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ON NUMERICAL METHODS FOR DISCRETE LEAST-SQUARES 
APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS 

HEIKE FASSBENDER 

ABSTRACT. Fast, efficient and reliable algorithms for discrete least-squares 
approximation of a real-valued function given at arbitrary distinct nodes in 
[0, 27r) by trigonometric polynomials are presented. The algorithms are based 
on schemes for the solution of inverse unitary eigenproblems and require only 
O(mn) arithmetic operations as compared to O(mn2) operations needed for 
algorithms that ignore the structure of the problem. An algorithm which 
solves this problem with real-valued data and real-valued solution using only 
real arithmetic is given. Numerical examples are presented that show that 
the proposed algorithms produce consistently accurate results that are often 
better than those obtained by general QR decomposition methods for the 
least-squares problem. 

1. INTRODUCTION 

A problem in signal processing is the approximation of a function known only at 
some measured points by a trigonometric function. A number of different models 
for representing the measured points as a finite superposition of sine- and cosine- 
oscillations are possible. One choice could be to compute the trigonometric interpo- 
lating function. Then several numerical algorithms are available ([4, 5, 15]). But in 
general a large number of measured points are given, such that this approach leads 
to a trigonometric polynomial with a lot of superimposed oscillations (and a large 
linear system to solve). In practical applications it is often sufficient to compute a 
trigonometric polynomial with only a small number of superimposed oscillations. 
A different, often chosen approach is the (fast) Fourier transform ([15]). In this 
case the frequencies of the sine- and cosine-oscillations have to be chosen equidis- 
tant. More freedom in the choice of the frequencies and the number of superposed 
oscillations gives the following approach. Given a set of m arbitrary distinct nodes 
{Ok}='1 in the interval [0, 2ir), a set of m positive weights {w }k1, and a real- 
valued function f(0) whose values at the nodes Ok are explicitly known. Then the 
trigonometric function 

(1) t(O) = ao + ? (aj cosjO + bj sinjO), aj, bj ERX, 
j=1 
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of order at most ? < m/2 is sought that minimizes the discrete least-squares error 

m 

(2) ||f - tjJ R If (0) - t(Ok)12wk 
k=1 

In general, m (the number of measured functional values) is much larger than 
n = 2t + 1 (the number of coefficients to be determined). 

Standard algorithms for solving the approximation problem (2) require O(mn2) 
arithmetic operations. In this paper faster algorithms are presented which make 
use of the special structure of the problem (2). In [17] Reichel, Ammar, and Gragg 
reformulate the problem (2) as the following standard least-squares problem: Min- 
imize 

(3) 1 IDAc-Dgl 12 = min, 

where D = diag(wl,..., wm) E Ctmm is a diagonal matrix with the given weights 
on the diagonal and A is a transposed Vandermonde matrix 

/ 1 1 * * n-1 

A =( fL iC 2 ') mxn 

Zm ... zn-1 

with Zk = exp(iOk). 9 = [g(zI),...,g(zm)]T C m is a vector of the values of a 
complex function g(z) and c = [cO, . .., cn-]T - 

' Cn is the solution vector. With the 
proper choice of n and g, it is easy to see that the coefficients of the trigonometric 
polynomial (1) that minimizes the error (2) can be read off of the least-squares 
solution c of (3) (see [17]). 

The solution c can be computed by using the QR decomposition of DA. Since 
DA has full column rank, there is an m x m unitary matrix Q with orthonormal 
columns and an m x n upper triangular matrix R with positive diagonal elements 
such that 

DA=QR=(QlIQ2)(R )R = QRI 

where Qi E Cmxn has orthonormal columns and Rf1 E Cnxn has positive diagonal 
elements. The solution of (3) is given by c = R 1Q{HDg. Algorithms that compute 
the QR decomposition of DA without using the special structure require O(mn2) 
arithmetic operations ([14]). Demeure [9] presents an O(mn+n2+m) algorithm to 
compute the QR decomposition of a transposed Vandermonde matrix. This scheme 
explicitly uses AHA. 

In [17] Reichel, Ammar, and Gragg present an approach to compute the QR 
decomposition of DA that is based on computational aspects associated with the 
family of polynomials orthogonal with respect to an inner product on the unit circle. 
Such polynomials are known as Szego polynomials. The following interpretation 
of the elements of Qi and R1 in terms of Szeg6 polynomials can be given: Qi is 
determined by the values of the Szeg6 polynomials at the nodes Zk. R1 expresses 
the power basis in terms of the orthonormal Szeg6 polynomials. Therefore, the 
columns of R-1 are the coefficients of the Szego polynomials in the power basis. 
There exist algorithms for determining the values of the Szeg6 polynomials at nodes 
Zk ([17, 12]) which require O(mn) arithmetic operations. The computation of the 
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columns of Rj1 relies on the Szego recursion and is closely related to the Levinson 
algorithm as (DA)TDA = RTR1 is a Toeplitz matrix. 

Observe that 

/~~~~~~ S1 S 1 1Z 1n-1 
I 

DA= | 

\Wnm Wm Zm Wm Zm... Wmz1 J 
= (q, Aq, A2 q, ...I An-1 q) 

= -o(qo, Aqo, A2qo, ..., An lqo) 

with q (Wi, ,Wm)T,JO = Hlqll2,qo o-u Iq and A = diag(zl, ..zm) Thus, 
the matrix DA is given by the first n columns of the Krylov matrix K(A, q, m) = 
(q, Aq, ..., Am-lq). We may therefore use the following consequence of the Implicit 
Q Theorem to compute the desired QR decomposition. If there exists a unitary 
matrix U such that UHAU = H is a unitary upper Hessenberg matrix with positive 
subdiagonal elements, then the QR decomposition of K(A, qo, m) is given by UR 
with R = K(H, el, m). The construction of such a unitary Hessenberg matrix from 
spectral data, here contained in A and qo, is an inverse eigenproblem. Thus the 
best trigonometric approximation to f can be computed via solving this inverse 
eigenproblem. Because of the uniqueness of the here given QR decomposition of 
K(A,qo,m), it follows from the above given interpretation of the elements of Qi 
that the elements in U are the values of the Szeg6 polynomials at the nodes Zk. 

Thus solving the inverse unitary Hessenberg eigenvalue problem UHAU H is 
equivalent to computing Szego polynomials. 

Unitary Hessenberg matrices have special properties which allow the develop- 
ment of efficient algorithms for this class of matrices. Any n x n unitary Hessen- 
berg matrix with positive subdiagonal elements can be uniquely parametrized by 
n complex parameters, that is 

H = GI(-yi)G2(y2) Gn(.Yn) 

for certain complex-valued parameters 1-Yk < 1,1 < k < n, and 1-yn I = 1. Here 
Gk(yk) denotes the n x n Givens reflector in the (k, k + 1) plane 

Gk = Gk(-yk) = diag(k-1, [ Yk ] v In-k-1) 

with Yk E C,o-k CE iR, 1/k12 + ?o = 1, and 

Gn(Yn) = diag(In-1, --yn) 

with an E C, I-Yn = 1. The nontrivial entries Yk are called Schur parameters and the 
fk are called complementary Schur parameters. Ammar, Gragg, and Reichel make 

use of this parametrization in [2] by developing an efficient and reliable algorithm 
(IUQR-algorithm) for solving the inverse unitary Hessenberg eigenvalue problem. 
The algorithm manipulates the n complex parameters instead of the ni2 matrix 
elements. An adaption of the IUQR scheme to the computation of the vector 
c= QH'Dg can be given, which requires O(mn) arithmetic operations. After 
computing the vector c', the least-squares solution c- R1 c' of (3) can be obtained 
using an algorithm closely related to the Levinson algorithm. Reichel, Ammar, and 
Gragg present in [17] an O(n2) algorithm to compute Rj1b for an arbitrary vector 
b ( Cmn. 
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The algorithms proposed by Reichel, Ammar, and Gragg in [17] construct the 
least-squares solution c of (3) in 0(mn + n2) arithmetic operations. The coeffi- 
cients of the optimal trigonometric polynomial t of (2) can be recovered from c. 
This representation of t is convenient if we desire to integrate or differentiate the 
polynomial or if we wish to evaluate it at many equidistant points on a circle with 
a center at the origin. If we, on the other hand, only desire to evaluate t at a few 
points, then we can use the representation of t in terms of Szeg6 polynomials. For 
details see [17]. 

In [3] Van Barel and Bultheel generalize the method by Ammar, Gragg, and 
Reichel to solve a discrete linearized rational least-squares approximation on the 
unit circle. Further generalizations are given by Bultheel and Van Barel in [6]. 

In [16] Newbery presents an algorithm for least-squares approximation by trigo- 
nometric polynomials which is closely related to the computation of Szeg6 polyno- 
mials. This O(n2) algorithm and its connection to the algorithms presented here is 
discussed in [11, 13]. 

The method proposed by Reichel, Ammar, and Gragg to solve the real-valued 
approximation problem (2) computes the real-valued solution using complex arith- 
metic by solving an inverse unitary Hessenberg eigenvalue problem UHAU = H, 
where a unitary Hessenberg matrix is constructed from spectral data. Now H = 
GC (-yi)G2 (y2) ... Gn((Yn) can be transformed to G,G' by a unitary similarity trans- 
formation (see [1]), where 

/-"i Ui 
( -1 7i1 

Go = G, (-yi)G3 (-y3) ... G2[(n+)/2]-1(-Y2[(n+l1/2]-1) =-Y3 U3 
U3 "Y3 

is the product of the odd numbered elementary reflectors and 

1-"Y2 J2 

G' = G2(-Y2)G4(-Y4) ... G2[n/2](Y2[n/2]) = ( 2 Y2 ) 

is the product of the even numbered elementary reflectors. Here [x] - 

max{i E Nji < x}. Go, Ge are block diagonal matrices with block size at most two. 
Thus the inverse unitary Hessenberg eigenvalue problem UHAU = H is equivalent 
to an inverse eigenvalue problem QH(A - AI)QGe = Go - AGe, where a Schur 
parameter pencil is constructed from spectral data. 

In this paper numerical methods for the trigonometric approximation are dis- 
cussed which rely on this inverse eigenvalue problem for Schur parameter pen- 
cils. Especially, an algorithm is developed which requires 0(mn) arithmetic opera- 
tions to solve the real-valued approximation problem (2) using only real arithmetic. 
The following approach for solving the approximation problem (2) is considered: 
(2) is reformulated to a real-valued least-squares problem IDf - DAtl 2 where 
D RmJxmm, A R xmxn, f R Jam, t E Rn. This least-squares problem will be solved 
via an QR decomposition of DA. As DA is a real m x n matrix with full col- 
umn rank, there exists a unique "skinny" real QR decomposition Q1R1 of DA 
where Qi E R#mXn has orthonormal columns and F1 E R2nxn is upper triangular 
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with positive diagonal entries [14, Theorem 5.2.2]. First it is shown that the Q- 
factor of the QR decomposition of DA is the unitary matrix Q which transforms 
A = diag(zi, ..., Zm) to Schur parameter pencil form Go - AGe. The R-factor of 
the desired QR decomposition is a modified Krylov matrix based on GOG H. The 
computation of R implicitly yields the Cholesky factorization of a bordered block- 
Toeplitz-plus-block-Hankel matrix with 2 x 2 blocks. An algorithm for inverting 
the upper square subblock of R is given. 

In Sections 3 and 4 algorithms for computing Q1 and Rl are developed, which 
use only real arithmetic and require merely O(mn) arithmetic operations. For 
that purpose the effect of the transformation matrix Qi on the real and imaginary 
part of A = diag(zl, ..., Zm) = diag(cos 01, ..., cos Om) + i diag(sin 01, ..., sin Om) is 
considered. 

Numerical results are given in Section 5. We will see that the proposed algorithms 
produce consistently accurate results that are often better than those obtained by 
general QR decomposition methods for the least-squares problem. 

2. A REAL-VALUED APPROACH 

New, fast algorithms to solve the discrete least-squares approximation are devel- 
oped, particularly algorithms which solve this problem with real-valued data and 
real-valued solution in O(mn) arithmetic operations using only real arithmetic. In- 
stead of the approach used by Reichel, Ammar, and Gragg the following real-valued 
linear least-squares problem is considered. Since 

(ao 

(I sin 01 cos 01 ... sin eol cos o b1 |a | 

I sin Om cos Om sin Om cOS Om 
0 

t(om) 

~~~~~~~ 
/ 

it follows with D = diag(wl,...,wm) and f= (f(0i), ...,f(Om))T that 

(4) If-tl R = - ID(f-t) 112 = I Df- DAtH 12. 

As proven in [11] the matrix (DA)T(DA) belonging to the normal equations 
corresponding to (4), 

(DA)T(DA)t= (DA)TDf, 

is a bordered block-Toeplitz-plus-block-Hankel-matrix with 2 x 2 blocks. In partic- 
ular 

DAXll X1 . T+ X4 

(DA)TDA 
= S 

T +H 
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with the symmetric block-Toeplitz-matrix 

Ao A1 A2 A3 A_, 
AT Ao A1 A2 A-2 
A2' AT Ao A1 A_3 

T = AAT AT AT Ao A_4 GV2tx2V 

A. . Ao A1 
A[1 A_2 A_3 A_4. Al Ao 

and the symmetric block-Hankel-matrix 

(Bo B1 B2 ... B_2 B~_, 
B1 B2 B3 ... B_1 B 1 

B2 B3 B4 ... Be Be+, 

B&-2 B&_1 Bt ... B24 B2V3 
B_1 BB B~+, ... B2V3 B2_2/ 

where 

2Ao = I, 

2Aj _= Ep= &P cosiOp -p 1W p sini fOp -f1,2 f-I 
jA3 Z771m w 2 sin jOp =g w2os jo 

( 
_ m 

212cos(j + 2)Op EmZ 1 W2sin(j + 2)Op ) 

i Ep=Z1wPsin(j + 2)Op Ep=Zi pcos(j + 2)Op J=' ,, .,2-3 
m m m 

Xii =Zw2 xP=T (Z 2sin jOp,Zwcosjop), j = 2,3,...,I. 
p=l p=l p=l 

The minimum norm solution t of the linear least-squares problem (4) can be 
computed by using the QR decomposition of DA. Since DA has full column rank 
n = 2f + 1, there exists an m x m orthogonal matrix Q and an m x n upper triangular 
matrix R with positive diagonal elements such that 

DA=QR=(Q1lIQ2)( R, )=QlR1, 

where Rf1 E Rnxn has positive diagonal elements and Qi E IRmxn has orthonormal 
columns. The minimum norm solution t of (4) is therefore given by 

T= R-1 1 Df. 

Moreover 
(DA)TDA = Rf Rt. 

Thus R1 is the Cholesky factor of (DA)TDA. Implicitly we have to compute the 
Cholesky factorization of the special bordered block-Toeplitz-plus-block-Hankel- 
matrix (DA)TDA. 

Algorithms that compute the QR decomposition of DA without using its struc- 
ture require O(mn2) arithmetic operations. In this paper we present algorithms 
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for the solution of the least-squares problem (4) that implicitly compute the QR 
decomposition of DA and require only O(mn) arithmetic operations. 

Let A = diag(ei0o, ..., eiom), then because of cos = 2 (ei0 + e-i0) and sin 0 
- (eiS-e -i0) it follows with q = (w1, ..., Wm) T that 

DA = 1[(AO+(AH ))q,-i(A-AH)q,(A+AH)q, ..., -i(AM-(AH ))q,(A'+(AH))q]. 2 

Let , (A, q, ?) be a modified Krylov matrix 

r,(A, q, ?) = [q, Aq, AHq, A2q, (AH)2q, ..., Aq, (AH)q] E ?Cmx(2#+1), 

whose columns are the vectors of the Krylov sequence {q, AHq, (A H)2q, ..., (AH)~q} 
based on AH interleaved with the vectors of the Krylov sequence {Aq, A2q, ..., Afq} 
based on A. 

Then we have 

2 

-i ~ ~ ~ - 1 
i 1 

The idea is to compute the QR decomposition of DA from a QR decomposition 
of , (A, q, ?) by solving an inverse eigenproblem similar to the approach of Reichel, 
Ammar, and Gragg in [17]. For this we need the following lemma which is a 
consequence of Theorem 2.12 and Theorem 3.2 in [7]. 

Lemma 1. Given n distinct complex numbers {Ak}l'1 on the unit circle and asso- 
ciated positive weights {vI _k2In= there is a unique unreduced n x n Schur parameter 
pencil Go - AGe (with positive complementary Schur parameters) and unique uni- 
tary matrices Q and P such that 

QH el = 9- 1[Z1,/ ..., Ivn]Tj 

Q(A- AI)P = Go-AGe, 

A = diag(Al, ..., An), 

where uo = (k=l-k1 2, 

The lemma shows that the reduction of A to an unreduced Schur parameter 
pencil Go - AG, = QH(A - AI)P is unique if the first column of Q is given. 
Choosing 

Qei = CO- 1q, (o- = I Hq 2, 

and using 
Ak = (QGoGHQH)k = Q(GG H)kQH, - woe - oe v 

we get 

Akq = (7oQ(GoG H)kel and (A H)k q = uoQ(GeG H)kel. 
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That is 

i,(A, q, ?) = uoQ[el, G,GHel, GeGHel, (G,GH)2el, ..., (GoGH)'el, (GeGH)'el] 

= uoQK(GOGH, el, e) =: uoQR. 

As can be seen, R is an m x n upper triangular matrix whose diagonal elements are 
products of the complementary Schur parameters. Therefore the upper n x n block 
of R is nonsingular with positive diagonal elements Rij = ... ji1. Moreover 

R1,2 = Rl,2i+l 
R2i,2i+l -91 .. 2i-172i >,i= ,.,. 

R2i+1,2i+2 = - .1 J2iY2i+1 

Thus we have DA = 2 QRF with RF= 

2 21m(R12) 2Re(R12) 21m(R14) 2Re(R14) ... 21m(Ri,Ve) 2Re(Ri,2e) 
O i(R23 - R22) R23 + R22 i(R25 - R24) R25 + R24 ... i(R2,e+1 - R2,2e) R2,2e+1 + R2,2e 
o iR33 R33 i(R35 - R34) R35 + R34 * i(R3,e+1 - R3,2e) R3,2e+1 + R3,2e 
O O 0 i(R45 - R44) R45 + R44 i(R4,e+1 - R4,ze) R4,e+1 + R4,2e 
O O 0 iR55 R55 ... i(R5,2e+1 - R5,2e) R5,2e1 + R5,2e 

: : i(R2e,2e+1 - R2e,2e) R2e2e+ + R2e,2e 

iR2e+1,2e+1 R2e+1,2e+1 

O O 0 0 0 ** 0 0 

O 0 0 0 0 .. 0 0 

In order to get a unique "skinny", real-valued QR decomposition of DA from 
the above, 2 x 2 blocks of the form 

91 .. 2j-1 il + -;/2j) (I1- Y2j)) 

have to be transformed to upper triangular form with positive diagonal elements. 
Choosing X2j = O-2 + 1+'2jI2 e 2R, S2j = u2j/ x2j e R and C2j = (l+'Y2j)/ 2j E 
C we get 

0-1~ ~ 
.. 

)2- ( 52j 82j ) ( 12j ) 72) S2j 
_EYj2j) '-2 

= 2 j(2- + 1 + -Y2j 12) - C2l S 2j (1 + Y2j) ) 2j ) 2j 0 9~~~~~~~~~~2j 

and with 

c2k = diag(I2kl ZC2k -iS2k 1 sIm-2k-1), C2k = iag(1k1, LS2k C2kJ 

Ce = C2C4 2 E Cmxm 

we obtain CeRF = R, such that fR is an m x n upper triangular matrix with positive 
diagonal elements. Let Q = QCeH. Then a QR decomposition of DA is given by 

DA= -0QR = - QlR1 2 2 
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where Qi are the first n columns of Q and R1 is the upper n x n block of R. Since R 
has positive diagonal elements, this "skinny" QR decomposition has to be unique. 
Therefore Ql and ft1 are real-valued matrices with Qi E REXxn and R1 E inxn. 

The minimum norm solution t of the least-squares problem (4) is obtained by 

t=2ul1f7 1 DJ'. 

In order to solve the trigonometric approximation problem via the approach 
discussed here, we have to solve the inverse eigenvalue problem QH(A - AI)Q = 
Go - AGe. In [11, 12] different methods for solving this problem are discussed: the 
Stieltjes-like procedure for orthogonal Laurent polynomials, the generalized Arnoldi 
procedure for unitary diagonal matrix pencils, and the algorithm for solving the 
inverse eigenvalue problem for Schur parameter pencils. Each of these methods 
requires 0(m2) arithmetic operations to compute Q, the Schur parameters 'Yl, *-.. 
aym, and the complementary Schur parameters ui, I... Im- 1 As only the first n 
columns of Q (and Q) are required, these methods can be stopped after n steps 
without solving the entire inverse eigenvalue problem. Simple modifications of these 
algorithms yield 0(mn) algorithms to compute the first n -1 Schur parameters and 
to compute Q{'Df- Ce'Q{Df. The solution of (4) 

I ID(f- t)112 = IIDf- DAtH 2 = I V"DfY- -fR1t2 
2 

is now obtained by computing 

2u- lRl(QHDf) ~~~~~~~~~~~ 
As R f CeRF and F and Ce are known and easily invertible, we have to invert the 
upper nxn block of R = i,(GOG',el, e). In [11] two O(n2) algorithms are developed 
to invert R = ,(GoGH',el,e), that is to compute S = [S152i ...,Sn] E Rnxn with 
RS = I. Numerical experiments show that the following of the two algorithms 
yields better results. 

Algorithm 1 
algorithm to invert i(GoGe, el, k) 

input: N = 2k+1, f_Yj}X= 1 {j}N 
output : S= [s812 ...s]N with i(GoGH,,el,k)S = I 

tl= el, Si = ti 

for j = 1,2,...,N-1 
tj+l = 17j- 1 (J ti + -yjI itij) 
if j+1 even 
then sj+l = tj+ 

else s+i Ij.+41 
end if 

end for 

where 

J = [e2,e3, ..., eN, O], 

I = [eJ,eJ1l, ...,e2,el,ej+l?,... eN], 

I2-+ = [e2j, e2j_2, e2j-4, ..., e4, e2, el, e3, ..., e2jl, e2j+l, e2j+2, ...,eN], 

i1 = [e2j1,le2_3,ie2j_5, ... e3,el,e2,e4, ..., e2j_2, e2j, e2j+1l, ..., eN]. 



728 HEIKE FASSBENDER 

This algorithm was obtained by the observation that S2k is a permutation of the 
2kth column of the inverse of the Krylov matrix K(H, e1, 2f) and S2k+l is a permu- 
tation of the (2k + 1)st column of the inverse of the Krylov matrix K(H, e1, 2f) = 

K(H,el,2t): 

[el, He, H2e, ..., H2el]I2kS2k = e2k, 

-2 
[el, He,, H el,..., H el]I2k+ls2k+l = e2k+l. 

Since (K(H, e1, 2f))HK(H, el, 2f) is a Toeplitz matrix, the inverse T = [tl, ..., t,] of 
K(H, ei, 2f) can be computed by a simple modification of the Levinson algorithm 
yielding t, = el, t+l = u 1 (Jtj + ?Ijt)* 

3. COMPUTATION OF Ql 

In this section algorithms for computing Q1 are developed which use only real 
arithmetic and require merely O(mn) arithmetic operations. Observing the effect 
of the transformation Qi to the real and imaginary part of A = C + iS,C = 

diag(cos01, ..., cos0m), S = diag(sin01, ..., sin Om) we obtain 

Q1TCQ1 = X, 

Q1TSQ1 = Y, 

Qlel = go(l -Am 

where Q1 E JRtm <, X is a (2f + 1) x (2f + 1) symmetric pentadiagonal matrix of 
the form 

x x (D 
x x x @ 

D x x x @ 
@ x x x @ 

@ x xx 

x xx x 
@ x x x 

( x x 

and Y is a (2f + 1) x (2f + 1) symmetric bordered block tridiagonal matrix of the 
form 

x (D 
@ x xx x 

x x x xx 
x x x xxx x 

(5) e x x x x O 
x x x x x x x e 

x x x x xx 
x x xx x 

x xx x 

e xx x 
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Here x denotes any real-valued, @ any positive and e any negative matrix element. 
The elements of the second subdiagonal of X are strictly positive, the elements of 
the third subdiagonal of Y are less than or equal to zero. 

This observation motivates the following theorem. 

Theorem 1. Let n = 2f + 1 < m. Let C, S E R2mxm be symmetric matrices with 
c2 + S2 = I and CS= SC. Let u = (i,l..., Wm)T E Rm with UTU = 1. Then there 
exists a unique m x n matrix Q with orthonormal columns such that 

QTCQ = XI 

QTSQ = YI 

Qel = u, 

where X is a symmetric pentadiagonal matrix with xj+2,j > 0, and Y is a symmetric 
matrix of the desired form (5) with Y21 > 0, Y2j+3,2j < 0 and Y23+2,2j-1 = 0. 

Proof. See proofs of Theorem 3 and Theorem 4 in [11]. DH 

The existence proof in [11] constructs the matrices Q1, X, and Y columnwise in 
a Lanczos-like style from the equations 

Cqj = QlX3, 

Sq3 = QlYj' 

The first column of Q1 is given, the second column is found using the equation 
S6j = Qiyi. The subsequent columns of Qi can be computed using only the 
equation Cq Qix3. This construction leads to an O(mn) algorithm for the 
computation of Qi, X, and Y. A problem (as for every Lanczos-like algorithm) is 
the loss of orthogonality between the columns of Ql. 

In the following a different algorithm for computing Q, X, and Y is developed, 
which builds up the matrices X and Y successively by adding two new triplets 
(COS 02k, sinO2k, W2k) and (cos 02k+1, sin 02k+1, w2k+1) at a time (similar to the idea 
of the IUQR-algorithm by Ammar, Gragg, and Reichel in [2]). That is, an orthog- 
onal matrix Q is constructed such that QTei q =0 1(wi, ..., Wm)T and 

( Q )((q C ) ( s)( QH) 

=( el X - Y 

where X is a symmetric, pentadiagonal matrix with positive entries on the second 
subdiagonal and Y is a symmetric bordered block tridiagonal matrix of the form 
(5). 

For our constructions we will use the following notation (as given by Bunse- 
Gerstner and Elsner in [7]). For 1 < j < k < n we denote by Q(j, k, z) the House- 
holder transformation defined below, which eliminates the entries j + 1 through k 
in the vector z E C', i.e., 

Q(j, k, z)z E span{el,..., ej, ek+l, ...,en} 

Here we have 

Q(j, k, z) =I- 1 2vvH I IV LL1 
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where vH (O, ..., O, ;Y + (sign )O,zj, Zki 0,, 0) and oa = (El=j z I2)') If 
z is real, then Q(j, k, z) is a real matrix. Note that 

Q(j, k, z) = diag(Ij-1, Q, In-k) 

For any M E Cn,Xn the vectors consisting of the columns and rows of the matrix 
are denoted by the corresponding small letter as m*1, ..., mn and m1*, ...,Mn*I 
respectively. 0 denotes any matrix element not equal to zero, 0 denotes undesired 
matrix elements. 

In the following m = n is assumed for simplicity. For n = 3 the desired construc- 
tionis trivial. Let n > 3,rn odd. We are given u= (w1,...,Wn)T,C =diag(cl,...,cn) 
and S = diag(si, ..., sn) where c2 + s2 = 1. Assume that Q has been computed 
such that Qu = (w1, W2, x, 0, ..., >= u', and 

C QCQT ( C2 ), S =QSQT ( 52 

where X' and Y' are (nr-2) x (nr-2) matrices of the desired form. Let Q(1, n, u') 
Q(1,3,u') = Q, then we get Q1u' = (x,0,...,O)T and 

x x x 0 9 
x x x x 0 
x x x x x 
0 x x x x x 

X(= QiC'QT 09 0xx x x x X X x x x x x x 

x x x x x 
x x x x 

x x x 

x x00 
x x x x 

x x x 
x x x x x x 

x x x x 
x x x x x x 

Y(i) = Q1S'QT = x x x x x x 

x x x x x x 
x x x x x x 

x x x x 
x x x x 

Now a sequence of similarity transformation is performed to transform X(i) and 
Y(i) to matrices of the desired form. The first two steps are straightforward. Due to 
the desired form of the first columns/rows of X and Y, first we have to transform 
the first column/row of Y(i) to the desired form, then the first column/row of the 
X-matrix. Determine Q(2, n, (Y(i)) *) = Q(2, 4, (Y(i)) *) = Q2 and transform X(i) 
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and Y(j): 

x xx 0 09 
x x x x 0 0 
x x x x x 0 
0 x x x x x 

X(2) Q2X(1)Q2 x x x x x 
0 0 x x x x x 

x x x x x 

x 0 0 0 
0 x x x x 0 
o x x x x 0 
0 x x x x x x 

x x x x x x 

Y(2) Q2Y(1)Q2 0 ? x x x x x x 

0 0 x x x x x x 

x x x x x x 

x x x x x x 

Next choose Q(3, n, (X(2))*l) Q(3, 5, (X(2))*1) Q3 to bring the first col- 
umn/row of X(2) to the desired form 

x x 0 0 0 
x x- x x 0 0 
0 x x xx 0 09 
0 x x x x x 0 

Q T _ 0 x x x x x 
X(3) =Q3X(2) 3 - x x x x x, 

0 0 x x x x x 
x x x x x 

x 0 
0 x x xx 0 

x x x x0 0 
x x x x x x 
x x x x x x 

QT ?x x x x x x 
00x x x x x x 

x x x x x x 
x x x x x x 

Now different ways to further reduce X(3) and y(3) to the desired form are possible. 
One possibility is (analogous to the Lanczos-like algorithm to compute Q) to reduce 
X(3) columnwise to the desired form. If Y(3) is transformed in the same way, then 
Theorem 1 gives that y(3) is transformed to the desired form as well. Numerical 
tests solving (4) showed that such a method for computing Q did not produce good 
results for all test examples. This method which works essentially on X produced 
very poor results if the values Ok are chosen equidistant in the interval [0, ir). 

A different possibility to further reduce X(3) and y(3) is described below. We 
transform the second column Of X(3) to the desired form by Q4 Q(4, n, (X(3))*2)= 
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x x 0 
x x x 0 0 0 
0 x x x x 0 0 

0 x x x x x 0 
0 x x x x x x 

QT~~~ 0 x x x x x 
X(4) =Q4 X(3) 4 - O 8 x 

x x x x 
, 

x x x x x 

x x x x x 

x 0 
0 x x x x 

x x x x x x 0 0 
x x x x x x 0 0 
0 0x x x x x x 

T ~ 00x x x x x x 

0 0 x x x x x x 
0 0 x x x x x x 

x x x x x x 
x x x x x x 

Subsequently the second column of Y(4) is transform to the desired form by Q5 

Q(5,n, Y(4 2- Q(5, 7,(Y(4)) 2) 

x x 0 
x x x 0 
O x x xx 0 

x x x x x 0 0 
0 x x x x x 0 

X(5) Q5X(4)Q' 0 ?x x x x x 
0 0 x x x x x 

0 0 x x x x x 
x x x x x 

x x x x x 

x 0 
O x x x 00 0 

x x x x 0 0 
x x x x x x 0 0 
0 x x x x x00 

T ~ 00 x x x x x x 

Yt5) Qy'4)050 x x x x x x 
0 0 x x x x x x 
0 0 x x x x x x 

x x x x x x 
x x x x x x 
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As C + iS is unitary, Q5Q4Q3Q2QlQ(C +iS)QTQTQTQTQTQT X(5) + iY(5) = 

Z(5) is unitary; that is Z(5) Z() = I and especially Ek=l(Z(5))lk(Z(5))6k = 

(Z(5))13(Z(5))63 = 0 as well as En=l(Z(5))lk(Z(5))7k (Z(5))13 (Z5))73 = 0. 
FRom (Z(5))13 = (X(5))13 =(X(3))13 

= 0, we get (Z(5))63 = (Z(5))73 0. Thus we 
obtain 

x x 0 

x x x 0 

0 x x x x 

0 x x x x 

x x x x x 0 0 

X(5)-- X x x x x x 0 
09 x x x x x 

00 x x x x x 
00 x x x x x 

x x x x x 

xO(2 
0 x x x x 

x x x xx 0 0 
O x x x xx 0 0 Y()(8)x xx x x X 

x x xx x x 

00x x xx x x x 
00 x xx x x x 

x x x x x x 

the third columns/rows Of X(5) and Y(5) are in the desired form. Choosing 

Q6=Q(6, 8,(X(5))*4), X(6) =Q6X(5)Q 6 Y(6) = Q6 Y(5)Q 6 

and 

= ig(6 -1,JI-7)Q(7, 9,(Y(6)~),4 X(7)= Q7X(6)Q7', Y(7) =Q7y(6)Q 7, 

the fourth columns/rows Of X(5) and Y(5) can be transformed to the desired form. 
As above we can argue that the fifth columns/rows Of X(7) and Y(7) are in the desired 
form. Now we have the same situation as after the construction Of X(5), Y(5), solely 
the undesired elements are found 2 rows and columns further down. Therefore these 
undesired elements can be chased down along the diagonal analogous to the last 
two steps. This gives rise to the following sequence of similarity transformations 
to add two new triplets (CoOS2k,SinO2k,w2k), (CoOS2k+l,SinlO2k+l,w2k+1) to X'and 
yV. 
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Algorithm 2 
IUQR-like algorithm to add two new triplets (cos 02k, sin02k, W2k), 

(COS 02k+1, sinO2k+1 , W2k+1) to X' and Y' 
Q1 = Q(1, 3, u'), X - QiC'QT, y = Q1S/QT 
Q2 = Q(2,4,Y*1), X = Q2XQT, Y = Q2YQT 
Q3 = Q(3,5,X Xj), X = Q3XQT y - Q3YQT 
for j =4,...,n-2 

if j even 
then Qj = Q(j, j + 2,X*,j-2) 
else Qj = Q(j, j + 2, Y*,33) 
end if 
X = Q3XQT, Y = QjYQT 

end for 
Qn-1 = Q(n - 1,nt,X*,n-3), X = Qn-,XQT_ Y = Qn- yQT 
if y21 < 0 
then Qn+1 = diag(l, -1, In-2), X = Qn+1 XQT , Y = Qn+1YQQT 
end if 
for j = 3,..., n 

if X3,3-2 < 0 
then Qn+j = diag(13i, -l,In-j), X = Qn+3XQn+j, Qn+jYn+j 
end if 

end for 

The last statements of the algorithm ensure that 

Y21 > 0 

Xk,k-2 > 0 for k E {3, 4, 6, 8, ...,In}. 

Theorem 1 gives 

Yk,k-3 > O for k {5, 7, 9, ...,In}. 

The given algorithm can easily be modified to an O(mn) algorithm for computing 
Q, X, and Y from {Ok}lm1 and {Wkk}%l1 If m > n = 2f + 1, it should be observed 
that only the relevant n x n block in X and Y is required. For even n only one 
new pair of data has to be added in the last step; the transformation matrices Qj 
reduce to Givens rotations. For more details and the modified algorithm see [11]. 

Numerical tests solving the trigonometric approximation problem showed that 
this method for computing Q did not produce good results for all test examples. 
Choosing the Ok equidistant in [0, ir) we obtain good results. But for Ok equidistant 
in [0, 2ir) this method does not work very well. 

A detailed analysis of the method shows that in each step matrices of the form 

Xk+2,k Xk+2,k+l Yk+2,k Yk+2,k+1 

Xk Xk+3,k Xk+3,k+l Yk = Yk+3,k Yk+3,k+1 

Xk+4,k Xk+4,k+l / Yk+4,k Yk+4,k+1 

0 Xk+5,k+l Yk+5,k Yk+5,k+1 

are transformed to 
x x' y y 
O x Y Y 
O O , O 
O O 0 0 
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In our method, the first columns of Xk and Yk are transformed to the desired form. 
Theorem 1 shows that the second columns of Xk and Yk also have the desired 
form. Implicitly the fact was used that the two second columns of Xk and Yk 

are linearly dependent on the two first columns. Because of rounding errors the 
linear dependency is lost after only a few steps of the algorithm. The theoretically 
generated zeros in Xk and Yk are affected with increasing rounding errors. 

Numerical tests suggest that the dissimilar treatment of the four column vectors 
is the main reason for the increasing rounding errors. A method that uses all four 
vectors for the computation of the desired transformation could perhaps solve this 
problem (or at least diminish it). As the four vectors 

( Xk+2,k ( Xk+2,k+1 ( Yk+2,k Yk+2,k+1 

Xk+3,k Xk+3,k+1 Yk+3,k Yk+3,k+1 

Xk+4,k , Xk+4,k+1 , Yk+4,k , Yk+4,k+1 
0 / Xk+5,k+1 / \ Yk+5,k / Yk+5,k+1l 

span a two dimensional subspace of R4, the matrix 

( Xk+2,k Xk+2,k+1 Yk+2,k Yk+2,k+1 

Mk Xk+3,k Xk+3,k+1 Yk+3,k Yk+3,k+1 

Xk+4,k Xk+4,k+1 Yk+4,k Yk+4,k+1 
0 Xk+5,k+1 Yk+5,k Yk+5,k+1l 

has rank 2. Thus Mk has only 2 (nonzero) singular values ul and u2. The compu- 
tation of an SVD of Mk requires information of all 4 column vectors. Therefore the 
idea is to compute the desired transformation by an SVD of Mk. From the SVD 
Mk = UkEkVk with Uk,Vk E IR4X4 unitary and Ek = diag(o-1,u2,0,0) E R4x4 we 
obtain 

x x x x' 

Uk Mk = EkVk = XXXX . 
U7jMzzZVk= 0 0 0 

0 00 J 

A Givens rotation to eliminate the (2,1) element of UTjMk transforms this to the 
desired form 

x x x x 

( x x x 

0 0 0 0 
0 0 0 0 

Numerical tests (see Section 5) showed that this computational approach of the 
here developed method for the trigonometric approximation problem produces con- 
sistently accurate results similar to those of the method by Ammar, Gragg, und 
Reichel. 

A different way of computing the desired transformation using all four column 
vectors is the use of the rank-revealing QR decomposition of Mk [8]. With this 
approach the here developed method produces slightly poorer results than with the 
SVD approach. As the operation count for an SVD of a 4 x 4 matrix is not much 
higher than for the rank-revealing QR decomposition, all tests in Section 5 were 
done using the SVD approach. 
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4. COMPUTATION OF FR1 

In this section an algorithm for inverting the upper n x n block of ft is developed 
which uses only real arithmetic and requires merely 0(n2) arithmetic operations. 
From Section 2 we have 

R = CeRF C Rmxn with n = 2? + 1, 

R = s(G,GH', el, ) C mxn, 

F = diag(2, K, K, ..., K) Cn xnx, 

Ce = C2C4 ... C21 C ?mxm, 

C2k = diag(I2k-1, s -i,kIm-2k-l) 
L 2k C2k 2-) 

From Ce(GoGH)k = (CeGoCT)kCe and Ce(GeGH)k - (CGoCT)k Ce for 1 < k < f 
follows 

CeR = Ce[ei, GoG Hel, GeG Hei, (GoG H)2el, (GeG H)2el, ..., (GoG H)I (GeG H)Iel] 

= [el ,CeGoCT el, (CeGoCT)el, ... I (CeGoC7) ele, (CeGoCT)jel] 

= tK(CeGOCT, ,el, f), 

where $(CeGOC T, el, ?) is an upper block triangular matrix of the form 

x x x x x x x - x x 

x x x x x x * x x 

x x x x x x - x x 

x x x x - x x 

x x x x *. x x 

x( x *. x x 

x x 

x x 
0 0 

0 0 

with T = (Ce,V2Go 2C+lCT 2eel,e). 

Let S = [s1, S2, ..., S21+1] E Rnxn be the inverse of the upper triangular matrix 

TF, that is of the upper n x n block of f. Then the vectors Sk are the solutions 
of the equations TFSk = ek for k = 1, ..., n. Noting that the last n - k columns of 
TF have no influence on the solution of these equations since the last n - k entries 
in Sk are zero, we have to solve 

[el, (CeGoCe")ei, (CeGoCT)el ..., (CQGoCj )kel, (CeGoCT)kei, *]Fs2k = e2k, 

[el, (CeGoCe )ei, (C6GoCT)el, .G (CeGoCe )ke, (CeGoCT)kel, *]FS2k+l = e2k+1- 
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Tedious calculation yields (for a detailed derivation see [11]) for k = 1, 2, ..., - 1 

82k+2 = X2k+2,2k[(2Pk - X2k,2kI)82k -X2k-2,2kS2k-2 -X2k-1,2kS2k-1 

-X2k+l,2kS2k+l], 

52k+3 =x2k+3,2k+1[(2Pk -X2k+1,2k+1I)82k+l - X2k-1,2k+182k-1 - X2k,2k+182k 

-X2k+2,2k+1S2k+2] 

where the relevant first 2k + 1 columns of Pk are given by: 

Pkel = 2e3, 

Pke2 = e4, 

Pkej = ej-2+ ej+2, j = 3,4, ..., 2k + 1. 

If S1, S2, S3 are known, then S4, S5, ..., Sn can be computed from the above formulae. 
For SI, S2, S3 we have 

[el, (CeGoCT')el, (CeGoCT)el *]F[sl ,s2, s3] = [el, e2, e3] 

or 

[2ei, 2Yei, 2Xel, *] [sl, S2, S3] = [el, e2, e3]. 

This is equivalent to 

Yii Xii Sll S21 s31\ 1 0 0 
2 0 Y21 X21 0 S22 S32 1= O 1 0 

0 O x31 0 0 S33 / 0 1/ 

Thus S1, S2, S3 can be computed directly from the above equation. We obtain the 
following O(n2) algorithm for computing the inverse of the upper n x n block of R. 

Algorithm 3 
algorithm for inverting the upper n x n block of fR 

input : X,yll,Y21 
output: S = [s1, s2,...s21+l] with R1S = I 

SI = le, 
S2 = (2y2)I (-yllel + e2) 

s3 = (2x31)->(-Y2l1x21e2 ? e3-(y21yiix2i ? x11)el) 

s4 X42 [( I 
PI-X22 I) S2 - X128S - X32 S3] 

for k = 5, 6,..., 21 + 1 
if k even 
then j := (k - 2)/2 
else j := (k - 3)/2 
end if 
Sk = xkk2[(2P3 -Xk-2,k-2I)Sk-2 - Xk-4,k-2Sk-4 Xk-3,k-2Sk-3 

-Xk-I,k-2Sk-1] 
end for 

5. NUMERICAL RESULTS 

We present some numerical examples that compare the accuracy of the following 
methods for solving the trigonometric approximation problem (2): 
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- AGR: the algorithm proposed in [17] as sketched in the introduction. The 
least-squares problem (3) 1 DAc - Dg I2 = min is solved via QR decomposition of 
DA, where the desired Q-factor of the QR decomposition is computed by an inverse 
unitary Hessenberg eigenvalue problem and the inverse of the upper square subblock 
of R is computed by an algorithm closely related to the Levinson algorithm (with 
complex arithmetic). 

- ver2.1: the algorithm proposed in [11]. The least-squares problem (4) 

IlDf - DAtl 2 = min is solved via QR decomposition of DA, where the desired 
Q-factor of the QR decomposition is computed by an inverse eigenvalue problem 
for Schur parameter pencils [11, 12] and the inverse of the upper square subblock 
of R is computed by Algorithm 1 (with complex arithmetic). 

- ver4. 1 : the algorithm proposed in [11]. The least-squares problem (4) 

IlDf- DAtl 2 = min is solved via QR decomposition of DA, where the desired Q- 
factor of the QR decomposition is computed by simultaneous reduction of the real 
and imaginary part of A to a compact form (to X and Y) as discussed in Section 
3 (using the SVD approach) and the inverse of the upper square subblock of R is 
computed by Algorithm 3 (with real arithmetic). 

- linpack: The least-squares problem (4) IlDf - DAtl 2 = min is solved via 
the explicit formation of the matrix DA and the use of the LINPACK [10] routines 
sqrdc and sqrsl (with real arithmetic) 

For comparison of accuracy we compute the solution td of the system 
minr IDAt-Df D 12 in double precision using the NAG routine F04AMF. The figures 
display the relative error ft- tdl 2/ ltd I2 where t is the coefficient vector computed 
in single precision by the method under consideration. Each graph displays the er- 
rors for m = 50 and increasing values of n. The arguments of the nodes are either 
equispaced in the interval [0, 7r), [0, 3/27r) or [0, 27r) or the arguments are randomly 
generated uniformly distributed numbers in [0, 27r). The weights are all equal to 
one, the elements of the real vector f are randomly generated uniformly distributed 
numbers in [-5,5]. 

A comparison of the methods AGR, linpack and ver2.1 is given in Figure 1, 
a comparison of the methods AGR, linpack and ver4.1 is given in Figure 2. The 
graphs at the top of Figure 1 and Figure 2 display the relative errors in the coefficient 
vectors for equispaced nodes in intervals smaller than 27r. As n increases, and 
the problem becomes more ill conditioned, the LINPACK routines are the first 
to produce inaccurate results. ver2.1 produces errors that are somewhat smaller 
than AGR, while ver4.1 produces errors that are about the same as AGR. The 
graphs at the bottom of Figure 1 and Figure 2 display the relative error when 
the arguments are equispaced in [0, 27r) and when the arguments are randomly 
generated uniformly distributed numbers in [0, 27r). In the first case the LINPACK 
routines and ver2.1 produce smaller errors than AGR, while ver4.1 produces slightly 
larger errors. Note that in this case we are computing the Fourier transform and 
thus the FFT is a better method for solving this problem. When the arguments 
are randomly generated uniformly distributed points in [0, 27r) the least-squares 
problem is relatively well conditioned and the algorithms AGR, ver2.1 and ver4.1 
yield roughly the same accuracy as n gets close to m. 

We obtained similar results to those in Figure 1 and Figure 2 with other choices 
for the nodes and the weights. For more numerical examples and a more detailed 
discussion see [11]. 
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AGR 
_-. - ver2.1 
...... .linpack 

0 m = 50, equispaced arguments in [0, pi) 0 m = 50, equispaced arguments in [0, 3/2pi) 
10 , 102 

o- 10 2 1o- 

108 10 , 

10- ' 10-' I 

-8 -81 

10 10 

102 101 

124 124 

108 108 

140 10 20 30 40 50 -14 10 20 30 40 50 
10 -n - 10 

10 10~~FIUR 



740 HEIKE FASSBENDER 

AGR 
_ - _ ver4.1 
...... .linpack 

0 m = 50, equispaced arguments in [0, pi) 100 m = 50, equispaced arguments in [0, 3/2pi) 

10 102 

10 1 

10 ~106 

-10 108 

10 / 10 I0 

10 101 

-140 10 20 30 40 50 -140 10 20 30 40 50 
10 n - 10 - n 

m = 50, equispaced arguments in [0, 2pi) 0 m = 50, random arguments in [0, 2pi) 
-104 0 

2 ~ ~ ~ ~ ~ ~ UGR 2 

102 102 

o4 4A 

~ 6 o 6 
10 10 

10s 10s 

10 ~~~~~~~~~~~~~~~~~~~10 

-12 / .-12 
10 10 

j140 10 20 30 40 50 -14 10 20 30 40 50 
10 n - 10 - n 

FiGURE 2 
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The numerical experiments have shown that generally the method ver2.1 pro- 
duces more accurate results than the method AGR. On the other hand, method 
ver2.1 requires about 3 times as much time to solve the problem than method 
AGR. For the discussed examples the method linpack requires more time than the 
method AGR, and is the method that produces inaccurate results first. The method 
ver4.1 uses only real arithmetic (as opposed to the methods AGR and ver2.1 which 
use complex arithmetic). The relative errors in the coefficient vector produced by 
ver4.1 are about the same as those produced by AGR. AGR, ver2.1 and ver4.1 are 
algorithms to solve the trigonometric approximation problem in O(mn) arithmetic 
operations, while the method linpack requires O(mn2) operations. 

6. FINAL REMARKS 

This note is a partial summary of [11]. 
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