further details. 

In this paper, we shall instead seek Xywew along the direction of "steepest gradi- 
ent", i.e. 

(5.2) xn = x; -Tr b (xj) for some r E [O, j Tyj`], 
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? K,/K 

x+ 

~~~~~w~~b /e\3r t 

(a) (b) 

oj ~~K. 

/ X}-T _ rtnX ( Xj) 

(c) 

FIGURE 1. The triangles (a) Ki and (b) Ki(&) in Qj. (c) Descent path 

where 0 < aj < 1. In this expression (cf. Figure 1 (c)), 
max = SUp DTf > 0 : xj- -j (xj) iS admissible V 0 < -r' < _r 

Assuming that the projection u = u(A) has been computed, the algorithm for 
updating xj is as follows: 

Algorithm 2 (for updating interior nodes). If Dj(xj) = 0, set x = x;. Other- 
wise, let 'r in (5.2) be the number in (0, aj TjmaX] such that 

-3j(x3) f/ -(xj 7' Dj(xj)) dT' 

o~~~~~~~~~~~ 
is minimised, where the dot denotes the usual inner product in R2. 

With this definition of x7ew, we have the inequality 

(5.3) (xnew _ xj). j I?(tXnew + (1- t)xj) dt < 0. 

We shall now prove that (5.3) implies the inequality (5.1). As in section 2, let us 
introduce the family of triangulations A (t) {Ki (t)}1 A (xj (t)) where 

x (t) = tXnew + (1 - t)xj. 

Let iL(t,t) E Sr/(A (t)) be defined by 
N~ ~ ^z+_.t r zt 
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and note that, in each Ki(t) E A/(t), we have afi(.t) = 0. Proceeding as in the proof I ~~~~~~~~~~~~at' 
of Theorem 2.1, we may write 

E(A(Xnew)) -E(A) < IIfL(') - f112 1 - l(I 0) - f 112 

j dt 11f( t) -_ fd 1 dt dj + tI(x,t) - f(x)12dxdt. 

Using the notation q$j Q, t) = qj (, xj (t)) and recalling that only the jth vertex 
depends on t, we find that 

IKd() J b(. t) - f12 dx = (x7 - x3xj) j _I^( t) - f12 qj (.I t) nrds dt K(t Ki (t) 

+ 2J [ t) -f] 
(91 

(,1t) dx f &i~~~t 
Kt (t)t 

= (x ew -xj) lui -fI2j(., t) nds. 3 
~~~~K* (t) 

Therefore 
I 

E(A (Xn7ew)) -E(A) < (x`Bew x.) IU _ fu 12oj (, ,t) nds dt 
Ki (t) CQj K*(t) 

= (xew -xj) j b(xj (t)) dt, 

so that (5.1) follows from (5.3). 
We have thus shown that Algorithm 2 for updating interior nodes does, as in 

the one-dimensional case, reduce the error monotonically. Obvious modifications 
are needed to deal with vertices that lie on the boundary of Q: the nodes at the 
corners remain fixed; nodes lying on a side are constrained to remain on that same 
side and, to construct xyW, one uses, instead of the vector 4<j(xj), the projection 
of that vector on the side. Again, this ensures the monotonic decay of the error. A 
complete iteration of the algorithm consists of projecting f onto SN (A) and then 
computing X`ew for each j = 1,... , M. 

Unlike in the one-dimensional case, there is no guarantee that, for the given 
connectivity, the updated nodes {xX ew}I l define a triangulation of Q. In order to 
avoid triangles with non-positive area, one may envisage a "Gauss-Seidel" imple- 
mentation of the algorithm in which the nodes are updated sequentially and the 
new vertices used immediately they are computed. By adjusting the parameter o%j 
in (5.2), it is a simple matter to ensure that each triangle area remains greater than 
some pre-defined threshold 6 > 0. However, since one then needs to recalculate 
the projection each time a node is updated, the cost of a Gauss-Seidel iteration 
is roughly three times that of the "Jacobi" iteration described earlier (in which 
the nodes are updated simultaneously using only the old vertices). For reasons of 
efficiency, we therefore favour the Jacobi implementation. In the next section, we 
shall explain how to alter the connectivity so as to cater for mesh tangling. 

6. IMPROVING THE CONNECTIVITY 

We first remark that the occurrence of mesh tangling need not be interpreted 
as the manifestation of a basic deficiency in the design of the algorithm. Rather, 
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it may reflect the fact that the optimal triangulation cannot be obtained from the 
given mesh by a "smooth deformation". In order to illustrate this point, consider 
the approximation of a function f: Q -* R1 of the form f (x) = F(xi), where F is a 
univariate function and x = (Xl, x2). For such a function, the optimal mesh has no 
vertices on the vertical boundaries of Q. If the given initial mesh does have vertices 
on those boundaries, then Algorithm 2 will seek to drive them to the corners and 
mesh tangling will result. 

We therefore adopt a constructive attitude to the occurrence of mesh tangling 
and view it as a signal that the offending triangles are redundant and need to be 
removed. Let then 6 > 0 be some (small) threshold. If, having computed a Jacobi 
iteration, it is found that the triangle K? W has an area less than 6, we reject the 
Jacobi update and proceed to remove the triangle Ki. 

Algorithm 3 (for removing the triangle Ki). There are two cases to consider: 
1 Ki has an edge on the boundary, the edges are comparable in size and the 

projection of the interior node onto the boundary lies between the boundary nodes. 
In this case, replace the interior node by its projection onto the part of the boundary 
along which the edge lies. Remove all the elements with zero area. 

2 Otherwise, identify the shortest edge. Remove one of the nodes that form the 
edge and replace it by the other node. Then, remove the two triangles which shared 
the edge. 

In the first case, we say that the edges of the triangle are comparable in size if the 
ratio of the longest edge to the shortest edge does not exceed a certain threshold. 
The threshold value which we used for the computations reported in the next section 
is 10. In the second case, a possible criterion to decide which of the nodes should be 
removed is to compare the corresponding derivatives '9E and remove the node with 
the largest derivative. If the resulting set of nodes does not define a triangulation 
of Q, one should remove the other node instead. 

There is no guarantee that this simple recipe for removing the offending triangle 
results in a valid triangulation of Q. Nevertheless, our computational experience 
suggests that it always succeeds if 6 is sufficiently small. 

Since, due to the occurrence of mesh tangling, one must necessarily alter the 
original connectivity, it is natural to consider further means of improving it. The 
computational complexity of comparing all the possible triangulations of the same 
vertices is clearly too great. For this reason, we shall resort to the well-known local 
optimization procedure (LOP) proposed by Lawson and described in [15], [16]. 

Consider a triangulation A E TN and let e be an internal edge associated with 
A. In other words, e is a triangle side that does not lie on the boundary of Q. 
The union Q of the two triangles which share that edge is either a triangle or a 
quadrilateral. As shown in Figure 2, if Q is a convex quadrilateral, then there are 
two possible ways of "triangulating" Q. 

Definition 6.1. An internal edge e is said to be locally optimal if either 

(a) Q is not a convex quadrilateral or 

(b) Q is a convex quadrilateral and 

E(A) < E(A'), 

where A' is the triangulation obtained from A by substituting for e the 
other diagonal of Q. 
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Q Q 
e 

(a) (b) 

FIGURE 2. Alternative triangulations of the convex quadrilateral Q 

Lawson's procedure for constructing from a given triangulation A a new tri- 
angulation Anew for which all the edges are locally optimal may be described as 
follows: 

Algorithm 4 (Lawson). Step 1. Test each edge defined by A for local optimality. 
If all the edges are locally optimal, set A"'e = A and stop. Else go to step 2. 
Step 2. Let e be an internal edge that is not locally optimal. Set A = A' (cf 
Definition 6.1) and go to step 1. 

It is clear that the resulting triangulation depends upon the order in which 
one sweeps through the internal edges. Dyn, Levin and Rippa [16] have carried 
out numerical experiments and compared a number of possible strategies. Their 
results suggest that, in our context, it would be advantageous to swap the edge 
that leads to the largest reduction in the error functional E. However, in order 
to simplify the book-keeping, we have instead opted for the following strategy: 
before each sweep, we make a list of all the edges that are not locally optimal and 
order them according to the size of error reduction. We sweep through the list in 
descending order, replacing those edges that are not locally optimal. When the 
sweep is completed, we form a new list of those edges that are not locally optimal 
since, in general, more than a single sweep may be necessary before they are all 
eliminated. 

7. NUMERICAL RESULTS IN TWO DIMENSIONS 

We now combine the algorithms of the previous two sections and compute tri- 
angulations of the unit square for the approximation of interesting "test functions" 
f by piecewise linear polynomials. The triangulations which we shall obtain are 
locally optimal in the sense that (a) the internal edges are locally optimal and (b) 
the derivative of E with respect to the nodes vanishes. 

As in the one-dimensional case, we start with a given initial triangulation A E TN 
and construct a sequence of triangulations {jA}ncN iteratively. Since triangles may 
be removed as the iteration proceeds, we shall generally have 

N 

An U Tk 
k=2 
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(a) (b) 

FIGURE 3. (a) Graph and (b) contour lines of the function f(x) = /1x 

rather than A' E {TN. We obtain A'+' from Atn by applying Algorithms 4, 2 and 
3 consecutively. We use the stopping criterion 

IIE'(Atm)lo := max (\At) < 10-10, 

where c, denotes the maximum norm in R2. In the above expression, I- (A7n) 

should in fact be replaced by zero if x1 is at a corner, and by the appropriate 
horizontal or vertical component if x1 lies elsewhere on the boundary. We make 
the choice 8 = 10-10 in Algorithm 3 and aj = 9/10 in Algorithm 2. The integrals 
are computed to machine accuracy by means of composite high-order Gaussian 
quadrature rules. As in section 4, the calculations begin at the coarsest level (N = 
8). Once convergence is obtained, a uniform refinement of the locally optimal 
triangulation is used as a starting mesh for the next finer level. As before, 

_ IIE'(A n) (Atm)_ 
7n- IIEI(Anm1)Ik,>0 

is the factor by which the "residual" is reduced at the nth iteration. 

Example 7.1. 

f(x) = -,/IXI, 

where I is the euclidean norm in R12. 

The graph and contour lines of f are shown in Figure 3. Our calculations are 
summarised in Tables 3 and 4. Table 3 suggests that the asymptotic performance 
of the algorithm as N increases is qualitatively much the same as in the one- 
dimensional case. 

Note that f has a singularity at the origin and cannot be approximated to an 
optimal order by piecewise polynomials on quasi-uniform meshes as N -> oo. This 
is confirmed by the results displayed in Table 4. In this table, -YN is the local rate 
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TABLE 3. Iterations in the computation of locally optimal trian- 
gulations for the approximation of the function f(x) - Vlxl by 
piecewise linear polynomials 

N n edge swaps {E'(/An) )I 7n r \ /E(/An) 
8 

0 - 0.42459422D-03 - 0.14029464D-01 
1 4 0.10367787D-03 0.24 0.90462685D-02 
2 0 0.73561779D-04 0.71 0.84609623D-02 
5 0 0.25517273D-04 0.70 0.79791818D-02 
10 0 0.10965694D-04 0.70 0.74940892D-02 
20 0 0.34195277D-06 0.71 0.74851905D-02 
40 0 0.49730317D-09 0.73 0.74851847D-02 
46 0 0.73156246D-10 0.73 0.74851847D-02 

32 
0 - 0.13604532D-04 - 0.23427740D-02 
1 2 0.94188498D-05 0.69 0.21539671D-02 
2 0 0.67101547D-05 0.71 0.20820072D-02 
5 0 0.26946165D-05 0.75 0.20194351D-02 
10 0 0.26750307D-05 0.80 0.18842340D-02 
20 0 0.61825238D-06 0.88 0.18422231D-02 
40 0 0.63962876D-07 0.94 0.18349505D-02 
120 0 0.45798966D-09 0.94 0.18349243D-02 
145 0 0.98448068D-10 0.94 0.18349243D-02 

128 
0 - 0.93047387D-06 - 0.51189443D-03 
1 6 0.63258753D-06 0.68 0.48663096D-03 
2 2 0.44654850D-06 0.71 0.47661968D-03 
5 2 0.30771953D-06 0.64 0.46538827D-03 
10 0 0.54005721D-07 0.74 0.46021732D-03 
20 0 0.17465723D-07 0.93 0.45721019D-03 
40 0 0.66404327D-08 0.96 0.45575799D-03 
80 0 0.32103565D-08 0.99 0.45509076D-03 
160 0 0.97696194D-08 0.98 0.45486095D-03 
352 0 0.98924223D-10 0.99 0.45482596D-03 

of convergence defined by 

lOg(eN/e4N) 

log 2 

where eN is the L2 error for the mesh with N triangles. For N = 2, the triangulation 
'\uni consists of two triangles sharing the diagonal that joins the origin to the 
point (1, 1). For larger values of N, Auni is obtained from that mesh by successive 
uniform refinement. The results suggest that the corresponding rate of convergence 
is -y = 3/2. By contrast, the triangulations A* generated by the algorithm yield 
the optimal rate of convergence -y = 2. Some of those triangulations are shown in 
Figure 4 for (a) 128, (b) 510 and (c) 2036 triangles respectively. Figure 4(d) shows 
an enlargement of this last mesh near the singularity. 
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TABLE 4. Decay of the L2 error as N increases for the approxima- 
tion of f(x) = \/IxI by piecewise linears 

N VE(A*) YN N VE(uni) YN 

2 0.27408054D-01 - 2 0.27408054D-01 - 
8 0.74851847D-02 1.87 8 0.10243603D-01 1.42 
32 0.18349243D-02 2.03 32 0.37297791D-02 1.46 
128 0.45482596D-03 2.01 128 0.13380112D-02 1.48 
510 0.11312414D-03 2.01 512 0.47646763D-03 1.49 

2034 0.28290617D-04 2.00 2048 0.16905744D-03 1.49 
8136 0.70656407D-05 2.00 8192 0.59876793D-04 1.50 
32544 0.17775092D-05 1.99 32768 0.21188352D-04 1.50 

Triangulation Triongulation 

060 

>- 0.4 > . 

0.2 0.2 

on0 0.0 
0 0 0.2 0 4 0 6 0 8 l 0 0.0 0.2 0.4 0.6 0.8 1.0 

X Coordinote X Coordinote 

(a) (b) 

Triangulation Triangulation 

102 0.02 

0.0 o. 0 

0.0 02 04 06 08 10 000 0.02 0.04 006 008 010 
XCoordinate X Coordinote 

(c) (d) 

FIGURE 4. Some locally optimal triangulations for the approxima- 
tion of the function f(x) = /xl by piecewise linears: (a) N = 128, 
(b) N = 510, (c) N 2034 and (d) enlarged view of that triangu- 
lation near the origin 
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1 1 X~~~~~~~~~~~~~~~~~~~ 0 15 -Y 

(a) (b) 

FIGURE 5. (a) Graph and (b) contour lines of the function f (X) = 

3e ,where ( = (X1 -2)2 + (X1 -2)(X2 -2) + 2(x2 - )2 

Example 7.2. 

f (x) = ! 
e-4[(X1 -2)2+(X1 -1) (X2-2)+2(X2 _1)21 

The graph and contour plot are shown in Figure 5. Locally optimal triangulations 
for the approximation of this function by piecewise linear polynomials are displayed 
in Figure 6. 

Example 7.3. 

f (X) = tanh(20( x2 - 1)) 

As the graph and contour plot in Figure 7 show, this function has a sharp gradient 
along the curve Ix 2 = 1/2. Figure 8 (a) shows the locally optimal mesh computed 
by the algorithm, using a uniform mesh to start the iteration. The error for the 
uniform mesh (with 128 triangles) is V>E(&LUn%) = 0.40517872D-01 while, for the 
computed mesh (with 118 triangles), we have VE(A*) = 0.42442848D-02. Using 
the same uniform starting mesh, but with a value Of 8 = 10-8 in Algorithm 3, we 
found that the algorithm converges to a slightly different triangulation (with 116 
triangles), shown in Figure 8 (b), with an error VE(A*) = 0.41575984D-02. This 
dependence of the final mesh on the particular choice of parameters suggests the 
presence of many nearby local minima of the error functional. 

The last two examples constitute severe tests for our algorithm, requiring in 
some cases over a thousand iterations. 
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Triangulation Triangulation 
1.0 1 0 

0 8 - 0.8 

0 6 .~0.6- 

o 0 

o 0 
>- 0.4 - 04 

0 2 -0 2- 

0.0 0 0 
0.0 0.2 0 4 0 6 0.8 1.0 0 0 0 2 0.4 0.6 0.8 1.0 

X Coordinate X Coordinate 

(a) (b) 

Triangulation Triangulation 

o ~~~~~~~~~~~~~~~~~~~~~~10 

0 0 0Of0 
00 0.2 04 0 6 0.8 1 0 0.0 0.2 0.4 0.6 0.8 1 0 

X Coordinate X Coordinate 

(c) (d) 

FIGURE 6. Locally optimal meshes for the approximation of the 
function f(x) = 'e- 4, where = (xi - )2 + (X -2 )(X2-2) + 
2(x2 - 1)2, by piecewise linear polynomials. (a) 8, (b) 32, (c) 122 
and (d) 468 triangles 
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0;2 014 0;6 018 

(a) (b) 

FIGURE 7. (a) Graph and (b) contour lines of the function f (X)= 

tanh(2O(lxl2 -2 

Triangulation Triangulation 

0.8 . X 

0.6~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~0 

o . . . . . . 0 . 02 04 06 08 10 

o- 0 

>- 0.4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-. 

0.2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 
0.0~~~~~~~~~~~~~~~~~~~~~~0 

XCoordinate X Coordinate 

(a) (b) 

FIGURE 8. TWO locally optimal meshes for the approximation of 
the function f(x) =1tanh(2O(2xl2-2)) by piecewise linear polyno- 
mials. The same uniform mesh (with 128 triangles) was used as a 
starting mesh with, however, different values of 8 in Algorithm 3. 
(a) 8 1010. (b) 8 108 
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8. CONCLUSION 

In this work, we have addressed the problem of generating locally optimal meshes 
for L2 approximation by discontinuous piecewise polynomials. The salient feature 
of the iterative procedure which we considered is that the cost of each iteration is 
roughly that of projecting the function onto the finite-dimensional space induced 
by the current mesh. We have shown that the L2 error decreases monotonically. 

In the one-dimensional case, we were able to use this property to obtain conver- 
gence results. 

In the two-dimensional case, it is necessary to adjust both the nodal positions 
and the connectivity between the nodes. Numerical experiments indicated that the 
qualitative convergence properties of the algorithm are much the same as in the one- 
dimensional case. In particular, we found that, although the first few iterations are 
very effective, the algorithm exhibits a poor asymptotic rate of convergence when 
the number of triangles is large. It might be possible to speed up the convergence 
by formulating a "multigrid" approach. This conjecture deserves further attention. 

The numerical techniques used in this paper should generalize to higher dimen- 
sion. The extension of the algorithm for moving the nodes is straightforward. The 
generalization of Lawson's algorithm and of the recipe for element removal does, 
however, require more careful consideration. 
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