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IMPLICITLY RESTARTED ARNOLDI WITH PURIFICATION 
FOR THE SHIFT-INVERT TRANSFORMATION 

KARL MEERBERGEN AND ALASTAIR SPENCE 

ABSTRACT. The need to determine a few eigenvalues of a large sparse gen- 
eralised eigenvalue problem Ax = ABx with positive semidefinite B arises in 
many physical situations, for example, in a stability analysis of the discretised 
Navier-Stokes equation. A common technique is to apply Arnoldi's method 
to the shift-invert transformation, but this can suffer from numerical instabil- 
ities as is illustrated by a numerical example. In this paper, a new method 
that avoids instabilities is presented which is based on applying the implicitly 
restarted Arnoldi method with the B semi-inner product and a purification 
step. The paper contains a rounding error analysis and ends with brief com- 
ments on some extensions. 

1. INTRODUCTION 

The problem of finding a few eigenvalues of large sparse N x N generalised 
eigenvalue problems of the form 

(1) Ax = ABx, 

with A nonsymmetric and B symmetric positive semidefinite, arises in many appli- 
cations. For example, the block structured eigenvalue problem 

(2) K CT O A [ 0 = 

with N = n + m, C E Rnx, of full rank, M EE R nxn positive definite appears in 
the stability analysis of steady state solutions of Stokes (K symmetric) and Navier- 
Stokes (K nonsymmetric) equations for incompressible flow, where u E Cn denotes 
the velocity component and p E Cm the pressure, see for example Cliffe, Garratt, 
and Spence [2]. Here M is the mass matrix of the velocity elements and K is 
nonsymmetric because of the linearisation of the convection term in the Navier- 
Stokes equations. As is well known, see Malkus [9], Ericsson [5] and Cliffe, Garratt, 
and Spence [3], (2) can have infinite eigenvalues, corresponding to eigenvectors of 
the form (OT, pT)T. These have no physical relevance and in applications one would 
only be concerned about the calculation of a small number of 'stability determining' 
finite eigenvalues. 

A common approach for finding a few eigenvalues of (1) close to a given a E GC 
is Arnoldi's method applied to the shift-invert transformation S = (A - oB)-1B. 
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If (A,x) is an eigenpair of (1), then (O,x) with 0 = 1/(A - a) is an eigenpair of S, 
and this relation allows the solution of (1) by finding eigenpairs of S. Throughout 
the paper, we take oa = 0 and use 

(3) S = A-1B, 

since there is no loss of generality at least in theory by making the shift A - 

A-atB. In fact, in many applications, a zero shift is very common, since the stability 
determining eigenvalues often lie close to the origin, though in other situations the 
accurate determination of an appropriate ae is a major challenge, which we do not 
discuss here (see for example Grimes, Lewis and Simon [8]). 

To illustrate the influence of a singular B on S, consider first the following simple 
example. Let n = 2, m = 1 (so N = 3), denote the columns of 13 by ei, i = 1, 2, 3, 
and let 

K I 
1 ? 

I 
C 

I 
1 

0 

with 03 0. Then 

1 0 0 

and clearly (p-1, e2) is an eigenpair of S, 0 is a double algebraic, simple geometric 
eigenvalue, e3 is the corresponding eigenvector and el is the generalised eigenvector 
or principal eigenvector of grade 2. This behaviour is generic in N x N problems 
with the block structure of (2) as was shown by Malkus [9], who considered the 
Weierstrass-Kronecker canonical form of (2), and Ericsson [5], who considered the 
Jordan form for the shift-invert transformation of a variety of generalised eigenvalue 
problems. (Incidently, both authors restrict attention to problems with symmetric 
A but several of their results, at least to do with Jordan structure, extend to the 
case when A is nonsymmetric). To summarise the important results on S, where 
A and B have the block structure of (2), we have the following theorem, which can 
be readily deduced from Theorem 2.7 in Ericsson [5]: 

Theorem 1. S defined by (2) and (3) has n - m nonzero eigenvalues, a zero 
eigenvalue of algebraic multiplicity 2m and geometric rnultiplicity m. The order 
of the Jordan blocks corresponding to the defective eigenvalue 0 is two. Clearly, 
X := Null(S) = Null(B) has dimension m, and := Null(S2) \ Null(S) (the 
generalised nullspace) also has dimension m. If RZ Range(S2) then CN can be 
decomposed as 

Note finally that Sg = A and S2g = SV = {0}. 

If B in (1) were nonsingular, then Arnoldi's method applied to A-1B would be 
expected to find the required eigenvalues fairly easily. However, in the case we con- 
sider here with B singular, Arnoldi's method can find approximations to the zero 
eigenvalue of S, with consequent confusion after back transformation using A = 0-1. 
These approximations are known as 'spurious' eigenvalues and are sometimes hard 
to distinguish from approximations to wanted eigenvalues. Several techniques have 
been proposed to reduce the risk of computing spurious eigenvalues for the symmet- 
ric nondefective problem [10, 5] and the defective problem [5]. In this paper we shall 
concentrate on the nonsymmetric defective case, as exemplified by S derived from 
(2), because of its importance in applications. In exact arithmetic, when Arnoldi's 
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method is applied with the initial vector v1 RZ, then only approximations to the 
nonzero eigenvalues of S can be computed. Such an initial vector can be chosen 
as v1 = S2v with v E CN since S2(PJ + 5) = {0}. Unfortunately, in practice, 
round-off errors perturb the exact Arnoldi vectors producing components in J + g 
with a consequent corruption of the approximate eigenvalues and eigenvectors (we 
show an example of this in Section 3), and this paper is concerned with the efficient 
control of these unwanted directions. 

For the symmetric problem, both Ericsson [5] and Nour-Omid, Parlett, Ericsson 
and Jensen [10] use the Lanczos method with B-orthogonalisation, i.e. use the 
B semi-inner product xHBy instead of the classical xHy. The important point is 
that A-1B is self adjoint with respect to the B semi-inner product and hence the 
Lanczos method can be used to produce the usual tridiagonal matrix. An important 
numerical feature is that this tridiagonal Lanczos matrix is not corrupted by the 
perturbations of the Lanczos vectors in X, but is corrupted by perturbations of the 
Lanczos vectors in g. Hence the Ritz values of S can be spurious. This is discussed 
by Ericsson [5, Theorem 3.8], and for completeness, we prove this statement later in 
Section 2. This cannot occur when S is nondefective, which is the case considered by 
Nour-Omid, Parlett, Ericsson and Jensen [10]. The Ritz vectors are more severely 
affected, being corrupted by round-off errors in both the JV and g subspaces, but 
Ericsson shows that these errors may be eliminated by two applications of S, though 
in practice only one is in fact needed by use of a clever trick, called 'purification' 
in [10], but also discussed in [6] and [5]. In fact, we find it convenient to use 
the expression 'purification' in a more general way, so that it refers to the general 
operation of forming Sx from x E CN. This arises in several places in the paper, 
though not always in relation to elimination of round-off errors. 

Throughout this paper, we use the terminology 'B-orthogonal Arnoldi' to refer 
to Arnoldi's method applied with the B (semi)-inner product (see Algorithm 1) in 
comparison with the 'standard Arnoldi' method, where the usual inner product is 
employed. 

The main numerical aim of our paper is to introduce and analyse a new improved 
way of carrying out the two purification steps needed when S is formed from non- 
symmetric problems with the block structure in (2). The new approach is based on 
the use of the implicitly restarted Arnoldi method (IRA) [13] combined with the B 
semi-inner product. This leads to an improvement over the approach in [5] on three 
counts. First, the Arnoldi upper Hessenberg matrix Hk is not seriously corrupted 
by round-off errors due to components in either JV or g, whereas in [5] significant 
round-off errors could be present due to components in 9. Second, only one purifi- 
cation step is needed rather than two in [5], since the Arnoldi vectors could contain 
significant error components in JV but not in 9. Third, in cases when both methods 
fail due to severely corrupted Hk the new method has a simple test to indicate a 
spurious eigenvalue of Hk. One other feature of our analysis is that from a theoret- 
ical viewpoint, we are able to show an equivalence result between the B-orthogonal 
Arnoldi method applied to S and an M-orthogonal Arnoldi method applied to a 
reduced eigenvalue problem (see Section 2), which helps our understanding of the 
absence of corruption in Hk in the nondefective case and the presence of corruptions 
of Hk due to components in 9 in the defective case. 

Throughout the paper, we consider Arnoldi's method for nonsymmetric prob- 
lems, though if K in (2) were symmetric we would be able to employ the Lanczos 
method, with corresponding simplifications to the theory. 
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The plan of the paper is as follows. In Section 2, we make some theoretical ob- 
servations, and give a theoretical explanation of the B-orthogonal Arnoldi method 
with purification. In Section 3, we explain Ericsson's approach for the defective 
problem and present and analyse our method based on the implicitly restarted 
Arnoldi method with B inner product, followed by purification. We compare Eric- 
sson's approach and our method by a numerical example. In Section 4, we analyse 
the error propagation in JV and g. Section 5 concludes with some comments and 
extensions. 

2. THE B-ORTHOGONAL ARNOLDI METHOD: THEORY 

In this section we make three main theoretical observations. First, motivated 
by the approach in [5] we derive in Section 2.1 a reduced eigenvalue problem in 
Cn rather than the full problem in Cn+m for the case where B has the block 
structure in (2). Second, in Section 2.2 we prove an equivalence result about the 
B-orthogonal Arnoldi method applied to the full problem and the M-orthogonal 
Arnoldi algorithm applied to the reduced problem. Third, in Section 2.3, we discuss 
the reduced eigenvalue problem for the special case where A has the block structure 
in (2). 

2.1. The reduced eigenvalue problem. Using (3), the generalised eigenproblem 
(1) is transformed to the standard eigenvalue problem 

(4) Sx =Ox , x E cn+m , 

that can now be solved by Arnoldi's method. Following Ericsson [5], we first present 
a decomposition of S, when B has the blockstructure in (2). In this case, S has 
the structure 

S A[??] = A[ SI 0 , v 5 Rnxn, S2 Rmxn 

and this leads to a useful reduction to a problem in C7n. Of course SI and S2 
depend on blocks in A1 which are unlikely to be known or be helpful in a practical 
application, so this decomposition of S is only of theoretical interest. Let x = 

( U ) , cn p C Cm, be an eigenvector of S, and so 

S2 0 ' (P ) (V pJ 

is equivalent to 

(5)u Slu = Ou and S2u = Op . 

If 0 ? 0 (which is the case if A is finite), then 

(6) p= 0-1S2U 

is a 'slave' to u and so the reduced problem 

(7) Slu = Ou 

determines precisely the nonzero eigenvalues and corresponding eigenvectors of S. 
Hence, in theory, it is sufficient to solve the reduced problem to solve (4). From 
(5), it follows that the zero eigenvalue of S has eigenvectors of the form (OT,pT)T, 

but these obviously play no role in (7). Note that the theory in [5] which leads to 
Theorem 1 is derived from analysis of this decomposition of S. 
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2.2. The B-orthogonal Arnoldi method and the equivalence theorem. In 
most practical cases we use the B-orthogonal Arnoldi method in a direct attempt 
to solve (4), rather than try to solve the reduced problem, so we first write down 
the method in detail. 

Algorithm 1. The B-orthogonal Arnoldi method 
Given v1 with IV111VB = vH'Bvi = 1. 
for i = 1 to k do 

Compute wi+1 = A-1Bvi. 
Form hji = vjBwi+i, j = 1,.. , i. 
Form wi+1 = wi+1- vjhjiz 
Compute hi+1 i = 11wi+1 |B. 
Let vi+1 = wi+i/hi+,,i. 

end for 
Let Hk = [hji]. 
Compute the eigenpairs (Oj, zj) j = 1,. . ., k of Hk. 
Compute the approximate eigenpairs (Aj, xj) of Ax = ABx with Aj = 10 

and x. = Vkzj. 

The B-orthogonal Arnoldi algorithm is merely the standard Arnoldi algorithm 
with the usual inner product xHy replaced by the semi-inner product xHBy. To 
be precise, the method computes a B-orthonormal basis v1,... , Vk+1 of the Krylov 
space 

ACk+l(Vl, S) = span{vi, Svl, S2v1,... , Skvi}, S = A 1B 

with the matrix Hk = V HBSVk being upper Hessenberg, and V HBVk = I with 
Vk = [vl,... ,Vk]. It looks strange that a singular matrix is used to compute the 
inner product, but as we shall see later in this section, it is a natural thing to do 
for generalised problems of the form (2). The approximate eigenpairs of (0, x) are 
computed from the eigenpairs of Hk in the usual way, see Algorithm 1. Similarly, 
one can use the M-orthogonal Arnoldi method to solve the reduced problem. As we 
now prove, there is a precise connection between the B-orthogonal Arnoldi method 
applied to S and the M-orthogonal Arnoldi method applied to Sl, which we state 
in Theorem 2. We split the proof into two parts presented as lemmas. 

Lemma 1. Consider the Krylov space Ck (Vl, S) with vT = (yTr pT), Yi CE and 
P1 E Cm. Let vT = (yT, pT), V EG ,Ak(Vl, S), then y E ACkk(Yl, Si). 

Proof. Following the block structure of S, 

Pi( yi ) S2yI ) 
and by induction on j = 2,... , k, it follows that 

S3y 
Pi 

( S 
(Pi 

] S2Si1 lYi 

which shows the lemma. F 

Lemma 2. The B-orthogonal projection of Sx = Ox on the space Range(Vk) with 
Vk = [ykT Pk7J Yk E Cnxk, Pk E Cmxk produces the same approximate eigenvalues 
as the M-orthogonal projection of S1u = Ou on Range(Yk). Moreover, the first n 
components of the approximate eigenvectors of S computed by the B-orthogonal 
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projection correspond to the approximate eigenvectors of SI under M-orthogonal 
projection. 

Proof. The B-orthogonal projection of Sx = Ox on Range(Vk) produces (0, x) such 
that 

(8) Sx - Ox 'B Range(Vk) , x E Range(Vk), 

where x 'B y means x H By = 0. Recall that 

S= [ Si ] and B [ O ] 

Decompose xT = (uT,pT) with u E C' and p E Ctm, then (8) is equivalent to 

(Su - Ou 
I B Range(Vk), x E Range(Vk), 

S2U- OP} 

and because xHBVk - UHMYk, (8) can further be reduced to 

S1u - Ou 'M Range(Yk), U E Range(Yk), 

which is precisely the M-orthogonal projection of the reduced problem on 
Range(Yk). 

The following theorem gives the connection between M-orthogonal Arnoldi and 
B-orthogonal Arnoldi and is an immediate consequence of Lemmas 1 and 2. 

Theorem 2 (Equivalence Theorem). If k steps of M-orthogonal Arnoldi applied to 
Si starting with yi E C produces an eigenpair (0, u), then k steps of B-orthogonal 
Arnoldi applied to S starting with vi, given by 

(9) Vi ( i ) 

with qi E Ctm arbitrary, produces an eigenpair (0, x) with xT = (UT, pT). 

I The equivalence theorem shows that solving (4) with B-orthogonal Arnoldi and 
(7) with M-orthogonal Arnoldi for the initial vector chosen as in (9) compute the 
same eigenvalues. The u-component of x corresponds to the computed eigenvector 
of Si. However, the p-component does not play a role in the B-orthogonal Arnoldi 
method and cannot be guaranteed to be correct. The correct p is obtained by 
the slave relation (6), so that if (0, u) is an exact eigenpair of Sl, then, following 

(6), (0l, ( )) is an exact eigenpair of S. If x = ( u ) is computed by 

B-orthogonal Arnoldi, (6) should be computed explicitly. The practical way to do 
this is to apply S to x, since 

Sx=[S2 0 (p )=(S2U ) -1S2U) 

is an eigenvector belonging to 0. In the B-orthogonal Arnoldi method, Sx can be 
computed without extra vector operations with S. The Arnoldi vectors namely 
satisfy the relation 

(10) SVk = VkHk + hk+l,kVk+l?ek 

with ek the k-th unit vector of length k, which is also written as 

(11) SVk = Vk+lHk with Hk = [ hk+Tjke7 ] E 
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Hence 

(12) Sx = SVkZ = Vk+lHkZ 

and since z is an eigenvector of Hk, 

(13) SVkz = OjVkz + hk+l,kVk+le Tz 

This expression was used by Ericsson and Ruhe [6] as a means of improving accu- 
racy in eigenvectors, but Nour-Omid, Parlett, Ericsson and Jensen [10] considered 
especially the case B singular and called the correction of Vkz 'purification', be- 
cause it has the potential for removing significant round-off error components in 
the JV space. Since this is a rather important result for our method, we describe 
why this is so in Section 4. 

Note that the B inner product is not affected by the portions of v; in the nullspace 
of B, since for x = (uT,pT)T and y = (vT,qT)T, xHBy = uHMv. Since B and S 
have the same nullspace, Hk is independent of components of Vk in the JV space. 

There is another way to explain the B-orthogonal Arnoldi method. Since B 
is positive semidefinite there exists a Cholesky like factorisation B = pTp with 
P C RNXN singular. Nour-Omid, Parlett, Ericsson and Jensen [10] point out to an 
equivalence result between B-orthogonal Arnoldi applied to A-1B and standard 
Arnoldi applied to PA-lPT. It appears that with appropriate initial vectors, the 
eigenvalues computed by both methods are equal and that one needs a purification 
step to find the eigenvectors of A-1B in the B-orthogonal Arnoldi method. 

Finally, note that if S1 is nonsingular, the B-orthogonal Arnoldi method applied 
to S would not be expected to compute approximations to the zero eigenvalue of 
S since the method is equivalent to M-orthogonal Arnoldi applied to Si. This is 
essentially the case described in [10]. 

2.3. Application of B-orthogonal Arnoldi to the Navier-Stokes problem. 
Now consider the problem with block structure (2) which provides the main moti- 
vation for this paper. From S = A-1B we have that 

K C l S, 0 l M 0 
LCT O LS2 o 0 L 0 

which yields CTS1 = 0. Also, since C E R7xm is of full rank, Si E Rnxn has 
at least m independent left null vectors and so, rank(S1) < n - m. Since A is 
nonsingular, rank(S) = rank(B) = n. Since S2 E Rmxn, rank(S2) < m, and, since 
rank(S) < rank(SI) + rank(S2), 

rank(Si) ? rank(S) - rank(S2) > n - m 

so, rank(SI) = n- m. Clearly, the nullspace of SI, API say, has dimension m, and 
the range, ,Z1 say, has dimension n - m. Note that for u E iZ1, it can easily be 
shown that CTU = 0 and this agrees with the second equation in (2). 

We can now be more precise about the link between Si and S as follows. For u 
and x defined as Slu = Ou and Sx = Ox, 

(14) uER X x u E 4 

and 

(15) uac E ( )E5 
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Equivalence (14) follows from (5) and (6), and (15) follows from the fact that 

S ( Slu ) 
0 
2 

and thus 

s2 (U ( S2u ) = (U 
0 ~O A\S2Slu J o 

Since S1 has an eigenvalue zero, M-orthogonal Arnoldi (and B-orthogonal Arnoldi) 
may compute the zero eigenvalue in practice. Nevertheless, if Yi E lZ1, 

kk (Sl, Yl) C ki 

and so in exact arithmetic, the zero eigenvalue cannot be computed. Yi E R, can 
be achieved by Yi <- Sly,. To apply B-orthogonal Arnoldi to S, one should start 
with vl, given by (9). This is achieved by vi <- Svl, since 

SV1 = S (i ql ) (SiYl 

Note that then in exact arithmetic ICk(S, SV1) C R + K. Of course, in practice, 
round-off errors cannot be avoided and in the following two sections we derive and 
analyse a new approach to mitigate the effect of round-off for this problem. Ericsson 
[5] even suggests to start with v1 <_ S2v, E R. 

3. THE B-ORTHOGONAL ARNOLDI METHOD: PRACTICE 

In this section, we describe the Ericsson approach [5] and present a new approach 
which under certain conditions significantly reduces the effects of errors in g and 
K. The approach is based on a combination of the implicitly restarted Arnoldi 
method of Sorensen [13] with B-inner product and purification. 

3.1. The Ericsson approach. Ericsson showed that in finite precision arithmetic 
Hk can be corrupted when S has a generalised nullspace g, even when v, E 1Z. 
Although spurious eigenvalues might be computed, the computed eigenvectors can 
easily be mapped in RZ by applying S twice instead of once. This procedure leads to 
uncorrupted eigenvectors. But of course, the spurious eigenvalues remain unaltered. 

The application of S2 to x can be carried out implicitly by two 'purification' 
steps. From (12) 

S2X = S(Vk+lHkz), 

and one further step of the Arnoldi process is needed to calculate Vk+2 and the 
last column of Hk+1, in order to apply S2 efficiently to all eigenvectors. Hence, 
following the recurrence relation (11), 

(16) Sx = SVk+lHkz = Vk+2Hk+lHkZ 

The Ericsson algorithm is thus as follows. 

Algorithm 2. The Ericsson purification for the defective case 
Given the initial vector v1 <- S2vl. 
Compute in k steps of B-orthogonal Arnoldi the matrices Vk+l and Hk. 
Compute the eigenpairs (0j, zj) of Hk. 
Perform one more step of Arnoldi: compute Vk+2 and the last column of Hk+l? 
Compute the eigenpairs (Aj, xj) of Ax = ABx as Aj =0 1- and xj = Vk+2Hk+lHkzj 
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3.2. A new approach. In order to present the details of our method, we need first 
to understand the steps of the implicitly restarted Arnoldi method by Sorensen [13], 
and to do this we present the following theorem, which is a compilation of results 
from [13], but is stated and proved here for completeness. 

Theorem 3. Let vl,... ,Vk+2, Hk+1 F hk+2 1 be computed by B- 

orthogonal Arnoldi applied to S. Consider the QR factorisation Hk+l = Qk+lRk+1 
with Qk+I 

E Ck+2xk+l unitary and Rk+1 E Ck+lxk+l upper triangular. Let Qk be 
the k + 1 x k upper left part of Qk+I and define 

Wk+1 = Vk+2Qk+l and Gk = Rk+lQk E Ck+lxk 

If Hk+I has nonzero eigenvalues, then Wk+I and Gk have the following properties: 
1, WH+ BWk+l = I. 

2. span(wl,... ,Wk?1) = span(Svi,** , SVk+ 1)v 

3. Gk is upper H-Iessenberg and for Wk?l = [Wk Wk+1], 

SWk = Wk+lGk 

with W1= SVIIIISV11 IB 

Proof. (See also Sorensen [13].) The proof of statement 1 is easy and is omitted. 
Hk+1 and Vk+2 are computed from 

SVk+l = Vk+lHk+l + Vk+2hk+2,k+lek+l 

(17) = Vk+2Hk+1 i 

and replacing Hk+1 by its QR factorisation, we obtain 

(18) SVk+l = Wk+lRk+l 

If Hk+I has nonzero eigenvalues, then rank(Rk+1) = rank(Hk+1) > rank(Hk+l) = 

k + 1, and thus rank(Rk+l) = k + 1. Hence, 

(19) Wk+1 SVk+1Rk+ 

which proves statement 2. 
Let Wk be the first k columns of Wk+1, then Wk = Vk+lQk. Multiply (18) on 

the right by Qk, then 
SWk = Wk+lGk 

with Gk = Rk+lQk. It is well known (see Sorensen [13]) that if Hk+j is upper 
Hessenberg, Qk and Qk+I are upper Hessenberg too, and therefore 0k is upper 
Hessenberg. Since w1 is the first column of (19), 

WI = Svlrlll = vr11 

and since lW1FIB = 1, r1ll =SV1FIB? 

In other words, the theorem says that Wk+1 and Gk can be viewed as having been 
computed by the B-orthogonal Arnoldi method with starting vector Sv1 / II Sv1 IIB, 
which is exactly what we wish to do, but is accomplished implicitly by the QR 
factorisation of Hk+1. 

In Algorithm 3 we write down the different steps that are needed to perform one 
implicit restart step. Our approach consists of three stages 

(1) the computation of Vk+2, 
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TABLE 1. Schematic representation of the flow of the error compo- 
nents in K and g by implicit application of S using first implicitly 
restarted B-orthogonal Arnoldi and then purification (Here the no- 
tation Vk+2 (K, g) means that Vk+2 contains components in AP and 

g) 

stage 1 (B-orthog. Arn.) Vk+2 (K , ) Hk+1 ( ) 
implicit S : IJ i i 

stage 2 (implicit restart) Wk+l({O}, ) Gk 
implicit S: 1 i 

stage 3 (purification) xi ( {O}) 

(2) an implicit application of S to Vk+1 (achieved by the QR step for Hk+1), 

which has the effect of removing the K portion of Vk+1 and mapping the g 
portion into K, 

(3) the purification of Wkz that achieves the removal of the remaining K' com- 
ponent (which is a second implicit application of S). 

Table 1 gives a schematic representation of the impact of these implicit applications 
of S on the K and g components of Vk+2, Wk+1 and Wkz, and on the Arnoldi upper 
Hessenberg matrices Hk+1 and Gk. We assume that Vk+2 has components in K 
and g which we represent by Vk+2 (JP, g) and we trace the propagation of these 
components through the 3 stages of Algorithm 3. We see that Gk and the purified 
xj do not depend on K and g components. 

Algorithm 3. Implicitly restarted B-orthogonal Arnoldi with purification 
Compute in k + 1- steps of B-orthogonal_Arnoldi the matrices Vk+2 and Hk+1. 
Compute the QR factorisation Hk+j = Qk+lRk+l- 
Perform one restart: Wk+1 = Vk+2Qk+l Gk = Rk+lQk. 
Let Gk be the k x k upper part of Gk. 

Compute the eigenpairs (0j, zj), j = 1, . . . , k of Gk. 

Compute the eigenpairs (Aj, xj) of Ax = ABx as Aj = 01 and xj = Wk+j GkZj . 

3.3. Numerical example. In this section, we compare the Ericsson approach for 
the defective case and the implicitly restarted Arnoldi method with purification for 
a small example. Consider the matrices A and B generated using the following 
Matlab code. 

rand('seed',1); n=200; m=100; 
C = [rand(m,m) ; zeros(n-m,m)]; 
K = rand(n); 
A = [K C ; C' zeros(m,m)]; 
B = [eye(n,n) zeros(n,m) ; zeros(m,n+m)]; 

The rightmost eigenvalues of Ax = ABx are 49.9129, 2.7017, 2.2521 ? 1.4533i and 
2.0517, and all eigenvalues satisfy 

(20) -3 < Re(A) < 50 . 
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TABLE 2. The growth of JV and g components of the vectors vj, 
computed by B-orthogonal Arnoldi, for the example in Section 3.3 

Ij [ PAP,Vvj2 [ lPgVj2I 

1 3.4 10-1 2.57 10-12 

2 5.70 10`1 1.52 10-11 
3 1.57 10-8 3.1010-10 
4 3.88 10-7 6.24 10 9 
5 1.06 10-5 1.43 10-7 
6 2.78 10-4 3.26 10-6 
7 6.73 10-3 6.94 10-5 

8 1.80 10-1 1.66 10-3 

9 4.34 100 3.61 10-2 
10 7.70 101 5.88 10-1 
11 1.20 102 8.05 10-1 

To compute a few eigenvalues, we used S = (A - 60B)-1B. It is easy to check that 
for this example, S has the block form 

S= O S22 0 

S31 S32 ? 

where S22 E Rn-mXr-m and S31 E RmXm are nonsingular. Then 

g:= { ( O )Ztl e Cm}, K := { ( ) P Cm} and 

gzR { u_ |u 

E 
Cn- 

} VS32522l1 

Hence, for any vector y, the size of 

K 

and 
g 

components can be measured by 
calculating IIPXY112 and IlPgyI12 where 

PNg [0 -S32S22-1 Im] E Rmxn+m 

Pg = [I 0 0]? ERmxn?m 

In practice we first normalise so that IPAIH2 = IPg H2 = 1. For all runs we selected 
the initial vector as 

VI = S2[1, ... ., I]T E R. 

One would expect that the eigenvalue 49.9 would be found in a few Arnoldi steps, 
since it is clearly much closer to the shift, ae, than any other eigenvalues. Besides 
the rightmost eigenvalue, we find that a number of spurious eigenvalues are also 
computed that do not satisfy (20). 

We first illustrate the growth of the JV and g components of the Arnoldi vectors 
in finite precision arithmetic by the measures IfPgVj 112 and IIPgVj 112 in Table 2. As 
recommended in [5] we choose a starting vector in X, but even then the corrupting 
effect of round-off is clearly seen. Recall that in exact arithmetic, if v1 E XR, then 
VI,* i..iVk+I E R- 
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TABLE 3. Numerical results for the Example in Section 3.3 for 
B-orthogonal Arnoldi with double purification step (Algorithm 2) 

k =10 | 

ij11 A3 IIPAv(Vkzj)l | lPg(VkZj)fl IIPArXrXj I |PgXj | 
1 49.9 7. 10-13 5. 10-14 7. 10-13 5. 10-4 
2 2.2 + 1.2i 3. 10-3 2. 10-5 2. 10-12 4. 10-4 

9 -1.9 - 1.0i 4. 10-3 3. 10-5 7. 10-12 2. 10-13 
10 -32.2 4. 10-3 3. 10-5 9. 10-1 2. 10-13 

k= 15 

J Aj IIPA(VkZj)Hl ||Pg(VkZj) l IIPAvxiH | lPgxj3| 

1 49.9 7. 10-13 5. 10-14 7. 10-3 5. 10-4 
2 3.0 + 1.li 3. 10-3 5. 10-14 2. 10-12 5. 10-14 

14 -2.3 - 1.0i 4. 10-3 5. 10-14 5. 10-12 9. 10-14 
15 -1. 1012 3. 10-3 5. 10-14 5. 10-4 3. 10-14 

_ k = 20 _ 

J Aj IIPA(VkZj)Hl ||Pg(VkZj) l IIPAX - II ||Pgxj || 

1 49.9 7. 10-13 5. 10-14 7. 10-3 5. 10-14 
2 3.0 + 1.2i 4. 10-3 5. 10-14 1. 10-8 5. 10-14 

19 -1. 106 4. 10-3 5. 10-14 5. 10-7 4. 10-14 

20 -1. 1012 4. 10-3 5. 10-9 5. 0-3 6. 10-14 

Let us now discuss the results for Algorithm 2, which is the B-orthogonal Arnoldi 
method with two purification steps using (16). Consider first the results in Table 3 
for k = 10. We see that A1,2,9 satisfy (20) and in fact correspond to finite eigenvalues 
of Ax = ABx. As we mentioned before, the eigenvalues obtained from Algorithm 2 
can be spurious since they are precisely those of the upper Hessenberg matrix Hk 

computed by B-orthogonal Arnoldi without purification. However, the purified 
eigenvectors lie in the correct space. We see that A1o = -32.2 is spurious since 
A1o < -3, but IIPAxioll - 10-10 and Pgxioll - 10-13. Note that the unpurified 
eigenvectors VkZj have significant components in K and g. The practical effect of 
the implicit application of S2 in the purification step given by (16) in the presence 
of large error components in the Arnoldi vectors is striking (cf. Table 1 in [10]). 
However, this purification can fail. For example, with k = 20, the purified X20 still 
contains a significant component in K, which is represented by IIPgX2oII - 10-3. 
We shall see in Section 4 that this is due to the fact that 1A201 (- 1012) is large. 
Similar conclusions hold for k = 15. 

Now consider the results for IRA plus purification (Algorithm 3) in Table 4. 
First consider k = 10. After k + 1 = 11 steps of the B-orthogonal Arnoldi method, 
we have IIPgV12 12 - 2. 103 and IPgVl2I2 1 1. 100. After one implicit restart, 
IIPAWl1l2 -- 2.103 and is essentially unchanged, but [P9gW1II2 - 3.10-9. By 
the implicit operation with S, the K component of Vk+2 is wiped out and the g 
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TABLE 4. Numerical results for the example in Section 3.3 for 
implicitly restarted Arnoldi with B-orthogonalisation and purifi- 
cation 

k= 10 

IPAIVk+2112 
- 2.103 |PgVk+2112 - 1. 100 

11PgWk+1112 - 2.103 IPgWk+1112 
i0 3.109 

IRk-112 c 9. 102 
)j 0 Aj II_P_Xj 11 lP5gxjl| 

1 49.9 7. 10-14 5. 10-14 
2 2.2 + 1.3i 2. 10-11 6. 10-14 

10 -2.3 - 1.li 5. 1011 1. 10-13 

k = 15 

11PAIVk+2112 - 1. 109 lPgVk+2112 - 1. 100 

IIPArWk+l112 - 1. 109 lPgWk+?112 - 2. 10-2 

k-1 112 6._109 
j + Aj IIPAXjXfl llpgxj | 

1 49.9 7. 10-13 5. 10-4 
2 2.9 + 1.2i 5. 0-5 5. 10-14 

15 -2.3 - l.i 1. ii4 8. 10-14 

k = 20 

IIPFVk+2112 
- 7. 101 IlPQVk+2112 - 1. 101 

IIPHWk+1112 - 7. 1010 IlPgWk+1112 Z 1.101 

k11112-- 4. 1011 

_ + A [PAXz 11 |lPgxj || 

1 49.9 7. 10-13 5. 10-14 
2 2.9 + 1.2i 1. 0-7 5. 10-14 

19 -2.3 - lI.i 8. 10-7 9. 1o-14 
20 -2.2 109 4. 0-3 6. 10-14 

component is mapped to the K component of Wk+1. All the computed eigenvalues 
satisfy (20). The purified eigenvectors have small K and g components. Even 
though Wk+1 has small g components Gk is not affected by components in K 
and 9, and the purified xj has small K and g portions in spite of large K and g 
components in Vk+1. 

For k = 15, the eigenvalues are not spurious since they satisfy (20), but the 
eigenvectors have components in the JV space of the order of 10-4. This follows 
from the fact that the implicit restart did not remove the g components in Wk+1 
well. Spurious eigenvalues did not appear, which shows, at least for this example, 
the superiority of Algorithm 3 over Algorithm 2 for the calculuation of eigenvalues. 
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Now consider the performance of IRA plus purification for k = 20. For k = 20, 
the IRA-step was not able to dramatically reduce the 9-component of Wk+?. As a 
consequence, Gk produces a spurious eigenvalue A20. Also the purified eigenvector 
x20 has a 'large' component in V. We shall see in Section 4 that the failure of 
IRA is due to the fact that lR;-j41 fl is large. On the other hand, remark that the 
purification step in Stage 3 of Algorithm 3 did succeed in the sense that the 9 
component of x1 is wiped out. 

4. ROUNDING ERROR ANALYSIS 

It is clear that in exact arithmetic, the implicit restart and the purification oper- 
ations implicitly perform multiplication by S. In this section we provide a detailed 
analysis of the effect of round-off error in several of the important operations when 
S satisfies Theorem 1 and assuming that the relative round-off errors on the calcu- 
lation of Sv3, the Gram-Schmidt orthogonalisation and QR factorisation are much 
smaller than 1. To be precise we shall discuss the following results 

(a) the JK and 9 component in vj may increase as j increases; 
(b) the purification operation (12) produces an approximate eigenvector with no 9 

component but which may have a component in JK arising from a g component 
in the unpurified vector. Similarly (16) produces an approximate eigenvector 
with no JK and 9 component. Both purification steps may fail when IO 1 > 
6-j where EM denotes the machine precision. 

(c) one implicit restart in B-orthogonal Arnoldi produces a Gk that is not cor- 
rupted by JK or 9 components, and a Wk+1 which has no 9 component. This 
IRA-step may fail when IIR41l ? 6M. 

The combination of the results in (a) and (b) produce the rounding error analysis 
for Ericsson's method (Algorithm 2), which we state as follows. 

Rounding Error Conclusion for Algorithm 2: 
i. The B-orthogonal Arnoldi method can produce spurious eigenvalues in Hk. 

ii. The eigenvectors purified using (16) have no significant components in JK and 
9 if the corresponding eigenvalues of Hk are much larger than the machine 
precision. 

The combination of the results in (b) and (c) produce the rounding error analysis 
for our proposed method (Algorithm 3): 

Rounding Error Conclusion for Algorithm 3: 
i. If IIR-1 I one implicit restart in B-orthogonal Arnoldi with purifica- 

tion using (12) produces a Gk uncorrupted by 9 or JK components with the 
consequence that no spurious eigenvalues are found. 

ii. In addition, the eigenvectors purified using (12) have no significant compo- 
nents in JK and 9 if the corresponding eigenvalues are much larger than the 
machine precision. 

(Note that, as in all analyses of round-off error, statements like removes the JK 
components in the computed eigenvector should really be interpreted as removes 
the significant parts of round-off error in the JK components in the computed eigen- 
vector.) 

The numerical results in our example agree with these statements, and we now 
proceed to justify them. We introduce the projectors 'PR, )PA, and Pg that map a 
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vector into R, JV, and 9 respectively, and so an arbitrary vector x can be decom- 
posed uniquely as x = 'PRx + 'PAx + Pgx. Note that 

(21) PAS = SPg and PgS = O. 

Throughout this section, round-off errors are denoted by Greek characters, the 
machine precision is denoted by 6M. 

Basic linear algebra operations in finite precision arithmetic. The basic operations 
that we use are matrix-vector multiplication, the solution of linear systems by 
Gaussian elimination, the Gram-Schmidt orthogonalisation and the Householder 
QR-factorisation. From classical round-off error analysis, we know that c = xTy 
with x, y E IR!, computed in finite precision arithmetic by the classical dot-product 
algorithm (see Algorithm 1.1.1 in Golub and Van Loan [7]), results in 

c= Xy + ( with 1(1 <_ lIX11211YI12EM + O(M) 
see Formula (2.4.10) in Golub and Van Loan [7]. A natural extension is the calcu- 
lation of y = Fx with F E R"1, x E R1 and y C Rm by the dot-product matrix 
vector multiplication Algorithm 1.1.3 in [7], such that 

Y = Fx + s with 11112 < 111FIlFIIx112EM + O(6M) ? l3/2IIFII2IIxII26M + O(6M) 
This formula is valid for full matrices F. If F is sparse, the factor I in the bound 
for 11112 should be replaced by the maximal number of nonzero elements in a row of 
F. An extension to the matrix-matrix product X = ZY with Z c Rtmxl, y E RlxP 

and X C RmxP by the dot-product matrix-matrix multipliciation Algorithm 1.1.6 
in [7], is 

X = ZY+_ with 11112 ?< IIZIIFIIYIIFEM+O( M) ? I3/2IIzI211yIIFEM+o() - 

Consider now the errors generated by Gram-Schmidt orthogonalisation and the 
solution of linear systems. We shall not give rigorous upper bounds for these op- 
erations, since this is not the goal of this paper, but merely assume that these 
operations produce small relative round-off errors. For the analysis of the error 
propagation in the solution of linear systems by Gaussian elimination with par- 
tial pivoting, we refer to Golub and Van Loan [7, Equation (3.5.2)]. Bjorck [1] 
has shown that the modified Gram-Schmidt orthogonalisation of a set of vectors 
Wk = VkRk produces a Vk with 

VkTVk = I + F with IFH112 < Ty6M I2(Wk) , -y = 0(1)- 

To increase the numerical stability of the orthogonalisation process, one often 
uses modified Gram-Schmidt with reorthogonalisation [4] or even orthogonal trans- 
formations [14]. The Householder orthogonalisation of Wk produces a Vk with 
j11kJ12 < -Y6M. We furthermore assume that IlWk - VkRkHI2 < wEMIIWkH12 with 

w = 0(1). We shall not give rigorous upper bounds for the B-orthogonalisation of 
a set Wk, but merely assume that after this operation, 

Vk[BVk = I + F with ll1ll2 ?< 76M and y= 0(1), 

IlWk - VkRk 112 < wE6MIjWkjj2 with w = 0(1)- 
Finally, to simplify the error bounds, we shall use an upper bound for JllA l2 

where Hk is defined by (11). Since B is positive semidefinite, there always exists 
P C CNXN such that B = pTp. Since 

Hk = VklBA BVk = (PVk?l)TPAlPT(PVk) 
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and VjT+IBVk+l (PVk?l)T(PVk+l) = I implies that IIPVk+l112 = 1, it follows 
that 

(22) flHkIJ2 < fISI12 with S = PA-1PT. 

Note that S and S have the same eigenvalues, but different eigenvectors. Also note 
that flHk HF ? VkfHkfl2 ?< \kiifSl2. 

We shall now proceed with the justification of the three statements above. 

4.1. Proof of (a). We shall not derive rigorous upper bounds for the error growth 
in the Arnoldi process, since this is not the objective of the paper, but rather express 
the errors of the purification and the implicit restart in terms of errors obtained by 
the Arnoldi process (cf. analysis in [10]). This is also motivated by the fact that 
these errors depend on many factors like the sparsity of A and B, the matrix-vector 
multiplication used, the linear system solver, and the orthogonalisation process. 
The (computed) Arnoldi vector vj+l satisfies the following relations 

(23a) hj+?,jvj+l = Svj- hijviv + j, 
i=l 

(23b) hij = v[TBSvj + 8ij 

(23c) vTTBvj = I?+ij, j=1,...,i+1. 

The rounding errors V) E IR' and 8ij,-yij E R arise from the matrix-vector mul- 
tiplication by B, the solution of linear systems with A and the Gram-Schmidt 
orthogonalisation of Svj. In block form, the equations (23) are written as 

(24a) Vk+lHk = SVk + Tk+1, 

(24b) V-iBVk+l = I + Fk+1 

(24c) Hk = Vk+lBSVk + Ak- 

The norms llhk+1112, 111k+?1l2 and flAkJl2 characterise the round-off errors in the 
Arnoldi process. In the following, we assume that 11lAkHI2 ?< fHkfl2 < IASIL2, 
ll'k+?1l2 ?< 11S12 and 111k+1l12 <K 1. This automatically assumes a proper im- 
plementation of the B inner product, such that xTBy is unaffected by any K 
component in x and y. 

The portion of vj+l in JV and g is found by applying the projectors Pg and Pg 
to (23a) and using (21) 

hj+?,jPAvj+l = SPgvj - hj hPAvi + PAVj, 
i=l 

hj+i,j'Pgvj+l = hijPg vi + Pg45 .j 

Whatever the sizes of JlPAjJJ and JlJPgjJJ, there is no reason to assume that 
1l1Pvv?+l1 and lJPgvj+1JJ do not grow. 

4.2. Proof of (b), single purification by (12). The purified xj computed by 
xj = Vk+lHkZj with WJZjfl2 = 1 satisfies 

(25a) 7PAgxi/Oi = O I(SPgVkzJ + PA j) 

(25b) Pg/xj/Oj = O-1Pgj 
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with 

(26) II&112 K 3k / |lVk+l1IF1lSI12eM + I1|k+1112 ? O(M) 

Observe that Ill consists of small terms compared to xj. Note that if IlZiII2 = 1, 
then IlVkZjIIB 

- 1, and flXjIIB flVk+lHkZjglB ? Oj. Thus, by dividing the left- 
and right-hand side in (25) by Oj, we obtain the relative contributions of the g 
and g spaces in xj. Clearly, if Oj is small, the right-hand sides in (25) are large, 
while the left-hand sides remain of order 1. In this case, purification can fail. On 
the other hand, if Oyl -l jj 11 is small compared to 1, the .Af component in xj mainly 
arises from the g component in VkzJ and the 9 component in xj is wiped out. 

Proof. The purified xj := SVkz3 computed by (12), satisfies 

(27) X= Vk+lHkZj + Wj 

with Vk and Hk satisfying (24), and where irj is the round-off error arising from the 
computation of (12). Hence, xj = Vk+l(HkZj + 7F') + 7r" with jr= Vk+?1T ? Ji, 

where 7rr and r"! are the round-off errors for the calculation of HkZj and Vk+1 (HkZj) 
respectively. With flzj 12 = 1, we then find using (22) 

I7rT 112 < kIfHkIIFfIIZj2eM + O(E2) < k3"2 / |Sf2EM + O(62M) 

Iw "112 < (k + 1)lVk+lIlFIIHkZjl2eM + O(eM) 

< (k + 1)||Vk+I ||F||9|2IEM + (M) 

Thus, 
||7rj 12 < (k3/2 + k + 1)IVk+1?|IF||Sl2EM + O(EM) 

Observing that k3/2 + k + 1 < 3k3/2 for k > 1, we get the first term in (26). At first 
sight, it is not obvious why (27) provides the necessary cancellation of spurious 9 
components, but this is in fact easily shown: from (24a), it follows that 

(28) SVkZj = Vk+lHkZj - 'k+lZj 

and by combining (27) and (28), we obtain xj = SVkzj + (j with j = 7rj + ''k+lZj 
and IIXj 12 bounded by (26). Hence, using (21), 

'PAXi X PASVkzj + 'P j = S5PgVkZj + Pg 

'gX3 = PgSVkZj + 'Pg5t 'Pg= j 

From these equations, (25) follow. D 

4.3. Proof of (b), double purification with (16). The purified xj computed 
by xj = Vk+2Hk+lHkzj with |lZj 112 = 1 satisfies 

(29a) 

I1jpXj//0jI2 < 2 1l(21 (11PMk+211211S112 + jj'PIF'k+1jj2jjSjj2 + jIT\nlFj 112), 

(29b) 

1lpgXj1/02112 < 
- 

1(11'Pg'k+2ll2lS1l2 + LPgrFrj 12) 

with 

(30) Il1FjI12 < 4(k + 1) I / Vk+211lFlIl 2eM + O(eM) 
Note that if |lZj|12 = 1, then llVkzjIlB c 1, and |lXjllB 1lVk+2Hk+lHkZjllB j2- 
Thus, by dividing the left- and right-hand side in (25) by 0j2, we obtain the relative 
contributions of the X and 9 spaces in xj. Clearly, if Oj is small, the purification 
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does not work. Observe that both the JK and g components in Vkzj are wiped out if 
j72 is small compared to 1. 

Proof. We first observe that xj S2Vkzj is computed in finite precision from (16) 
such that 

Xj = Vk+2Hk+lHkzj + ifj - 

Similar to the proof of (26), we find that for IIzj 112 = 1, 

||ri 12 < (k3/2 + (k + 1)3/2 + (k + 2))IIVk+2IIFIISII2M + O(E)2 

Observing that k3/2 + (k + 1)3/2 + k + 2 < 4(k + 1)3/2, (30) follows. From (24a) it 
follows that 

S kZ3 Vk+lHkzj - SFk+lZj 

= Vk+2Hk+lHkzj -Fk+2HkZj - SIk+lZj 

Hence 

Xj = Vk+2Hk+lHkZj + jr= S2VkZj + Xk+2HkZj + SFk+lZj + Fj, 

from which (29) follow. O 

4.4. Proof of (c). After the implicit restart, 

(31a) |PgVWk+1l2 < IISIPgVk+111211Rj41l2 + llPPfJk+112 + O(cM) 

(31b) fIPgWk+1lI2 ? IPg Ifk+l2 + O(1) v 

flGk-Wk7+IBSWkII2 < (2(k + 2) / IfVk+22IIFlPII2 + w + y + (k + 2) )ISII2EM 

(31c) +IAIAIk+I2+ O(c2 ) v 

with w, y O(1) and 

|Ik+1||2 <(k + 2) / IIVk+211F6M 

+ {wfIVk+2II2 ISII2CM + IVIk+2II2} IIRk+'112 + O(,6) 

Observe that the right-hand side of (31c) consists of small terms, such that Gk 
WkT+1BSWk. The right-hand sides in (31a) and (31b) are small if IIRf-1112 is 
small. If IIRZ-11112 1, Wk+j has no significant component in 9 but still con- 
tains significant components in K coming from the 9 component of Vk+2 (see the 
first term in the right-hand side of (31a)). The action of the B-inner product in 
WkT+1BSWk eliminates any contribution from the JK component of Wk+?. Hence, 
since Gk WkT+lBSWk, Gk is free from significant errors in K and 9. 

If IIR4-1112 is large, then II_kII2 > EM and Wk+j can have large components in 
9. Hence, Gk WkTBSWk is corrupted by the 9 components of Wk which can lead 
to spurious eigenvalues. 
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Proof. Let the QR-factorisation of Hk+j (in finite precision arithmetic) be 

(32) Hk+1 = Qk+lRk+l + Qk+1l, Qk+lQk+1 = I + Fk+l, 

with Qk?1 E k+2+k+1, f4k?1 C kk+lxk+l Qk+1 e rk+2xk+l r C Rk+lxk+l 

and 

(33) Wk+1 = Vk+2Qk+l + Hk+1 

with Hk+1 C R XNk+l. Following the introduction on basic matrix operations, we 
assume that 

IIQk+1112 ? W)IHk+1jj26M < WIISI26M , w = 0(1) 

IIFk+?1112 < YEM 

|1Ikl?112 < (k + 2)IjVk+2jjFIIQk+lIIF6M < (k + 2) I lVk+2IIFEM + O(6E) 

Note that we assume here that Vk+2Qk+l is computed as the product of two ma- 
trices by the dot-product algorithm. In practice, one would rather use a factorised 
form in terms of Givens or Householder transformations, which would give another 
bound. 

The extension of (24a) is 

SVk+1 = Vk+2Hk+l - Tk+2 

and by applying (32) and (33) in that order, 

(34) SVk+l = Vk+2Qk+lRk+l + Vk+22k+l - Xk+2 

= Wk+lRk+l - lk+1Rk+l + Vk+2Qk+l -k+2 

so 

Wk+j = SVk+lRk1l + k+1 

with 6k+1 = 1k+1 - (Vk+2k+l -k+2)Rk+l- Thus, using (21), 

'PWk+l = PvSVk+lR-1 + Pfk = SPgVk+lR41 + Pgk+l 

PgWk+1 = 'PgSVk+lRk+l + k = Pgk+1 

The analysis for Gk is given next. In the implicit restart step, Gk is computed (in 
finite precision arithmetic) as 

Ok = Rk+lQk + Zk, 

with Qk E Rk+1xk and 

lIIkII < (k + 1)IIRk+lIIFlIQkIIFEM < (k + 1)1/2IS12VkIEM < (k + 2) 11S1126M 
if Gk is computed by the dot-product matrix-vector multiplication instead of using 
orthogonal transformations. By applying (32), (24c) and (33) in this order, 

Gk Qk+lHk+lQk - rk+lRk+lQk - Qk+lQk+lQk + Zk 

= Qk+l Vk+2BSVkl Qk + Qk+lAk+lQk - Fk+lRk+lQk 

Qk+lQk+lQk + Zk 

= Wik+ BSWk -Q v+lV2BSIIk- I k+l BSWk + Qk+lAk+lQk 

-]Fk+lRk+lQk - Qk4lQk+lQk + Ek 
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IlH+I- BSWkfl2 can be bounded by 

111-IBSWkWI2 Jl (PHk+l)T PA-lpT(pWk) 112 

< flPHIk+lJl2Jl2l2 < (k + 2)3/ JVk+2JJFJlPJl2JJSJl2M + O(M) 

Note that flPWkfl2 = 1, since WkTBWk I. There is a similar bound for 

TQ7 [VT2BSHkII2. Hence 

flGk- Wk+VlBSWkII2 < 2(k + 2)3/ JVk+2JJFJlPJl2JlSJl2EM + 11lAk+1112 + 'yfljS12 

+WJJSf12EM + (k + 2) flSfE + O(6M) ? 

The final, and for this paper the most important, result concerns the round- 
off error in the implicitly restarted B-orthogonal Arnoldi method with purification 
(Algorithm 3), and is given by the 'Round-off Error Conclusion' at the beginning 
of this section. The proof consists of combining the arguments in (b) and (c) and 
is omitted. 

4.5. A test for spurious eigenvalues. The preceding error analysis and the 
numerical results for k = 15 and 20 in Section 3.3 show that numerical problems 
can occur when IfI l 1 and/or 10. -1 are very large. We show an important relation 
between these two quantities in the following theorem. We complete this section 
with a discussion on the advantages of Algorithm 3 over Algorithm 2. 

First note that in exact arithmetic Rk+1 = Qk+2Vk+2BSVkl and, since S is 
singular, it is certainly possible for Rk+1 to have small or zero singular values. 
Second, there is a connection between IIR-j11112 and the small eigenvalues of Hk+l. 

This is given by the following theorem. 

Theorem 4. Suppose that Hk has k independent eigenpairs, denoted by (0j, zj) 
with IlZj 112 =1 j= 1... , k. Define the residual semi-norm 

pj = ||SVkzj - OjVkZj JIB 

Then 

(35) flR-1 112 ?/ min oj?2 +p 

Proof. Since IIR-1 l12 = 1/0min with Cmin the smallest singular value of Rk, we shall 
derive an upper bound for 0min. From the definition of 0min, one has 

c0min< ? RkZjfl2 = flHkZj 11f2, flZjl2 1 

Also, from the recurrence relation (10) it follows that 

SVkZ3 - O3VkZ3 SVkZ3 - VkHkZ = hk+l,kVk+leT Zj 

and with |JVk+?1lB = 1, pj = hk+l,kleTzj . Hence 

( Oj zj (Io 2+ )12 F 
flHkZJf|2 ( hk+l?,keTzJ 1 2 

The relation (35) provides a lower bound for IIR-l11l2. It is clear that if the 
eigenvalues of S are computed accurately, the smallest eigenvalue of Hk+1 can 
provide a sharp lower bound for lR41 f l1 2. This also explains that both a small Oj 
and a large tRk-+ 11f2 often occur in tandem. This observation is important because 
it indicates that failure of IRA and purification often occur together. However, 
there is a subtle distinction between failure of purification and IRA. Purification 
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fails only for those eigenvectors xj corresponding to small eigenvalues Oj, since the 
accuracy of the purification only depends on 07 1. Corruptions emerge in IRA, when J 
max (lo-ll ) is large, and will affect all the eigenvalues and eigenvectors. This is 
clearly a disadvantage of the IRA-approach. Nevertheless, we have several reasons 
to prefer Algorithm 3 over Algorithm 2. 

First, if HJR-11l112 is small, Gk does not produce spurious eigenvalues. This is not 
the case for the Ericsson approach as was shown by the example in Section 3.3, 
since, in fact, Hk is not 'purified' at all. Second, it is easy to check when spurious 
eigenvalues might emerge in IRA by monitoring IRk-1 112 for succeeding values of 
k. Such a test is quite cheap. A similar test for the Ericsson approach is not 
provided. Of course, it is possible to check possible failure of purification for a 
specific eigenvector xi by looking at lOSl-K. 

The analysis in this section, shows the importance of a small ll4'k+l 112 in (24a), 
i.e. assumes accurate matrix-vector operations with S and Gram-Schmidt orthogo- 
nalisation implemented with care. This emphasises the need for a robust reorthog- 
onalisation strategy. Finally, the choice of initial vector v, in 7Z can help in the 
reduction of IIR4-1112, since in exact arithmetic, if v, E 'R, then Vk+2 E 'R, and 
thus 

IIR1kl 112 = 1/Jmin(Qk+2Vk+2 (BS) IlzVk+l), 

where (BS)IlR is the restriction of BS over RZ. Since (BS)liz is not singular in R, 
1R41+1112 should not be large, in general. 

5. CONCLUSIONS 

We end this paper with a summary of the main points and some brief comments 
on related work. 

The main conclusion to draw is that the Algorithm 3 which does two implicit 
multiplications by S, is less susceptible to round-off errors than the algorithm in Er- 
icsson [5] for the shift-invert operator S derived from problems with block-structure 
(2). Possible severe corruption can be detected by monitoring I R-1+I 2. In fact, 
Algorithm 3 requires two fewer matrix-vector multiplications than the one in [5] 
(since Algorithm 3 needs no pre-multiplication of the initial vector v1 by S2) with 
the only (minor) addition of the QR-step for Hk+I and the formation of Wk+?. 
Nevertheless, we do recommend the pre-multiplication in order to reduce the risk 
of large R-tR$ 11 

On an aesthetic level, the purification approach of [10] using (12) rather than 
direct multiplication by S was very elegant. We think that the use of implicitly 
restarted Arnoldi to carry out implicitly a second multiplication by S is similarly 
pleasing. 

Note that one could avoid the need for the purification step at stage 3 of Algo- 
rithm 3 by performing two steps of IRA. In fact, for any S which is singular with 
generalised null vectors of grade 2 we see that 2 steps of IRA with standard inner 
product will remove elements from PJ and 9. This can clearly be extended to cases 
where grade r generalised null vectors arise when r IRA steps would be required. 
If S arises from a generalised problem with B of the form (2) then one fewer IRA 
step is needed with the addition of a purification step. 

It appears that the IRA method may help to stabilise calculations of eigenvalues 
(which is a known property of this method). The analysis here, where S is singular 
and defective helps to illustrate why this might be the case since there is an implicit 
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subspace iteration step (see statement 2 in Theorem 3), which is another nice feature 
of this method. In fact, Philippe and Sadkane [11] use a few steps of subspace 
iteration in an explicit way to purify the Arnoldi vectors in an application coming 
from Maxwell's equations. 

The theoretical analysis of iterative methods for the reduced problem Slu = Ou 
helps in an understanding of the performance of iterative methods for Sx = Ox. 
The fact that implicitly restarted B-orthogonal Arnoldi applied to S works could, 
following the analysis in Section 2.2, also be explained by analysing the implicitly 
restarted M-orthogonal Arnoldi method applied to SI, since one implicit matrix- 
vector multiplication by SI maps the initial vector into lI. 

Finally note that the B-inner product has been used in subspace iteration by 
Scott [12]. Ericsson [5] and Nour-Omid, Parlett, Ericsson and Jensen [10] mention 
that it is also a useful tool when B is nonsingular, but very ill conditioned. 
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