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ON GENERALIZED BISECTION OF n-SIMPLICES 

REINER HORST 

ABSTRACT. A generalized procedure of bisection of n-simplices is introduced, 
where the bisection point can be an (almost) arbitrary point at one of the 
longest edges. It is shown that nested sequences of simplices generated by 
successive generalized bisection converge to a singleton, and an exact bound 
of the convergence speed in terms of diameter reduction is given. For regular 
simplices, which mark the worst case, the edge lengths of each worst and best 
simplex generated by successive bisection are given up to depth n. For n = 2 
and 3, the sequence of worst case diameters is provided until it is halved. 

1. INTRODUCTION 

The convex hull S = [vi,... , Vn+1 of n + 1 affinely independent vectors v1, ... 

vn+1 in Rn is called an n-simplex with vertices v1,... ,vn+1 (more exactly "the 
vertex representation of an n-simplex"). A family {Si i E I}, I finite set of 
indices, of n-simplices satisfying 

(1) S=UJSi and intSinintS3=0 vi, jEI,i=j, 
iEI 

is said to be a (full-dimensional) simplicial partition of S. 
Nested sequences of n-simplices, where each element of the sequence is a member 

of a simplicial partition of its predecessor, are of crucial interest in several fields of 
computational applied mathematics, where to a certain extent the research in 
each field has been developed independently of the other fields. Usually, one seeks 
partitioning rules which ensure convergence of each such sequence to a singleton 
at a fast convergence rate which is often measured by means of the corresponding 
sequence of diameters in the Euclidean norm. However, the speed in which the 
diameters converge to zero is not always the determining factor, since often we 
are interested in the behavior of a certain sequence of functions associated to the 
sequence of simplices. 

One of these fields comprises triangulation methods, in particular piecewise- 
linear homotopy methods, for finding roots of mappings and related problems, 
where, however, variable dimension simplicial partitions seem to be even more 
important than the full-dimensional ones we are interested in here. Among the 
many excellent books and surveys of this field, see, e.g. [4, 2, 3] and references 
therein. 

A second field, where in particular, the case n = 2 is of interest (triangulation in 
the literal sense with some generalizations for n = 3 (meshes of tetrahedra)), deals 
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with adaptive and multilevel finite element methods for elliptic boundary value 
problems (e.g., [2, 12, 13, 14] and references therein). 

A third field which has recently received much attention comprises branch and 
bound methods and related techniques for certain broad classes of multiextremal 
global optimization problems such as minimization of a concave function over a 
compact convex set, and even the more general problem of minimizing differences 
of convex functions (for recent books which include abundant relevant references, 
see [8, 9]). Here, one is usually interested in the case of dimensions n considerably 
larger than three. 

In [6] (see also [7]) it was shown that the following "radial" subdivision of 
an n-simplex S = [vl,... , vn+1] generates a simplicial partition: let w E S \ 
{V1,... vn+1}, which is uniquely represented by 

n+1 n+1 

(2) w= A ivi, Ai > O, i = 1, ... I,n+ 1, Ai = 1, 

and, for each i such that Ai > 0, form the simplex S(i, w) obtained from S by re- 
placing the vertex vi by w, i.e., S(i, w) = [v1, ... , vi1,w, vWi+, I ... I Vn+1? 

When w is the midpoint of one of the longest edges of S, we obtain the important 
bisection of simplices which was independently introduced in [6, 7, 10, 17]; see also 
[5, 16]. Consider a sequence of n-simplices Sk = [Vk,l,... )Vk,n+l]l k = 1,2, ,..., 
with longest edges [vk,1, vk,2], where Sk+1 is constructed from Sk by bisection at 
Wk = (vk,1 + vk,2)/2. Let 8(Sk) = max{ lx - yl I: x, y E Sk} = IIvk,1 - vk,211 be the 
diameter of Sk, k = 1, 2 .... Then it was shown in [7, 10, 17] that 8(Sk) -> 0 as 
k -> oo. Kearfott [10] proved that 

(3) 6(Sk+p) < (X/_/2) LP/nJ 8(Sk) V k,p E N, 

where [p/nj is the largest integer less than or equal to p/n. This is equivalent to 

(4) 8(Sk?+n) < X/2 6(Sk) V k E NI, 

which has been reproved by somewhat different arguments in [12] and [9, Proposi- 
tion IV.2]. Sharper bounds and a number of additional results regarding conformal 
triangular meshes and similarity classes are known for the two-dimensional case of 
triangles [1, 15, 17, 18] and for some special three-dimensional simplices [5, 11, 16]. 

In the next section we introduce a new kind of generalized bisection of n- 
simplices, n > 2, where now bisection at an arbitrary point Wk E [(vk,1 + vk,2)/2, 
Vk,2) is admitted provided that there is some 0 < c < 1 such that 0 < c < 
Iwk- Vk,2 1 /IIVk,2 - Vk,1 I holds for all simplices Sk in a nested sequence. An exact 

bound for the radius of the smallest ball centered at Wk and containing Sk+1 is 
given, from which 8(Sk) -> 0 and a bound which generalizes (4) is derived. For the 
special case of midpoint bisection we obtain a new proof of (4). 

The bound (4) and its generalization to nonmidpoint bisection are exact for 
regular initial simplices. Therefore, Section 3 presents a closer look at successive 
bisection of regular simplices. For depths k, 1 < k < n, the lengths of all edges 
of each "worst" simplex will be given, and it will be shown that at depth n, the 
"best" simplex will be regular with edge lengths one half of the edge lengths of the 
initial simplex. For n = 2 (triangles) and n = 3 (tetrahedra) it is shown how many 
further bisections are necessary to reduce the diameter of each simplex to one half 
of the initial one. 
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2. NONMIDPOINT BISECTION 

Theorem 1. For a sequence of n-simplices Sk = [Vk,l,... ,kVk,n+l? n > 2,k = 

1, 2, .. ., with longest edges [Vk,1, Vk,21, where each simplex Sk+1 is constructed from 

its predecessor Sk by (generalized) bisection at a point 

(5) Wk = AkVk,l + (1-Ak)Vk,2, 0 < c < Ak < 

1~~~~~~~~2 
for some fixed number 0 < c < 2 there holds 

(i) 6(Wk, Sk):=-maxf I lWk -Vk,i 11iI=1 n + 1} < 6(Sk) V/1 ~+k A2kAki 

(ii) lim8(Sk)-0 as k -oo, 

(iii) if, for all k, Ak =c, 0<c< - then 
-2' 

6(Sk?+n) -< ,1?+ c2-c 8(Sk) V k E N. 

Proof. (i): Let I Iwk - vk, I I = max I Iwk -vk,i I I : i = 3, ... , n + 1} and consider the 
triangle [Vk,1, Vk,2, Vk,j] with vertices vk,j, vk,2, Vk,j. From the definition of 8(Sk) it 
follows that 

(6) IVk,i - IVk,j - <- I (Sk), i =1, 2... 

Geometrically, the inequality (6) states that Vk,j can neither lie outside the circle 
Ci centered at Vk,j with radius 8(Sk), nor outside the circle C2 centered at vk,2 
with radius 6(Sk) (Fig. 1). 

V 
k,j 

C2 1I 

Vkl Wk Vkl 

6(Sk) 

FIGURE 1 

Since in (5) we consider Ak < 12 i.e., Wk E [(Vk,2 + vk,1)/2,vk,21, it is easy to 
see that the largest allowed &(wk, Sk) occurs when Vk,j lies on the boundary of C2. 
Consider the triangle [wk, Vk,2, Vk,j] and let, in this triangle, ak be the angle at vk,2 

(Fig. 1). We must have 0 < ak < ir/3 because aYk > ir/3 and Vk,j on the boundary 
of C2 would imply that Vk,3 lies outside Ci (the two circles intersect at axk = 7r/3). 

We know from elementary geometry (law of cosine) that 

IWk - Vk,ji12 = IIVk,2 - Vk,ji12 + IVk,2 - WkH12 

-21 HVk,2 -Vk,jH - *lVk,2 -wkH cosak. 
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Inserting (5) at the right-hand side, we obtain 

|Wk - Vk,j II = |Vk,2 - Vk,j 12 + A2 1 Vk,2 - Vk, 112 

-2Ak vk,2 - Vk,j I I I Vk,2 -Vk,j I COS ak 

? 82(Sk)( ?+ Ak- Ak), 

where the last inequality follows from (6) and cos ak > cos ir/3 = 1/2. Taking into 
acocunt the distance from Wk to Vk,2 and to vk,1, respectively, we see that 

(7) 

6(Wk, Sk) < max{Ak; 1-Ak; 1+ A-Ak}6(Sk) = 6(Sk) ?+ -Ak 

1 
since Ak < 2 

(ii), (iii): The smallest value in (7) is v?/2 (attained at Ak = 1),the largest one 
is attained at Ak = c. Therefore, we have 

(8) 1/2 < v/2 < 1 + -Ak< + c2-C < 1. 

To prove (iii) it suffices to consider the case k = 1. Assign to each vertex and 
each edge of the initial simplex Si the label "old", and assign to each vertex and 
each edge of any Si, i > 1, which is not labelled "old" the label "new". When for 
some i > 1 an "old" edge is bisected, the simplex Si+, has one "new" vertex more 
than Si. Since an n-simplex has n + 1 vertices, we see that a "new" edge must be 
bisected (i.e., be a longest edge) at some step i < n + 1. This ensures (iii) because 
of (7), (8). 

Property (ii) follows from (iii), (7), (8) and 6(Sk+l) < 6(Sk) V k. D 

Remark 1. Clearly, the bound in (i) is exact whenever the simplex Sk contains an 
equilateral triangle with sidelength 6(Sk) and vertices in the vertex set of Sk; the 
bound (iii) is exact for regular simplices. 

3. BISECTION OF REGULAR SIMPLICES 

Returning to classical bisection (c = 1/2 in Theorem 1 (iii)), we next will have 
a closer look at regular simplices which mark the worst case in Theorem 1. 

In order to compare simplices with respect to their edge lengths we associate with 
each simplex the (n+1)-vector x of its edge lengths in decreasing order such that, for 
the components xi of x, we have xi > xi+,, i = 1,... (n+1). A simplex S will be 
called "worse" than a simplex S' when its edge lengths vector x is lexicographically 
greater than the edge lengths vector x' of S'. (S' will be said to be "better" than 
S in this case). A lexicographically greatest (smallest) of such vectors will define a 
"worst" (resp. "best") simplex in a finite set of simplices. 

Proposition 1. In the process of successive bisections up to depth n of a regular 
n-simplex with edge lengths 1 

(i) only edge lengths 1, v'3/2, v'_/2, 1/2 can occur. 
(ii) At depth 1 < k < n, each worst simplex has (n+2-C) edges of length 1, 

k(n - k + 1) - 1 edges of length v'3/2, k edges of length 1/2. The remaining 
of its (n+1) edges have length Vf/2 (where the number is O for k = 1, 2, and 

(k-1) for k > 3). 
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In particular, for k = n, each worst simplex has (n - 1) edges of length V'3/2, 
(n- 1) edges of length V2/2 and n edges of length 1/2. 

(iii) The best simplex at depth n is regular with edge lengths 1/2 and occurs exactly 
n-1 

2 (n+) fJ (n - k) times in the set of all possible simplices generated at depth 
k=1 

n. 

Proof. Edges and vertices of the initial simplex So will be labelled "old". All edges 
and vertices appearing in the process which are not labelled "old" will be labelled 
"new". At level (depth) 1, all possible immediate descendants of So are considered, 
at level 2, all possible immediate descendants of all simplices of level 1, and so forth. 

Bisection of a certain simplex S at the midpoint w of an edge AB with length c, 
gives rise to two immediate descendants, in each of which n new edges are generated. 
One of these has length c/2, and the length m of each of the remaining (n - 1) of 
these new edges can be determined from the well-known elementary formula 

(9) m2 = 1/2 (a2 + b2 _ c2/2) 

in each of the n - 1 triangles ABC with a = AC, b = BC, where C ranges over 
all vertices of S different from A, B. Notice that formula (9) holds for arbitrary 
triangles. 

Clearly, in each of the first n levels, an old edge is bisected, and we have seen in 
the preceding section that at level n, no old edge is left in any simplex. At level 1 
we have the situation of Fig. 2, all possible 2 .(n+l) immediate descendants have 
one new edge of length 1/2, n - 1 new edges of length V3/2 and (n) old edges. 
Because of this similarity we start our investigation at one of these simplices of level 
1 so that subsequently detected numbers of simplices of a certain similarity type 
have to be multiplied by 2. (n+l) 

C (old) 

1 1 

1/2 1/2 

A (old) w B (old) 

FIGURE 2 

From the proof of Theorem 1, we know that the situation of Fig. 2 can occur 
only until levels k < n- 2. In levels 1 < k < n, in addition to Fig. 2, we can only 
have the triangles depicted in Figs. 3 and 4, so that only new lengths of 1/2 and 
V2/2 can occur. 

Fig. 3 occurs when the currently bisected edge is adjacent to (i.e., has a common 
vertex with) a previously bisected edge. 
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new 

new 

1/2 1/2 f2/2 

1/2 12 1/2 1/2 

old w old old w old 

FIGURE 3 FIGURE 4 

TABLE 1 

1 /2 v/2 1/2 
k = 1 -n +(n-1) 0 +1 

k = 2 -(n-1) +(n-2) 0 +1 

k>2 -(n-k+1) -+(n-k)-(k-2) +k-2 +1 

Since in every bisection at least one new edge of length 1/2 is generated, each 
simplex at level n must have at least n edges of length 1/2. Since, moreover, in 
level 2 we can choose the simplex corresponding to the left triangle in Fig. 3 (with 
lengths 2 x 1/2, (2n - 3) x v34/2, (nI1) x 1); and in subsequent levels 3 < k < n 

we can always choose the situation of Fig. 4, the simplex of level n with the least 
number of edges of length 1/2 must have exactly n edges of length 1/2. Likewise, 
we see, that in this way we do indeed find a worst simplex at any level 2 < k < n: 
the number of edges of length 1 is (n+l-k) in each simplex at level k, and in each 
transition from k to k + 1, the increase in the number of edges of length v"3/2 is 
maximal in this strategy. Table 1 shows the changes in the number of edges of the 
occurring lengths for each worst simplex in every level k, where, of course, for each 
n > 2, the table is valid only for 1 < k < n. 

Summing up, we see that a worst simplex at level 1 < k < n has (n+-k) edges 
of length 1, k(n - k + 1) - 1 edges of length V'3/2, k edges of length 1/2, and the 
remaining of its (n2+1) edges of length vf/2 (the number is 0 for k = 1, 2, and 
(k1) for k > 3). If inthe number k(n-k+1)-1, 1 < k < n, we replace k by 
n-k + 1, 1 < k < n, we obtain the same number, i.e., for n even, the sequence 
{k(n - k + 1) - 1}, 1 < k < n, is monotonically increasing until k = n/2, and 
decreasing in reverse order until k = n; for n odd, it increases until k = [n/2J + 1 
and repeats its first Ln/21 values in reverse order from k = [rn/2J + 2 to k = n. At 
level n, a worst simplex has (n - 1) edges of length v//2, (ny1) edges of length 

v/2/2 and n edges of length 1/2. 
Finally, the regular simplices of edge length 1/2 are generated by choosing at 

each level the simplex corresponding to the right-hand simplex in Fig. 3 (which 
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amounts to a successive bisection of all n old edges incident to one of the vertices 
of the first bisected old edge). E 

Continuation of the above analysis for k > n is cumbersome, in particular for 
n > 4. We confine ourselves to the sequence of diameters of the worst simplex until 
it is halved. 

Corollary 1. Let So be a regular n-simplex of diameter 8(So) = 1. Then, for 
each nested sequence of simplices {Sk } generated from So by successive bisection, 
we have 

8(S1) = 1, 8(S2) < v3/2, 6(S3) < 1/2 if n = 2; 

6(S1) = 6(S2) = 1, 6(S3) < X'3/2, 6(S4) < v'3/2, 6(S5) < v'2/2, 

8(S6) < v5/4, 8(S7) < 1/2 if n = 3. 

Proof. For k < n, the assertion follows from Proposition 1. If n = 2, all sim- 
plices generated after two bisections have either edge lengths v'3/2, 1/2, 1/2 or 
1/2,1/2,1/2, i.e., after the next bisection the diameter is brought down to 1/2. For 
n = 3, the worst simplex S3 has edge lengths v'3/2, v'-/2, v'2/2, 1/2, 1/2, 1/2. 
From the proof of Proposition 1 it is easy to see that in S3 two edges of length 

r3/2 can be adjacent, but S3 cannot have a facet of edge lengths V3-/2, V3-/2, 
v'2/2. It follows from (9) that the 4th bisection generates only one new edge of 
length greater 1/2, namely the edge of length v5/4 resulting from the triangle of 
edge lengths V'3/2, v'3/2, 1/2. 

Therefore, the three longest edges of the worst simplex S4 have lengths V'3/2, 
vf/2, V5/4, whereas the remaining edges have lengths less than or equal to 1/2. 
Formula (9) shows that further bisections cannot give rise to new edge lengths 
greater than or equal to 1/2, which proves the last part of Corollary 1. I 
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