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OPTIMAL, QUASI-OPTIMAL AND SUPERLINEAR 
BAND-TOEPLITZ PRECONDITIONERS FOR 

ASYMPTOTICALLY ILL-CONDITIONED POSITIVE DEFINITE 
TOEPLITZ SYSTEMS 

STEFANO SERRA 

ABSTRACT. In this paper we are concerned with the solution of n x n Her- 
mitian Toeplitz systems with nonnegative generating functions f. The pre- 
conditioned conjugate gradient (PCG) method with the well-known circulant 
preconditioners fails in the case where f has zeros. In this paper we consider 
as preconditioners band-Toeplitz matrices generated by trigonometric polyno- 
mials g of fixed degree 1. We use different strategies of approximation of f 
to devise a polynomial g which has some analytical properties of f, is easily 
computable and is such that the corresponding preconditioned system has a 
condition number bounded by a constant independent of n. For each strategy 
we analyze the cost per iteration and the number of iterations required for the 
convergence within a preassigned accuracy. We obtain different estimates of 
1 for which the total cost of the proposed PCG methods is optimal and the 
related rates of convergence are superlinear. Finally, for the most economical 
strategy, we perform various numerical experiments which fully confirm the ef- 
fectiveness of approximation theory tools in the solution of this kind of linear 
algebra problems. 

1. INTRODUCTION 

The aim of this paper is to introduce and analyze new strategies for the solution 
by PCG method of n x n Hermitian Toeplitz systems [20, 21] 

Anx = b. 

Toeplitz matrices are assumed to be generated by 27r-periodic integrable real- 
valued functions f defined on the fundamental interval [-7r, 7r], in the sense that 
the coefficients of A, are given by the Fourier coefficients am of f: more precisely 
we have 

[An]j,k = aj-k - J f (x)e t(jik)xdx, 0 < j, k < n -1 

We point out that the generating function f is given in some applications of Toeplitz 
systems. Classical examples are the kernels of the Wiener-Hopf equations [18], the 
spectral density functions in stationary stochastic processes [20] and the point- 
spread functions in image processing [24]. 
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If the generating function is continuous and positive there are many types of 
preconditioners [10, 15, 16, 6] such as circulant matrices [14], -r matrices [5], Hartley 
matrices [6]; these preconditioners lead to superlinearly convergent PCG methods. 

When f has zeros, i.e., ess inff = 0 we know [20] that the Euclidean condition 
number b2(An(f)) of An = An(f) grows to oo for n tending to 00; in [30, 31] 
estimates of P2(An(f)) as a function of n and of the order r of the "zeros" of f are 
given. In the case where r = 2k is an even number only -r preconditioners [15] and 
band-Toeplitz preconditioners [7, 16] are shown to be able to reduce the condition 
number from O(n2k) to 0(1). More general statements and strategies useful to 
handle the case where f has also zeros of odd or noninteger orders can be found in 
[28, 32]. 

The main idea (see [16]) is to find a trigonometric polynomial g for which r < 
f /g < R where r, R are positive constants. The associated band-Toeplitz matrix 
An(g) results to be the desired preconditioner in the sense that the spectrum of 
An- (g)An(f) lies in (r, R) for any dimension n. 

The quoted idea resulted to be very flexible and, actually, has been successfully 
applied to the case of nondefinite Toeplitz problems [29], block Toeplitz problems 
[27] and, joint with circulant structures, to the case of non-Hermitian Toeplitz 
problems [8]. 

More recently, R. Chan and P. Tang [11] have proposed to increase the bandwidth 
of An (g) to get extra degrees of freedom. They calculate g by means of the Remez 
algorithm by minimizing h = II (f -g) /f I over all the polynomials g of fixed degree 
1. In this paper we prove that this minimization property enables one not only to 
match the zeros of f but also to minimize R/r obtaining (by using Theorem 3.1 
in [16]) the best band-Toeplitz preconditioner in the class of all the band-Toeplitz 
matrices of fixed bandwidth 21 + 1. Moreover we perform a more accurate analysis 
than [11] of the convergence properties of the preconditioned systems defined in 
[11]. 

Since the Remez algorithm can be heavy from a computational point of view, 
we propose two new techniques to minimize "in a certain sense" (f - g)/f. These 
strategies are such that g is easier to calculate (for example, for one of the proposed 
polynomials g = gB we use only few Fast Fourier Transforms (FFT) of order I - k) 
and the preconditioned systems have an 0(1) condition number for which we can 
exhibit upper bounds depending on 1, n and on the "regularity" features of f . 

Therefore, we can estimate the number of iterations to reach the solution within 
a preassigned accuracy e; on the other hand, the solution of a system An,(g)y = c 
can be obtained in 0(12n) arithmetic operations (ops), by using a classic band 
solver [19], or in O(ln) ops [17] (see also [9]). 

Hence, balancing the cost of a single iteration of the PCG and the number of 
required iterations, it is possible to estimate the optimal bandwidth 1, which allows 
to mimimize the total amount of calculations to reach the solution of An(f)x = b 
within a preassigned tolerance e. 

The outline of the paper is the following. In section 2 we analyze the convergence 
rate of the PCG method proposed in [11]. In sections 3 and 4 we introduce two 
new preconditioners and we perform a study of the convergence properties of our 
PCG methods. In the subsequent section 5, first we discuss the cost of the different 
PCG methods and then we indicate how to estimate the value 1opt such that the 
global optimal preconditioner has to be searched in the band-Toeplitz matrices of 
bandwidth 21opt + 1. In section 6 we observe that, by choosing I as special functions 
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of n, we may construct superlinearly convergent PCG methods having a total cost of 
O (n log n) ops. Finally in the last section we perform several numerical experiments 
showing the effectiveness of the proposed ideas. 

2. CONVERGENCE ANALYSIS OF THE PCG METHOD 

OF R. CHAN AND P. TANG 

We study the convergence speed of the PCG proposed in [11] in terms of the 
generating functions f and g. 

Firstly we recall some known results. 

Theorem 2.1. Let mf and Mf be the essinf and the esssup of f in [-r, 7r]. If 
mf < Mf then Vn > 0 we have 

mf < Ai (An(f)) < Mf 

where Ai(X) is the i-th eigenvalue of X arranged in nondecreasing order. If mf > 0 
then An (f) is positive definite. 

Proof. See [20, 7]. ? 

Theorem 2.2. Let f,g E L1 [-ir, r] be functions essentially nonnegative, i.e., mf, 
m9 > 0. The matrices An (f ), An (g) are positive definite (see Theorem (2. 1)) and 
the eigenvalues Ai, of A-1 (g)An(f) arranged in nondecreasing order are such that: 

1. Ain E (r, R), r, R being the ess inf and the ess sup of f/g, respectively. 
2. UAnN U%<f An is dense in the "essential range" ER(f /g) of f /g (the essential 

range of an integrable function h defined on I is the set of all y real numbers 
for which, Ve > 0 the Lebesgue measure of {x e I: h(x) e (y - , y + e)} is 
positive [28]. 

3. lim A n = r, lim A n = R. 
no no n2--*o n2--co 

Proof. Under the assumption that f, g and f /g are continuous the claimed thesis 
follows from Theorems 3.1 and 3.2 in [16]. Note that in the case where f/g is 
continuous the essential range of f /g coincides with [r, R] and, in general, if f /g is 
piecewise continuous the set ?R(f /g) is the closure of the usual image of f /g. 

Under the weaker hypothesis that f and g are only integrable follows from The- 
orem 2.2 in [30] and Theorem 3.1 in [28]. D] 

Remark 1. The third statement of the preceding theorem has also been proved in 
[12]. However, we notice that Theorem 2.2 is much more powerful, since it indicates 
a "global property" of distribution of the eigenvalues. For instance, a consequence 
of the second part of the considered theorem is that for any nonnegative integer k 
fixed with respect to the dimension n we find the following limit relations 

lim A n = r, lim A n -k R. 
n--oo n--oo 

In addition, we can conclude that the spectrum of the preconditioned matrix 

A41 (g)A(f) is, for large n, "uniformly distributed" in the image of f. This means 

[32] that the set { ( ) } , suitably ordered, describes asymptotically the 

set {Anln 
Finally we stress that these results are useful in order to understand very pre- 

cisely the convergence rates of PCG methods based on Toeplitz preconditioners. 
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Actually, owing to the sophisticated results [3] about the convergence speed of 
PCG algorithms, we conclude that the knowledge of the asymptotical behaviour of 
A' and A' is not only useful (part 3 or [12]), but also the global distribution of the 
preconditioned spectrum [16, 29, 31]. 

By means of Theorem 2.1 in [11] it is shown that, if g is a polynomial of degree 
1 such that 

(1) 1f 91 =h<1 

then An (g) is positive definite and the Euclidean condition number of A-1/2 (g) 

An(f)A-I/ 2 (g) is bounded by a positive constant, i.e., 

A2 (An- 1/2 (g)An (f )A- 1/2 (g)) <I1 
+ h 

Consequently, by standard error analysis of the PCG method [2], Chan and Tang 
conclude that the number of iterations for convergence within a tolerance e is 
bounded by 

N(h, ) = + h log - + 1. 
2(1 -h) 

In the following theorem we refine the result in [11] and we show that the former 
bound is a very sharp bound, i.e., the number of iterations that we expect cannot 
be much less than N(h, e). 

Theorem 2.3. Let f > 0 be a continuous function and g be a polynomial of degree 
1 such that the relative error h is less than 1. Then 

1 2 = 2 (An- 12(g)An (f )A- 1/ 9)< +h 

2. UMN ji<n Ai is dense in [1/(1 + h), 1/(1 - h)], AM being the i-th eigenvalue 
of A-l(g)An(f) Therefore we have no clusters in (1/(1 + h), 1/(1 - h)) 
bUt practically a "uniform distribution" of the spectrum of the preconditioned 
matrix. 

3. lim /,tn = (I + h)/(1l-h). 
f-g 

Proof. From f f = h < 1 we deduce that 
f 00 

-h < 1- 9 < hi g > O, 

and, consequently, 

(2) 1 f 1 
1?h - g - 1-h' 

Now we may apply Theorem 2.2 obtaining (1), (2) and (3). Moreover, it is worth 
pointing out that (2) implies that f has only zeros of even order, because of the 
fact that g is a nonnegative trigonometric polynomial. F 

As a final remark of this section we can state the following property. 

Theorem 2.4. The preconditioner An (g*), where g* is the best relative Chebyshev 
approximation of f of degree 1, is optimal in the sense that N(h, e) is minimal for 
9 = 9*. 
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Proof. 

h* fgin f -g 
f 0 gP f 0 

P1 being the class of the trigonometric polynomials of degree at most 1. As for 
h E (0, 1) the function N(h, e) is an increasing function of h, it is trivial to note 
that the minimal value of N(h, e) is attained for h = h*. 

Observe that we can suppose h* < 1 as proved in the third part of Theorem 4.1 
in section 4. D 

3. NEW PRECONDITIONING STRATEGIES 

We start this section with the following observation: in the case where f is non- 
negative and has some zeros in [-7r, 7r], band-Toeplitz preconditioners can reduce 
the condition number to a value uniformly bounded by a constant independent of 
the dimension n only when the zeros of f have even order [7, 16]. 

Actually, since a nonnegative trigonometric polynomial g can have only zeros of 
even order, in light of Theorem 2.2 it is trivial to conclude that the union of the 
spectra of An-l (g)An(f ) cannot be contained in a positive interval in the case where 
f has a zero of order r 74 2q, for any positive integer q. Therefore, in the following, 
we assume that f is continuous and has only zeros of even order. 

Now we define by Zk the polynomial of minimum degree k containing all the 
zeros of f with their orders and the generating function g of our preconditioners in 
the following way: 

9 = Zkg 1-k, degree(g) = 1 > k. 

g I-k is a trigonometric polynomial of degree 1 - k and can be chosen, for example, 
in light of these two strategies. 

A: g 1-k is the best Chebyshev approximation of f = f/Zk, i.e., 

f-9 I-koo= min f-gloo 

B: g 1-k is the trigonometric polynomial of degree at most 1 - k interpolating f 
at the 1 - k + 1 zeros of the (1 - k + 1)-th Chebyshev polynomial of the first 
kind. 

Observe that we cannot choose g directly as the best Chebyshev approximation 
of f for two reasons: we are not guaranteed that g is nonnegative since f has zeros. 
In fact, if g = g9 such that IIf - g 1 1 = min IIf -gI = El(f), 1 =degree(gl), 

gEPj 
then we have 

(3) f(x) - El(f) < g(x) < f(x) + El(f) 

and lim El (f) = 0, but, since f has zeros, it may happen that g assumes negative 
l-*oo 

values (see equation (3)) in a suitable neighbourhood of each zero of f. Conse- 
quently, by virtue of the classical spectral theory on Toeplitz matrices, An (g) is 
not positive definite for any n large enough and cannot be used as preconditioner 
[20]. In addition, it is worth pointing out that relation (3) does not imply that f /g 
and g/f are bounded because, in general, g has different zeros with respect to f. 
Finally, from Theorem 2.2, we cannot expect a convergence speed independent of 
the dimension n, since r = 0 and/or R = +oo. 
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From a computational point of view we remark that g I-k in (A) can be cal- 
culated by using the standard Remez algorithm [26] with respect to the classical 
trigonometric basis {1,sin(qx),cos(qx)}, while the calculation of g* in [11] is per- 
formed by using a modified version of the Remez algorithm [33] with the basis 
{l/f(x), sin(qx)/f (x), cos(qx)/f(x)}; in this case it is possible to observe instabil- 
ity problems due to the fact that f has zeros (see section 6). 

For the calculation of g1-k in (B), on the other hand, we have no problems: 
this polynomial can be calculated, very easily, with few FFTs of order l - k by 
means of a classical trigonometric representation of the interpolating polynomial at 
Chebyshev zeros (see section 6). 

4. CONVERGENCE ANALYSIS 

We perform a convergence analysis of the PCG methods proposed in the former 
sections; it is worth pointing out that this analysis gives further information on the 
convergence properties of the PCG method proposed by R. Chan and P. Tang. 

First we introduce a result which makes a link between Theorem 2.2 in [11] and 
Theorem 2.2, i.e., Theorems 3.1 and 3.2 in [16]. 

Theorem 4.1. Let f be a nonnegative continuous function defined in [-wr, wr] with 
zeros of even order, then the following statements hold. 

1. There exists a nonnegative trigonometric polynomial Zk of minimal degree k 
[7, 16] such that 

0 <'rk < - < Rk < 00 
9 

2. If g is a trigonometric polynomial such that f /g E (r, R) (one of the hypothe- 
ses of Theorem 2.2), r, R being positive constants, then there exists a > 0 for 
which 

h _,g - f-9|g <1. - f 0 

3. If 1 > k (with k the degree of the minimal polynomial Zk), then 

f -g h* =min < 1. 
gEP, f 00 

(Recall that h* < 1 is one among the hypotheses of the main theorem in [11].) 

Proof. Let x1, . . . , xj be the zeros of f and 211,.. ., 21j be the orders of such zeros. 
The linear polynomial 2-2 cos(x-x) is nonnegative and is clearly the polynomial 
of minimal degree which has in x a zero of order 2. Consequently Zk is easily 
constructed as 

j i 
Zk =fJ(2-2cos(x-xi))',, k=Zl%. 

i=l Z=1 
Hence f /Zk and Zk/f have to be bounded and the thesis of part 1 is proved. 

Remark 2. The preconditioner An (Zk) was first proposed by R. Chan in [7], in 
which the proof of the related statement of part 1 was also given under the as- 
sumption of strong regularity of f (f being 2q times continuously differentiable 
with q = max li). The proof under the weaker hypothesis of continuity can be 
found in [16], while in [30] it is possible to derive the statement under the full 
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general hypothesis that f belongs to L1, f has only "essential" zeros of even order 
and is essentially nonnegative. For the definition of "essential" zero of a Lebesgue 
integrable function see [30]. 

Now we prove statement 2; from the hypothesis r < f /g < R we deduce that 

f 1 1 

Consequently, for any positive a we have 

(4) agz- 1 < agf -_1= ag-f < aZ - 1. 
f f 

Now we choose a such that 0 < aZ-I = a-(az-1), i.e., solving the linear equation, 
we find a = 2/(Z + z). Therefore, setting 

_f - ag 
hag=-f 

we have from (4) 
Z-z 

hcxg = aZ-1 = -- < 1. 

For the third part it is sufficient to observe that, when 1 > k we can construct 
Zk c Pl such that rk < f/zk < Rk and consequently from the former part of the 
theorem we find haZk < 1 and 

h*-min f -g < f - aZk < 1 D 
gEPI f 00 f 00 

f 9g* A Now define g* the polynomial in [11] such that h* = |' 9 ,9B the 

polynomials shown in the preceding section and scaled suitably in light of the 
second part of Theorem 4.1, and hA and hB, respectively, the relative Chebyshev 
errors. 

If 1 > k then clearly h* < hA < hB < 1 so, in view of Theorem 2.2 we 
have that the condition numbers of the matrices Aj /2(gA)An(f)Aj-1/2(gA) and 
A-l/2(gB)An(f)Aj /2(gB) give two upper bounds for 

M2 (A 1/2 (g*)An(f)A 1/2 (g*)) < 1 + h* 

We are ready to estimate the condition numbers of the system An(f)X = b precon- 
ditioned by means of An(gA) and An(gB) respectively. In view of Theorem 2.2 we 
have that the eigenvalues of An- (gA)An(f) belong to the open interval (rA, RA) = 

(inff/g 1-k,SUp f /9 I-k), where f = f/zk is continuous and positive and g 1-k iS 
the best Chebyshev approximation of f, i.e., we have 

El-k(f) = min Ilf -91o = Ilf - 9 1-kl110- 
gEPI-k 

Hence 

r > ^ 
f I El-k(f) >1 EI-k(f) 

f + El-k(f) f + El-k(f) - + El-k(i) 

RA < A f 1+ El-k(f) < 1 + El-k(f) 
? - El-k (f) f-El-k(f) m- - El-k(f) 
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mn being the minimum of f in [-7r, 7r], - Elk(f) being a positive constant and 

ElIk (f) 

m + El_ (f) 

being less than 1, for 1 - k large enough. 
Therefore 

1 + Elk(f) 
A= 2 (Aj/2(gA)A (f)A1/2(gA)) < m E-k(/f) 

,r+EIkE(f ) 

For the second preconditioner An(gB), 9B = Zkg I-k we recall that g 1-k is the first 
kind Chebyshev interpolant of f and so, by using the standard error estimate of 
Powell [25], it follows that 

f-9 1-k||oo < cEl-k(f) log(l-k), c 2. 

Recalling that f /gB = f/g 1-k, in view of Theorem 2.2 we state that the eigenvalues 
A I(gB)An(f) lie in the open interval 

(rB, RB) = (inf f/g 1-k, SUp f/g 1-k). 

Therefore using the same argument used in analyzing the former preconditioner we 
obtain 

1 + Fl-k (f) 
= 112 / (9 A (12()B) < m-Fl_k(h 

A+Fl-k(f) 

where Fk (f) = cEl-k (f) log(l - k). 
Now, to conclude we want to recall a classical result of approximation which 

allows us to estimate more precisely A and ALB. 

Theorem 4.2 ([22]). If f E CP[-ir, 7r] and if w(f(P); 6) indicates the modulus of 
continuity of f (P), then 

Em(f) < dpw (f (P ) 1 

where dp is a well-known constant. (Jackson proved this result with a somewhat 
large constant dp = cP, c < 100; in [23] we find a better estimate of c, that is, c = 
1 + ?r2/2.) In particular, if f (P) c Lip , ae c [0, 1], M > O, (i. e., VxI, x2 c [-ir, 7r], 
f (P) (xI) - f (P) (x2)1 < MxI - x2 l) we have 

Em(f) < dp 1 
- mP+a, 

Hence 

1+ dlkw() 1k ; _)/(-k)P 

A < UA(l) _ h -dl-kw(f(P); 1 k)/(l-k)P 

= - dl-kw(f(p); 1 1k )/(l-k)P 

ih+d1-kW(f/(P); 11lk )/(l-k)P 

where UA (1) can be a sharp estimate of /,>A for a large class of functions for which 
the estimate of Jackson (see the last theorem) is sharp. 
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5. SOME REMARKS ABOUT THE COMPUTATIONAL COSTS 

In this section first we discuss the computational cost required by each iteration 
of the considered PCG methods and then we discuss the cost of the determination 
of the trigonometric polynomials g*, gA and gB. For the first step we consider 
two possible strategies: the first one based on classical band solvers [19] and the 
second one based on a particular algebraic multigrid method devised for symmetric 
positive definite Toeplitz matrices [17]. By following the first idea, we have that 
the solution of a system A,(gA)y = c needs about q112n arithmetic ops while the 
second method requires q2ln ops, that is, the cost is linear both with respect to 
the dimension and to the bandwidth. Since the multiplication of A, (f ) by a vector 
uses about q3n log n arithmetic ops (qi suitable and known constants) we can state 
that the number of iterations to reach the solution within a preassigned accuracy 
e, is proportional to 

Cost(l, n, e) = nUA (l)(X + q2 logn) log G) 

where X is equal to ql12 or to q21. 
Therefore, observing that UA (1), U* (1) and UB (1) are nonincreasing functions 

of 1 independent of n, we obtain that a total cost of 0(nlogn) ops is reached 
for any 1 c [k, imax] where tmax = 0(log1/2 n) if we use classical band solvers or 
imax = O(log n) if we use the quoted algebraic multigrid method. Finally, the global 
optimal value lopt can be estimated by minimizing analytically or numerically the 
function Cost(l, n, e) with respect to the variable 1. For instance, by considering 
Table 4 in section 7, if we use the multigrid strategy [17] for the solution of the 
banded preconditioning systems, then the optimal value of the halfbandwidth is 
1 = 6. 

5.1. The computation of the "generating" functions g*, gA and gB. We 
preliminarily observe that the calculation of g*, which involves a modified version 
of the Remez algorithm [33, 12], and the calculation of gA, which requires the stan- 
dard Remez algorithm [26], are from a computational point of view substantially 
equivalent. In both of the cases we use an iterative method which has a com- 
plex structure (see [12]) and for which we cannot give a theoretical bound of the 
number of iterations required for the computation within a preassigned accuracy 
(see [26, 11, 12, 33]. However, in practice in [33, 11], the authors observe a total 
arithmetic amount of about 0(13) ops where 1 is the degree of the trigonometric 
polynomials g* or, equivalently, gB 

On the other hand, the calculation of g* is delicate. By referring to the paper 
[12], in step 1, the modified Remez algorithm has to solve a linear system in which 
the elements of the j-th column (j = 2,... , 1 + 1) are given by pj_1(x(0) where 

k (X)= cos(k - 1)x and x s = 1,..., 1 + 1, are points calculated at the i-th Sl$kx) - f (x) II 

step of the algorithm. If some of the values approach a zero of f and, in particular, 
when f has zeros of high order, it may happen that the considered linear system 
becomes very ill-conditioned. 

The calculation of the coefficients of the polynomial gB is actually very simple 
and direct. 

Let us consider a function h defined on [-1, 1] and a positive integer m, then 
we consider the trigonometric polynomial of degree m interpolating h at zeros of 
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the m + 1-th Chebyshev polynomial of the first kind. A classical trigonometric 
representation is given by 

m 

bo + 2 bj cos(jx) 
j=1 

where the coefficients bi are easily expressed as follows: 

1 m (2k?+1)7r bj + 1 E h(cos(0k)) Cos(jOk), Ok -(m+1) 

Therefore, by using about 2m2 arithmetic ops, we may obtain all the coefficients 
bj. On the other hand, the previous expression can be suitably manipulated in the 
following way: 

bj = + E h(COS(k)) (eijok + e-ijOk) o = + 2(m+1 
k= mcsk) 

'' m+1 2(m +1)' 

By calling Oj - m+ 1 we have that bj = z; + 
- where 

Z (m+I1) e'2(m?1) [h(cos(ok))eiij 

and the expression in the squared brackets can be calculated by using one FFT of 
order 2(m + 1). Therefore the calculation of all the bj can be done in a stable way 
within a cost of cm log m where c is a suitable, small and known constant value 
[34]. 

Obviously, by using the approximation theory tools we can define other good 
preconditioners whose generating functions can be efficiently calculated by means 
of FFTs algorithms. For instance, if we consider the least squares polynomial g of 
degree m [25] and we approximate its coefficients by using the repeated trapezoidal 
rule with m + 2 uniformly distributed knots, we obtain some "cosine" summations 
which can be calculated by using fast cosine transforms [1]. We recall that the 
order of approximation of the Chebyshev least squares polynomial is the same as 
that of the polynomial interpolating at the Chebyshev zeros [25]. 

Finally, if we are interested in parallel computation (for instance the PRAM 
model), it is useful to recall that FFT algorithms are well parallelizable procedures 
and perform O(logm) parallel steps if m is the order of the Fourier transform. 

Since the band solvers [19] are inherently sequential we cannot use them for the 
solution of the preconditioning systems. However, in the recent literature we may 
find alternative techniques: for an efficient parallel solution of generic band sys- 
tems see [35], while a good survey about fast parallel methods for band-Toeplitz 
systems can be found in [4]. Since the trigonometric polynomials g are nonnega- 
tive, it follows that the matrices An(g) are also positive definite; therefore we can 
alternatively apply the multigrid technique developed in [17]. 

6. SUPERLINEAR PCG METHODS 

In this section we discuss a strategy in order to devise superlinear PCG methods 
having the optimal cost of O(n log n) ops. We say that this cost is optimal because 
O(nlogn) ops is, asymptotically, the cost of a FFT and, therefore, the cost of 
a product between a (dense) Toeplitz matrix and a generic vector. Since in the 
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implementation of a PCG method we have to calculate, at each iteration, a few 
of these products, it seems evident that the asymptotical cost of 0(nlogn) ops is 
minimal with respect to this class of linear algebra problems. 

Then, if we use a classic band solver [19], then the maximal halfbandwidth we 
can admit is imax = 0(log1/2 n), while, if we choose an algebraic multigrid method 
as in [17] we can use a maximal halfbandwidth equal to lmax = 0(logn). So, by 
calling t, =l7-, we find that UA (lmax) is asymptotic to 

1 + (tPw (f(P);tP)) 

U*(lmax) is less than UA (imax) and UB (imax) is asymptotic to 

1 + 0 (10g(lmax)tnw (f (p); tp)) 

In this way we have found PCG methods with a cost of 0(nlogn) ops and 
having a superlinear rate of convergence due to the cluster around 1 observed for 
the spectrum of the preconditioned matrices AI(g A)An(f) and A`l(g*)An(f). In 
fact, the functions U*(lmax) and UA (lmax) tend to 1 as the dimension n tends to 
infinity. 

Of course, analogous considerations can be done naturally for the PCG method 
associated with the preconditioner An (gB). In this last case the "clustering" prop- 
erty is weakly deteriorated according to the quantity 

log(lmax(n)) = 0(log(logn))- 

This deterioration becomes considerable only when the function f is very "irregu- 
lar". Actually, it is sufficient that the modulus of continuity w(f; (5) of f is a "small 

o" of 1 in order to have 
log 51 

lim UB (lmax (n)) = 1. 

For instance, the very weak assumption that f belongs to the class LipM for some 
positive value ae is enough in order to obtain the preceding relation. 

If we want to use in practice these superlinear PCG methods, we have to point 
out that the considered trigonometric polynomials g*, gA and gB have a degree 
which grows logarithmically as a function of n. This means that, for any dimension 
n, we must calculate the generating function of the preconditioner. Unfortunately, 
for the first two strategies we cannot exhibit a theoretical bound for the related 
arithmetic cost; for the third strategy, on the other hand, we may say that the cost 
is of 0(lmax(n) log lmax( )) (see the previous section). Since lmax((n) is bounded by 
c1 logI/2 (n) or C2 log(n) we have that the total cost for determining the coefficients 
of gB is well dominated by the asymptotical (and also practical) cost of a generic 
iteration of the associated PCG method. Therefore, as shown in the last section, 
we can really use this superlinear technique. 

Observe that good clustering properties for the preconditioned matrix have been 
proved also in [8], where by using band-Toeplitz + circulant preconditioners the 
authors may handle the non-Hermitian case. By comparing the two approaches, 
we notice that the techniques proposed in this paper do not seem to be interesting 
for non-Hermitian problems, because, for instance, the theoretical results as in 
Theorem 2.2 and Theorem 2.3 are strictly related to the symmetric case. However, 
we stress that in our case we can easily deduce a superlinear convergence by using 
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the previous limit relations and the tools developed by Axelsson and Lindsk6g [3], 
while in [8] no rigorous proof of superlinear convergence is given. 

7. NUMERICAL RESULTS 

In this section, we compare the convergence rate of the band-Toeplitz precondi- 
tioner (strategy A), with the optimal band-Toeplitz preconditioner [11] and with 
the optimal circulant preconditioner [13] on three different generating functions 
having zeros. They are (x - 1)2(x + 1)2, 1 - e-x2 and X4 and are associated to 
ill-conditioned matrices A, having Euclidean condition numbers equal to O(n2), 

O(n2) and O(n4) respectively (see for instance [30, 31]). The matrices A, are 
formed by evaluating the Fourier coefficients of the generating functions by using 
FFTs (see [11]). In the tests considered, the component of the vector b on the 
right-hand side of the system A,x = b are all equal to one, the zero vector is 
the initial guess and the stopping criterion is flrqfl2/11ro112 10-7, where rq is the 
residual vector after q iterations. All computations were performed using Matlab. 

In the subsequent tables, I denotes that no preconditioning is used, C is the 
T. Chan optimal circulant preconditioner [13], Bn , is the optimal band-Toeplitz 
preconditioner [11] and B B is the band-Toeplitz preconditioner defined according 
to the strategy B; here 1 denotes the halfbandwidth of the band preconditioners. 

We do not make explicit comparison with the preconditioner related to the 
strategy A because the associated PCG method has, by virtue of the relation 

* < HA < IB, a convergence speed between the R. Chan, P. Tang one and the 
"B" one. 

We observe that the "optimal" and the "B" band-Toeplitz PCG methods per- 
form, substantially, in the same way, but the second one is much more economical 
with respect to the computation of the related generating function. This fact is 
not so considerable when the bandwidth is fixed, but it becomes crucial in or- 
der to increase 1, say, as log n. Actually, in this case, for any dimension n, it is 
not expensive to calculate a different preconditioner An(gA (1)), since the related 
cost 0(log n log(log n)) is strongly dominated by the cost 0(n log n) of each PCG 
iteration. 

Finally, the reduction of the number of required iterations, as the dimension 
increases, shown in Table 4 gives numerical evidence of the superlinear convergence 
claimed in section 6. We stress that the exceptional convergence behaviour of the 
PCG algorithm related to BB% is explained by the good approximation proper- 
ties of the first-kind Chebyshev interpolation: to have a practical measure of this, 

TABLE 1. f(x) = (X2 _ 1)2 

n I C Bn,3 =Bn,3 Bn4 B n4 Bn,5 B, Bn,6 BB,6 
16 11 9 9 9 7 8 6 7 6 
32 27 14 13 11 9 9 7 7 6 
64 74 17 16 11 10 8 8 7 7 
128 193 22 18 11 1 8 8 7 7 
256 465 28 19 11 11 8 9 7 7 
512 >1000 34 19 11 11 8 8 7 7 



BAND-TOEPLITZ PRECONDITIONERS FOR TOEPLITZ SYSTEMS 663 

it is sufficient to notice that the reduction of the condition number from A, to 
(B B )-'An for n = 512, is from 2.7 * 104 to 1 + 5 * 10-4. 

TABLE 2. f (x) = 1 -e-X 2 

n I C B,2= BB2 B B n , B 4 B 4 Bn] B]B5 
16 9 6 9 7 8 4 4 3 3 
32 14 7 15 7 8 5 5 3 3 
64 24 8 17 8 9 5 5 3 3 
128 42 10 17 8 9 5 5 3 3 
256 77 13 17 8 9 5 5 3 3 
512 143 17 17 8 9 5 5 3 3 

TABLE 3. f (x) =X4 

n I C B* =Bn B* BB B BB B*n BB n 3 n~,3 n,4 n,4 n , ,6 n,6 
16 12 10 9 9 8 9 7 7 6 
32 34 16 15 10 10 11 8 9 7 
64 119 26 21 13 12 11 10 9 8 
128 587 77 24 15 15 12 11 10 10 
256 > 1000 179 27 16 16 12 13 10 10 
512 > 1000 406 29 16 16 13 13 10 11 

TABLE 4. f(x) = 1-ex superlinear PCG Prec= BnBl(n) I(n) 
log(n) - 2 

n 16 32 64 1128 256 512 
i(n) 2 3 4 5 6 7 
Iter 9 7 5 3 2 2 
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