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ACCELERATED POLYNOMIAL APPROXIMATION 
OF FINITE ORDER ENTIRE FUNCTIONS 

BY GROWTH REDUCTION 

JURGEN MULLER 

ABSTRACT. Let f be an entire function of positive order and finite type. The 
subject of this note is the convergence acceleration of polynomial approximants 
of f by incorporating information about the growth of f(z) for z --+oo. We 
consider "near polynomial approximation" on a compact plane set K, which 
should be thought of as a circle or a real interval. Our aim is to find sequences 
(fn)n of functions which are the product of a polynomial of degree < n and 
an "easy computable" second factor and such that (fn)n converges essentially 
faster to f on K than the sequence (Pn)n of best approximating polynomials 
of degree < n. The resulting method, which we call Reduced Growth method 
(RG-method) is introduced in Section 2. In Section 5, numerical examples of 
the RG-method applied to the complex error function and to Bessel functions 
are given. 

1. INTRODUCTION 

Let K be a compact subset of the complex plane C. To avoid technical difficulties 
we will assume, if not otherwise stated, that K and C \ K are connected and K 
does not consist of a single point. (In fact we are mainly interested in the cases of 
K being a disk or an interval.) Moreover, by C U {oo} we denote the extended 
complex plane and we set 

Ar:{ZEC: lZl?}, A :=A. 

According to the Riemann mapping theorem there exists a uniquely determined 
conformal mapping : C \ A - C \ K such that 

00 

M(w) = cw + EcCw- (Qwl > 1) 
v=O 

and c = c(K) > 0. In this case, c(K) is the logarithmic capacity of K. 
In the sequel we will consider entire functions of finite order p > 0 and type T, 

i.e., we assume 

P = pf = lim sup log log M(r, f) (o 
--- >0o log r 

and 

r=Tf=limsuplogM(r,f <00 
r->oo r 
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where M(r, f) If lIfIAr. Let Hn be the set of polynomials of degree < n and let 

En (f, K) := inf IIf-P PIK, 
Pcfl, 

with I II IK sup Iso(z) , denote the error of best polynomial approximation of f 
zCK 

on K. The following result seems to be first established by Batyrev and may be 
found, under more general assumptions on K, in [31] or [24]. 

Theorem 1. Let K c C be a compact set as above, and let f: K -> C be a 
function. Then f is the restriction on K of an entire function of order p and type 
T if and only if 
(1) lim sup nl/P En (f, K) I/n = c(K)(epr)1/P. 

n->oo 

A sequence (Pn) with Pn e H7n for all n E N is called maximally convergent on 
K to f if the asymptotic rate of best polynomial approximation is realized by (Pn), 
that is 

lim sup n1 /PII - Pn li/n = c(K) (epT)l/P. 
n->oo 

Besides the polynomials Pn* of best approximation given by 

IIf-PnK= inf I Ilf-PIIK 

the computation of which is rather expensive, mainly two types of maximally con- 
vergent sequences (Pn) are considered: polynomial interpolants in equidistributed 
nodes and Faber expansions. We will briefly recall these two kinds of polynomial 
approximants. 

1. Let (Z(n) )nEK,k=O,...,n be an infinite matrix (the node matrix) such that 
z(n) E K for n E N0 and k = O,..., n and let 

n 
Wn(Z) = (z-z(n)) (n E No) 

k=O 

If rr = V(&Ar) is a level curve of 0-1 for some r > 1, then the (uniquely deter- 
mined) polynomial interpolant Ln (f) E fln to f with respect to the nodes z(n) may 
be expressed by the Hermite interpolation formula 

(2) Ln(Z) = Ln(f)(Z) = 1 f w72(t) - wn(z) f(t) dt (z E K) 
27ri I t - z wn (t) 

Fr 

The nodes z(n) are called equidistributed on K, if 

(3) 
11/(n+1) 

-*> c(K) (n oo). 

We refer to [9], where examples of equidistributed nodes are given. In particular, 
if K = Ar for some r > 0 and if z4n) = 0 for all k and n, then we obtain 

(4) Ln(f) = Sn(f), 

where Sn (f ) is the n-th partial sum of the Taylor expansion of f around the origin. 
2. Let K and b be as above. The n-th Faber polynomial Fn = Fn,K with 

respect to K may be defined by 

=) E Fn() (z E K). 
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By a well-known result of Kovari and Pommerenke (see [17]), there exist constants 
A > 0 and ae < 0.5 such that for every f holomorphic on K (i.e. holomorphic in a 
neighbourhood of K) 

(5) Ilf -Tn(f)| |K < AncEn(f I K),I 

where Tn(f) denotes the n-th partial sum of the Faber expansion of f, that is 
n 

(6) Tn(f) = Tn,K(f) E ak(f)Fk 
k=O 

with 

(7) ak (f ) =- " dw. 

IwI=1 

From (5) it follows that (Tn (f)) converges maximally on K to f. 
In particular, for K = Ar we have Tn,Ar(f) = S(f ), and therefore Theorem 1 

implies 

(8) limsup nl/P Hf-Sn(f )HX/ I = r(epr)l/P 
n-*oA 

(note that c(Ar) = r). Moreover, for K = [-1, 1], the n-th partial sum of the 
Faber expansion of f equals the n-th partial sum of the Tschebyscheff expansion 
of f. Since c([-1, 11) = 1/2, Theorem 1 yields 

(9) lim sup nl/P l - Tn(f)II1?n 1-(epTr)1/P. 
n -- oo2 

Two facts should be emphasized: On the one hand, the asymptotic rate of best 
polynomial approximation on K of an entire function of finite order is determined 
by the growth parameters order and type of f, and, on the other hand, information 
on the growth of f, which is often available from theoretical investigations, cannot 
be used to improve the rate of convergence for polynomial approximation of f. 

The basic idea in the sequel is the following: Use information about the growth 
of f to modify the function f in such a way that the modified f is "better" approx- 
imable on K by polynomials than f itself, and then recover f from an approximation 
of f. 

2. THE, RG-METHOD 

We first want to describe the underlying idea in the special case of K being the 
closed unit disk and the partial sums Sn of the Taylor expansion around the origin 
as approximating polynomials. 

Let, for an arbitrary power series 
00 

g(z) =E g,Z 
v=0 

around the origin, 
n 

Sn (g) (Z) = gvZ 

v=O 
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denote the n-th Taylor section of g. For g being holomorphic on Ar for some r> 1, 
we obtain from the Cauchy integral formula 

n< (r 1) 

Thus, if f is an entire function of order p and type r < o0, and if (rn) is an arbitrary 
sequence with 1 < rn - oo, we get 

lim sup n /PHif - Sn(f)Hi1"n < limsup nl/P M(rn f)1/n 
n ->oo 

A 
n -oo rn 

If r > 0 and if we take 
/n /P 

rn. = IT) 

then we find 

lim sup K, < (ep)1/p 
n --- Too rn 

Since c(A) = 1, this implies in particular that Sn(f) converges to f maximally on 
A. 

Now the simple idea is the following: We replace in the above estimates f by 
fpo, where (pn)n is a sequence of functions such that Pn is holomorphic on Ar, 
for all n E N. With p := (rn, Pn)n and 

nl/P M(rni f fn) 1/n 

(f):=lim sup- 
n-*oo rn 

we get as above 

limsup nl/pHfO -nSn(fsOn)IX ? < (pO) 
n-->oo 

If At(p) < (epr)1!P and if IOn 11/n converges to 1 uniformly on A, then the sequence 
(sOn-lSn(fsOn))n converges asymptotically by the factor (At(So)/(epr)1/P)n faster to 
f than maximally convergent polynomial sequences. 

Using (2), one can prove in a similar way (cf. [21]) the following more general 
result. 

Theorem 2. Let K c C be a compact set such that C \ K is simply connected, 
K not a single point, and let f be an entire function of order p E (0, oo) and type 
T < 00. 

Suppose further that fo := (rn, (Pn)n is a sequence such that 0 < rn -- oo for 
n -- oc and Sn is a function which is holomorphic on Arn U K. 

If (zk)nENo,k=o,...,n is a matrix of equidistributed nodes on K, then 

(10) lim sup nl/p I If n -Ln (f (Pn) I IJ/n < c(K)t( ). 
n--oo 

The estimates (1) and (10) suggest the following idea for an algorithm: 
1. Search for a sequence o = (rn, Pn)n as in Theorem 2 such that 

/-((f) < (epT)11P 

and I /n 11/n 1 locally uniformly on C. 
2. Compute an approximating polynomial Pn = Pn(f Pn, K) of f 5Pn 
3. Take p -1 Pn (f~n) as approximation of f. 
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In the sequel, we will refer to this method as the Reduced Growth method (RG- 
method). 

Looking at step 1 of our proposed algorithm, two questions arise: 

(i) Let (D be the set of all sequences sp = (rn, (pn)n as in Theorem 2 with I mIn 11/n 
1 locally uniformly on C. Can we determine 

rn=rf:=inf/1(S) ? 

(ii) If so, how can we find "easy computable" sequences fp E such that At(s)) 
m? 

To answer these questions we have to throw a closer look at f. The indicator 
function h = hf: [-ir, ir] - IR of f is defined by 

hf (,O) =lim sup log If (re ) I 
(,O E [_ 7 

This function reflects the asymptotic growth behaviour of f at infinity. In par- 
ticular, from leading terms of asymptotic expansions we may obtain hf. In the 
following we assume hf to be known. 

From the definition it follows directly that hf (t)) < T for all W. Moreover, it is a 
well-known fact (see for example [201, p. 2752 f) that actually 

-T< hf(O) < T ( E [-r,7r]) 

and that hf is continuous (with hf (-7r) = hf(w)). The crucial role in our game is 
played by 

7r 

(11) rT=Trf :=2J hf (O) dh 

The value T is intimately related to the number of zeros of f, as may be seen 
from classical results on entire functions found for example in [181, Chapter 4. Let 
nf (r) denote the number of zeros of f in Ar (counted with multiplicity). Then, if f 
is of completely regular growth (for a definition see [181, Chapter 3, or [21, Definition 
1.5.9), we have 

lim f (r) = PT 

From a result of Steinmetz ([271) it may be seen ([211) that in particular all en- 
tire functions which are solutions of m-th order homogeneous linear differential 
equations with rational coefficient functions are of completely regular growth. 

A most simple conclusion from the above cited results is the fact that always 
T > 0 (and thus T E [0, TI). The following result gives an answer to question (i). 

Lemma 3. Let f be an entire function of order p > 0 and of completely regular 
growth. Then we have 

m = (epT)llp 

For a proof of the inequality > we refer to [211. The converse inequality < follows 
for example from Theorem 6 below. 

We now turn to the question (ii) of how to find sequences (p eE (J such that 

A (s) ) (ep)/p 
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and such that the functions (pn are "easy computable". We restrict ourselves to 
sequences (Sp?) of the form Spn = e-Rn, where the Rn are polynomials. In [21], 
however, also sequences (Spn) of rational functions are applied. 

For given hf we consider a polynomial Q such that Q(O) = 0, and we set 

(12) T (Q) = Tf (Q) -max(hf (0) - Re Q(eilo)) 

Since Re Q is subharmonic on A, we find 
7r 

27 hf (0) Re Q(eiv)] dO > T- Re Q(O) = T 

-17r 

and thus 

(13) T(Q) > T. 

In the sequel we will always assume T(Q) > 0. We define 

(14) rn ((Q)p 

and 

(15) 5Pn(Z) = 5Pn,Q(Z) := exp(-rnQ(z/rn)) (z E C) 

Then it is easily seen that (p = (rn, 5Pn)n C (D and one can prove 

Lemma 4. Let (rn) and (?Pn) be defined by (14) and (15). Then we have 

(16) ,u(() < (epT(QW1lP. 

Proof. For every n E N we have rn-P log 1In(rnet") l -Re Q(ei") and thus 

log M(rn, f fPn) < max log If(rnet") I _hf (0) + max[h (0)-Re Q(ei1o) 

From Theorem 28, Chapter I, of [18] one can deduce 

lim sup max [lo0 If(rne )I -h (3) < 
n--+oc 

and therefore 
log10 M(rn, f (Pn) <TQ lim sup p <() 

n--oo 'rn 

According to (14) we find 

&(O) = lim supn (M(rn, f(Pn) / < (ep(Q))11P F 
n-+oo n 

The following is the main result of Section 2. 

Theorem 5. Let K C C be a compact set such that C \ K is simply connected, K 
not a single point and let Q be a polynomial with Q(O) = 0. Suppose further that f 
is an entire function of order p E (0, oc) and type T < oc and that (5Pn) is given by 
(15). 

1. If (z(7k)nO,k=O,...,n is a matrix of equidistributed nodes on K, then 

(17) limsup n1/P lf -(p-1Ln(f(Pn) 11/n < c(K)(epT(Q))1/P. 
n-?oo 
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2. Let S denote the set of all entire functions. If (Ta) is a sequence of operators 
T: - Hn such that there exist constants A, ai > 0 with 

(18) 1 1g-Tn (g) I I K < AnmtEn (g, K) 
for all g E 5, then 

(19) lim sup nl/p I I f - (n-l Tn (f (Pn) )HI/n < c(K)(epT(Q)) 1/. 
n--oo 

Proof. 1. Since S,n -1/n --,1 uniformly on K, the assertion of 1. follows directly 
from Theorem 2 and Lemma 4. 

2. Let Ln(fson) denote the n-th polynomial interpolant to f(pn with respect to 
the system of the Fekete nodes of K. Since the Fekete nodes are equidistributed 
on K (see for example [9]), by Theorem 2 and Lemma 4 we find 

lim sup nl' f (pn - Tn(fsPn)lI1/n = lim sup nrI/P En(f(n, K)1/n 
n--oo n--oo 

< lim sup nl/p I if (Pn- Ln(f (Pn) I$l/n < c(K)(epT(Q))1/P. 
n--oo 

Since inl-1/n __1 uniformly on K, we obtain our assertion. D 

Remark. Obviously, condition (18) is satisfied by the sequence of best approxima- 
tion operators, that is, Tn(g) is defined by 

jg-Tn(g)jIK= inf IIg-PIIK (g C H(K)) 
PEfln 

Moreover, by the above cited result of Kovari and Pommerenke (5), the same is 
true for the sequence (Tn) of the n-th partial sums of the Faber expansion with 
respect to K and therefore, in particular, in the case of K = Ar for the Taylor 
sections Sn and in the case K = [-1, 1] for the Tschebyscheff sections. 

For a finite set M C N we define 

HM:={ E avzv:aCC forvCM}, 
vEM 

i.e. HM is the set of polynomials with powers only in M. (Note that always 
Q(O) = 0 for Q C HM.) If Q C HM, then, by definition (15), we have SPn = e-Rn 

where Rn C HM for all n C N. Therefore, the approximations of f obtained by the 
RG-method are of the form 

Pn =ne n nP with Rn C HM and Pn C Hn 

Since the effort for the evaluation of the factor eRn does not increase with n we 
may regard (pl . Pn as a "near polynomial approximation" of f. Theorems 1 and 
5 show that, if T(Q) < T, we get a (geometric) acceleration factor (T(Q)/T)n/p if 
we approximate f (pn instead of f by a polynomial sequence as in Theorem 5. The 
"cost" for that is an additional multiplication by (pJ = eRn 

3. THE POLYNOMIAL Q 

We turn to the question of how to choose an appropriate polynomial Q in order 
to apply the above RG-method in an efficient way. In view of the investigations 
made in Section 2 it is natural to consider the following problem: 

Choose QM C HM such that 

(20) max(hf (t) - Re QM(e"0)) = min max(hfQO) - Re Q(e`0)) 
10 ~~~~~QEFJM Z9 
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(or at least a polynomial Q C IIM "near" QM). This is a kind of one-sided 
Tschebyscheff approximation of the (continuous and 2w-periodic) function hf by 
trigonometric polynomials without constant term. The problem may be viewed as 
a semi-infinite optimization problem and has therefore in particular always a solu- 
tion (cf. [15], Chapter 3). In our later applications it is in fact possible to solve the 
problem analytically. A method for solving (20) numerically is described in [21]. 

For the important case M = {1, ..., m} we put 

Qm := Q{,...,m} 

and obtain the following estimate. 

Theorem 6. With the notations used above we have 

?T < (Qm) < ? + 26m(hf) 

where Em(hf) denotes the error of best approximation of hf by trigonometric poly- 
nomials of degree < m. This implies in particular 

T(Qm) ) T (m * oo). 

Proof. Let tm denote the best approximating trigonometric polynomial of degree 
< m to the function hf on [-ir, ir]. If a(m)/2 is the constant term of tm, that is 

2 27r Iin( 

then 
a(m)Tr 

Tr 

Ia?2 
I = 2 I J + (tm(0)-hf (W)) O < r+ Em(hf), 

and therefore 

max [hf () - (tm(O) - aim)/2)] < T + 2Em(hf). 

Since tm - am)/2 is the real part of a polynomial in et" of degree < m without 
constant term, the assertion is proved. CH 

Remark. 1. In many interesting cases hf is a "trigonometric spline" of order p, 
which means that there exists a partition Oo < 01 < ... < 'ON= 00 + 2ir of 
[0o, fo + 2irl and constants ap bp j = 1, ...,N, such that 

hf (t) = a, cos(pt) + b, sin(pt) 

for t E [0 -19), jt and j E {1, ..., N}. In this case, hf satisfies a Lipschitz condition 
of the form 

lhf (t) - hf (t) I < clt - 0 (9,t9 E [-r, ir]) 

where c:= p .max{Iail, ..., laNI, Jb1, ..., IbNl}. Therefore, by an improved version of 
Jackson's theorem, 

Em(hf) < 2(1) E 

(see for example [31, p. 143), and thus 

T(QM) < z + 1 C (m EN) 
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2. A particular simple but, nevertheless, for our later applications very interesting 
special case is 

peN and M={p}. 

In this case we have 

QP(z) = -azP 

with some constant a = a(hf) and therefore by (14) and (15) 

(21) (Pn (Z) = e-Qp(Z) (n C N) 

i.e., SPn is independent of n. For p = 1, that is, f is a function of exponential type 
T, and in the special case K = A, we note that for Pn(fe-Q1) = Sn(fe-Q'), where 
Sn denotes the n-th Taylor section, the RG-method coincides with the method 
introduced by Gabutti and Lyness in [8] (see also [7]). Observe, however, that in 
the paper [8], the computation of a does not depend on hf, but the singularities of 
the Borel transform of f. 

4. THE POLYNOMIALS Pn 

Assume that we have found a polynomial Q such that T > T(Q) T. The 
question now is how to choose the approximating polynomial Pn = Pn (f nK) C 
Hn of f sPn on K. Since the polynomial Q does only depend on hf, we had so far no 
need to look on our compact set K on which we want to approximate f. This set K 
now plays an important role in order to choose Pn. Of course, concerning speed of 
approximation, the best possible choice is given by the sequence Pn* = Pn* (f Spn, K) 
of best approximating polynomials of f yPn with respect to K. However, in the most 
interesting cases of K being a disk or an interval, also more explicit polynomial 
approximants are known, which are essentially as good as the polynomial best 
approximations. 

It is worth while to be noted at this place that, since 

Ln (fsn) = Ln(Ln(f)Ln(son)) 

for the polynomial interpolant of degree < n in an arbitrary system of nodes (z(n)), 
the computation of Ln(fson) does not require more information about f than the 
computation of Ln(f), namely, the values of f (and, in the case of multiple nodes, 
derivatives of f) at the nodes (z(n)). 

1. The case K = Ar. Let g be holomorphic in Ar and let 
00 

g(z) = E gvz (z C Ar) 

be the Taylor expansion of g around the origin. In the case K = Ar, the Taylor 
sections 

n 

Sn (g) (Z) E gvzW (z c C) 
v=O 

represent the interpolation polynomials of degree < n to g in the equidistributed 
nodes z(n) = 0 for k - 0,... ,n as well as the n-th partial sum of the Faber 
expansion with respect to K of g. Since c(Ar) = r, by Theorem 5 we have 

lim sup n'/pIIf- n lSnS(f on)H ? r(epT(Q))1/J. 
n-4 oo 
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Another system of equidistributed nodes (z(7)) for K = Ar, where r > 1, 
consists of the (n + I)st roots of unity 

z (n) = e 27rik/(n+l) (k = O, .. *i,n, neCNo) 

([91, Chapter II). 
In our numerical examples we will only consider (for K = Ar) the Taylor sections 

Sn, since they converge practically as fast as the best approximating polynomials 
(cf. for example [131) on every Ar. If Q(z) = E a,z-' for some M C N and if (rn) 

vwEM 

and (SPn) are given by (14) and (15), then the Taylor coefficients SPk,m = (k)(0)/k! 
of 

Pn (Z)-= exp(-r"Q(z/rn)) = fJ exp(-aVzWr'-") n 
n~~~ vsEM 

may be computed by repeated Cauchy product (i.e. by repeated discrete convolu- 
tion) from the Taylor coefficients of exp(-awz"r,-"). Now, if the Taylor coefficients 
fk f f(k)(0)/k! of f for k = 0,... ,rn are known, one more Cauchy product gives 

n v 

Sn (f (Pn)(Z) Z= f (ik (P-k,n) 

v=O \k=O 

However, if the Taylor coefficients fo,. . . fn of f are computed numerically by a 
quadrature forumula or by Fast Fourier Transform (cf. [19]), then it is convenient to 

compute also the coefficients Z fksov-k,n Of f(Pn directly by a quadrature formula 
k=O 

or FFT. 
2. The case K = [a, bl. As is well-known, in the case K = [-1, 1 systems of 

equidistributed nodes are for example the zeros of the Tschebyscheff polynomials 

Z(n) = COS ((2k( 
+ 

1)7r) k = O, . .. , n, Zk 2(co n + 1)] 

or the Fejer nodes given by 

zn= cost (21r), k=0,.. ,ni 
(n) 

2k7r~~~~~~~~~~~~~(n 

(see for example [9], Chapter II). Since in the second case Zkn) = Z(n)k for k = k n-k+l k 
1, .. ., n, we have interpolation of f and f' in these nodes. 
As remarked in Section 1, the Faber polynomials for K = [-1,11 coincide with the 
(normalized) Tschebyscheff polynomials, more precisely, 

22 cos(nrarccosx), ifrn=1,2, .., 
= p if n, = 0 

for x E [-1,11 (see for example [201, p. 1103), and the n-th partial sum Tn of the 
Faber expansion equals the n-th partial sum of the Tschebyscheff expansion. Since 
c([-1, 11) = 1/2, Theorem 5 gives 

lim sup n1/P f f - o n Tn (fSom) ? (epTn(Q)) 2 

Thus we see that the smaller capacity of K = [-1,11 compared to K = A causes 
an acceleration factor of (1/2)n if f is approximated by so-jTn(fson) instead of 

n Sn (fson) on [-1,11. 
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The case of an arbitrary interval K = [a, bl with a, b C C may be reduced to the 
case K = [-1, 1] by a simple linear transformation, so that this case is essentially 
included above. In particular, for a function g holomorphic on [a, bl the n-th Faber 
section Tn(g) = Tm,fa,b] (g) with respect to [a, bl is given by 

Tn,[a,b](g)(W) =Tn,[-H1j]() (biaW -b+a) 

where 

(z) :=gb-a z+a+b) 
9( ) g t2 2 

As in the standard case [a, b] = [-1, 1] we denote Tn,[a,b] (g) as n-th Tschebyscheff 
section of g (with respect to [a, b]). 

Since the partial sums Tn of the Tschebyscheff expansion converge practically 
as fast as the best approximations on K = [a, b] (see for example [25], p. 134), 
and since, on the other hand, they have computational advantages (cf. [26]), we 
will restrict ourselves in the numerical examples for K = [a, b] to the Tschebyscheff 
expansion. In most cases, Tschebyscheff coefficients are computed numerically by 
some quadrature formula ([25], p. 148 ff) or by Fast Fourier Transform (cf. [12]). 
Of course, the same methods may be used to compute the coefficients of fyApn 
numerically. 

3. More general K. More general compact sets K (having simply connected com- 
plement C \ K) may be handled similar to the above case of K = [a, b] by choosing 
the n-th partial sum Tn of the Faber expansion instead of the n-th Tschebyscheff 
section. An efficient method for the numerical evaluation of Tn is described in [5]. 
Moreover, in [4] and [10] explicit expressions for the Faber polynomials Fn,K in the 
cases of K being a circular or an annular sector are given. 

5. NUMERICAL EXAMPLES 

In our numerical examples we restrict ourselves to the compact sets K being the 
most simple and the most important ones, namely closed circles Ar and compact 
(real) intervals. Thereby we express the numerical results in terms of (an approxi- 
mation of) the function sd defined for a compact set K c C, an entire function f 
of order p and an approximation f of f by 

(23) 
sd(K) :-sd(K;f,f) inf (-log10 If (z) - f (z) I + hf (arg z) IzIP/ log(10)). 

zCK 

This function may be viewed as an approximation of the number of signifi- 
cant decimal digits achieved by the approximation f of f on K except for neigh- 
bourhoods of the zeros of f. We hereby replace the more accurate relative error 

-log10 (f (z) - f (z))/f (z) by 

(24) 

og ohf (argz)z = - log10 If (z) - f (z)l + hf (arg z)IzIP1 log(IO) 

since in this way we can avoid problems obviously occurring near the zeros of f. On 
the other hand, sd(K) is a more suitable approximation of the number of significant 
decimal digits than the absolute error - log10 1 If- I K, since the error in sd(K) is 
normalized in sectors where f grows or decreases exponentially fast. 
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The numerical calculations were carried out in double precision Fortran, which 
gives a maximal accuracy of 16 decimal digits. As "exact" functions f we used 
certain high degree Taylor sections. 

1. Confluent hypergeometric functions. In our first numerical example we sup- 
pose f to be a confluent hypergeometric function 

K(a, c; z) := E 

where (a)o 1 and 

(a),, := a(a + 1) ... (a +v- 1) (v E N) 

is Pochhammer's notation. The confluent hypergeometric functions are of order 1, 
type 1, and have (for a : c) indicator function 

h (O) =r cos(t9), if 1t0 < ir/2 with 1= h(9 =0 elsewih= 

We apply the RG-method for the two cases M = {1} and M = {1, 2}. 
If M = {1}, then the minimax problem (20) has the solution 

Qi(z) = z/2 and T(Ql) = 1/2. 

Since p= 1 and M = {1}, the functions (Pn = e-Q' given by (15) are independent 
of n and the power series of fe-Ql is given by 

(25) 

f (z)eQl(z) = K(a, c; z)ez/ = E2O ( ! (c)(2jk) 

If we replace for K = Ar the Taylor sections Sn(f ) by ez/2 Sn(fe-Qj)(z) or if 
we replace for K = [a,b] the Tschebyscheff sections Tn(f) by ez/2Tn(fe-Q')(z) 
then, according to Theorems 1 and 5, we get an (asymptotic) acceleration factor of 

( r(Q ) r)-n =(1/2)n. 

As noted above, for M = {1} the RG-method coincides with the method intro- 
duced by Gabutti and Lyness [8] for the case of the Taylor sections. They find the 
polynomial Qi by "Symmetrization" of the indicator diagram of f, which is [0,1] 
here. 

Besides the use of Taylor sections, an efficient method for evaluating K(1, c; z) 
for complex z is given by the continued fractions expansion 

(26) K(1, c; z) a, a2z a3Z 
1+ 1+ 1+ 

where a1= 1, a2 =-1/c and 

k c+k- 1 
a2k+1 = (c + 2k-2)(c + 2k-1)' a2k+2 -(c + 2k-l1)(c + 2k) 

(see for example [16]). As is well-known, the approximants of (26) form a stair step 
sequence in the Pade table of K(1, c; z), that is, the n-th approximant 

(27) fn(z) 1 a+ a 
1+ 1+* 1 
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coincides with the ([nI1], [n])-degree Pade approximation of K(1, c; ). As may 
be found in [6], the asymptotic rate of convergence of the (m, m)-degree Pade 
approximations Rm of K(1, c; ) is given by 

lim sup (2m) I JK(1, C; )Rm I 12m = er/2. 
m-oo 

Thus, for n = 2m + 1 we find 

lim sup n I JK(1, c; -fnl JlXn = er/2. 
n--oo 

(Actually, the same is true for arbitrary n.) This is the same rate as for the Taylor 
sections Sn(f(p(')) for f(z) = K(1, c; z). Since the sum of the numerator and 
denominator polynomial degree of fn is (essentially) n, once the coefficients are 
stored, the effort for evaluating fn and Sn (fe-Ql) is essentially the same. 

In the case M = {1, 2} the minimax problem (20) is approximately solved by 

z2 

and this solution also seems to be exact (added in proof: it is exact, as was told to 
me by K. Petras). We find 

7 (Q) = 2X= 0.35 ... 

which, according to (14) and (15), yields 

(pn(Z) = (Pn,Q(Z) = exp(-- - ) 

Thus, if we use the polynomial Q instead of Ql, we achieve a further acceleration 
factor of ('r(Q)/'r(Qi))n = (i/V2)n. Moreover, since r(Q)/'r = 7r/(2v2X) - 1.1 does 
not differ essentially from 1, it is of little interest to consider any further case of M. 

In our test example we consider the (besides the exponential function) most 
prominent member K(2, 3; ) of the class of confluent hypergeometric functions, 
which is the essential ingredient of the error function by 

erf(z) =2 K( 3;z2) 
ir 2 21 

Figure 1 shows sd(Ar) as a function of r for f(z) 1ez/2S2(feQl)(z) (RG1) and 
f = P1 IS12(f p12) (RG2) as well as for f = SI2(f), the 12-th Taylor section of f 
(TS). 

We have added sd(Ar) also for f(z) = ezfI2(-Z), where f12 is the continued 
fractions approximant (27) of K(1, 3; z) (CF). (By Kummer's first identity we 
have K(2, 3, z) = ezK(l, 32; -Z)) 

Since (0.5)12 1-3.6 and (0.35)12 1 we can expect 3-4 extra significant 
decimal digits for RG1 and 5-6 extra significant decimal digits for RG2. Figure 1 
shows that these acceleration factors are actually achieved. As we have seen above, 
the asymptotic rate of convergence for RG1 is the same as for CF, but actually for 
small values of n the method RG1 turns out to be somewhat more accurate. 

Table 1 shows the values of sd(K) for several intervals K for f(z) = 
ez/2Tio (feQl-) (z) (RG1) and f = oj-Tio (f pIo) (RG2) as well as for the Tscheby- 
scheff section T1o(f) of f (TSCHS). 
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FIGURE 1. sd( (r) for f K(1/2, 3/2;*) 

TABLE 1. sd(K) for f = K(1/2,3/2; *) 

I Interval |TSCHS I RG1 I RG2| 
K= [-2,2] 8.6 11.4 12.9 

_K= [0,4] 7.7 11.9 12.7 
K = [-4, 0] 9.4 10.9 12.8 

Since (0.5)10 iO-3 and (0.35)10 i0-45, we can expect about 3 extra decimal 
digits in the RG1 case and about 4-5 extra decimal digits in the RG2 case. For 
K = [-2,2], this acceleration is realized. We find that Tn(f) behaves for small n 
on K = [-4, 0] better than theoretically expected and on K = [0, 4] not as good 
as theoretically expected. Thus, the RG-method is somewhat more effective in the 
case K = [0, 4]. 

It has to be noted that besides the computation of a polynomial (of degree 
12 or 10 in our examples), the RG1- and the RG2-method, as the method CF, 
require an additional evaluation of the exponential function. However, since in 
most algorithms for the complex error function the so-called Faddeeva function w 
is computed instead of erf (see for example [11], [23], [29]), one has to multiply by 
an exponential term anyway, so that there may be no extra effort. 

For example in the algorithm given in [23], which seems to be the state of the 
art (cf. [29]), w is computed by truncation of the power series in 

w(z) 
= e2 I + (2 + _l)___) = e-Z (l + K( ( ; z2)) 

for z in a certain neighbourhood of the origin (and in the first quadrant). The 
extra evaluation of the exponential function in the case of the RGI-method may 
be avoided by computing with f(w)e-Ql(w) = K(Q, 3; w)e-w/2 the approximation 

2 2 2izeZ2 /2 
e 2+ Sn(Jfe-Q1(z2) 
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of w(z). So, storingthecoefficientsoffe-Ql (see (25)) andevaluatingS,(fe-Ql)(z2) 
for example by Horner's algorithm may be an interesting alternative in the algo- 
rithm given in [23]. The same could be true for the RG2-method, where the higher 
speed of the polynomial approximations stands against one extra evaluation of the 
exponential function and the disadvantage that f spo depends on n. 

2. Bessel functions. In our second numerical example we are concerned with the 
Bessel functions J,\ and Y\. A fundamental system of Bessel's differential equation 
is given by 

JAZ z' (- 2)V {z\ (-A)2" JA() (z 2J E ! IF(A + V + 1)4v F(A + 1) 2 Z (A?1)v! 4v 

the Bessel function of order A of first kind, and the Bessel function of order A of 
second kind YA, defined by 

YA(z) JA (z) . cos(A7r) - J X(z) 
sin(Air) 

for A 0 2. Thus, for the evaluation of JA and Y,\ in the case A ? Z it is essential to 
compute 

00 v 

fA\(z) = oF(A? + 1; V =Z 
4 

v) O (A + 1)v u! 4" 
The functions fA are of order p 1/2 and type T= 1 with indicator function 

hf, (O) =Qh() = cos(0/2). 

For M {1}, the minimax problem (20) has the solution 

Qi(z) ZVB and w(Ql)= 
I 

as may be seen by some elementary calculus. According to Theorems 1 and 5 we 
achieve an acceleration factor of 

,r(QI)2n = (1/2)n 

if we replace the Taylor sections Sn(fA) by so`1Sn(fA\pn) or if we replace the 
Tschebyscheff sections Tn(fA\) by ypn-Tn(fA\pn). By (14) and (15) we obtain 

(Pn (z) = exp(-8n) - 

Therefore, the Taylor sections Sn(f\pOn) may be explicitly computed as 

Sn(fAPn) (Z) =E zv (_ 1) (;;) (-1)k(8n)k) 

Figure 2 shows sd(Ar) as a function of r for 

3 Z sinh(yz-) 
fl/2(z) = oFI( ; - ) = 

and f = (pjo SIO(fl/2 p1o) (RG) as well as f Slo(fi/2) (TS). 
Since (0.5)10 10-3, we can expect about 3 extra significant decimal digits for 

RG compared to TS. The numerical results show that the (asymptotic) acceleration 
factor is (at least) realized even for small n. It has to be remarked that, as in the 
first example, in the RG-case besides the evaluation of a polynomial (here of degree 
10) an extra calculation of fp`(z) = exp(z/8n) has to be carried out. However, 



758 JURGEN MULLER 

10 
12 

10 

8 .R\G 

O .. . ... ... . .. . . 
20 30 40 50 

FIGURE 2. sd(Ar) for fl/2 

since the computation of JX requires also the calculation of the factor zA, which 
in the case A E C \ Z is computed as exp(A log z), the factor exp(z/8n) may be 
integrated into this evaluation of the exponential. 

Of course, a similar argumentation applies to the case of an interval and the 
corresponding Tschebyscheff sections Tn. On this "real-variable case" we will focus 
our attention now. 

For A E N0, the Bessel functions of second kind are given by 

y ( -J2 (z) (Y + log 2 

- 7r 2 F(A + 1) [(+? + ) * A] (-z2) 

- I ([A (A k-l) (Z)2k 

7r t2J k! t2 
k=O 

Here, a is Euler's constant and 
oo m+k\ 

O/MWz := zk E 
k=O f=1 

where E 0, and * denotes the Hadamard product of power series (see for example 

[14], 9.7). Thus, the evaluation of YA for A E N0 requires a further essential 
computation of 

gA :=(/o+?$'A)*fx, 

for which it may also be shown that 

h9\ = hfA = h. 

In many applications (for example series expansions in Bessel functions) one needs 
arrays { Jo (z), . . . , JN(Z) } and {Yo (z),... YN(Z) } of Bessel functions of first and 
second kind. Such arrays are usually computed by recurrence relations. Since the 
2-term recurrence in ascending order 

JA+1i(z) = ZJA (z) - JA-1(z) 
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is in general numerically unstable, one applies recurrence in descending order for 
the computation of Bessel functions of the first kind JA. This leads to the so-called 
Miller algorithm (cf. [28]). On the contrary, Bessel functions of the second kind YA 
may be computed stably by using the recurrence formula in ascending order 

2A 
YA+l(z) 

= 
zY) - YA( 

- l(Z). 

Thus it is of fundamental importance to find effective methods for the calculation 
of Yo and YI. As we have seen above, the functions Y0 and Yf are essentially built 
up from the four entire functions of order 1/2 

fo = OF, (I; 4 , f, = OF, (2; 

and 

go = 20o* fo , gi = (Oo+ 1) *fi 

all having indicator function h. Therefore, if we apply the RG-method, one poly- 
nomial Q applies to fo, fl, go and gi. As in the case A E C \ 2, we get for M = {1} 

Q1(z)= Z and T(Q1)= r 

In the numerical examples for the evaluation of fo, fl, go and gi we restrict ourselves 
to the real variable case, namely K is one of the intervals K1 = [-50, 0] and 
K2 = [-100, 0]. Intervals on the negative half axis play the most important role 
since approxmations of fo, fl, go and gi on the negative half axis are needed for 
the approximation of Y0 and Y1 on the positive real axis. In our examples of 
K1 = [-50, 0] and K2 = [-100,0], respectively, the approximations of fo, fl, go 
and g, yield approximations of Y0 and Yi on K1 = (0, 50] and k2 = (0,10], 
respectively. 

Tables 2-5 show the approximations of the significant decimal digits sd(KI) and 
sd(K2) for the functions f E {fo, fl, go, g,} and the approximants Tio(f) (TSCHS) 
and fppjTIo (fi10). 

The numerical results show that the expected acceleration factor (0.5)10 -3 

is actually achieved. 
Besides the evaluation of a polynomial of degree 10, the RG-method requires 

the computation of the exponential factor fp-0(z) = exp(z/80). However, the ex- 
tra evaluation of the exponential function need only be carried out once for the 
approximation of fo, fi, og and gi. 

Although we have here only considered the real-variable case, similar results may 
be obtained for K = Ar. Moreover, in [21] the RG-method is also applied to Bessel 
functions by using a sequence of multipliers ((pn)n consisting of rational functions, 
and to the Airy function. 

TABLE 2. sd(K) for fo 

Interval I TSCHS | RG| 

K1 9.7 12.7 

-K2 6.6 9.3 
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TABLE 3. sd(K) for fi 

[Interval ] TSCHS I RG| 
K_ 10.7 14.7 

K2 7.6 11.1 

TABLE 4. sd(K) for gi 

[ Interval I TSCHS| RG I 
K1 8.9 11.8 
K2 | 5.8 8.4 

TABLE 5. sd(K) for gi 

Interval I TSCHS ] RG 
K1 10.0 13.7 
K2 6.9 10.0 

Finally, we mention the articles [30] and [22] where an alternative method for 
convergence acceleration of entire functions of finite order is described. 
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