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ON INTEGER CHEBYSHEV POLYNOMIALS 

LAURENT HABSIEGER AND BRUNO SALVY 

ABSTRACT. We are concerned with the problem of minimizing the supremum 
norm on [0, 1] of a nonzero polynomial of degree at most n with integer coeffi- 
cients. We use the structure of such polynomials to derive an efficient algorithm 
for computing them. We give a table of these polynomials for degree up to 75 
and use a value from this table to answer an open problem due to P. Borwein 
and T. Erdelyi and improve a lower bound due to Flammang et al. 

1. INTRODUCTION 

Let dn denote the lowest common multiple of 1,2,... ,n. The prime number 
theorem may be stated as 

lim 1og(d) = 1. 
n-*oo fn 

Let Zn[X] be the set of polynomials of degree less than or equal to n with integral 
coefficients, and let I be the function that maps a polynomial P(X) onto f' P(x) dx. 
It is easy to see that 

(1) ~~~~~~I (Zn-l1 [XI) = d 

Nair [Nai82] used this property to show that dn > 2n for n > 9, by considering 
the polynomial Xn(j - X)T. This method may be refined as follows. Assume that 
P(X) is a polynomial of degree k > 0 with integral coefficients and such that 

IPI =max J() 
tE[O,1] 

is small. Since P is non-zero, we have I(P2n) > 0, for any nonnegative integer n. 
By (1), this implies the inequality d2kn+1 > 1PIK1o2n from which we deduce 

lim inf log(dn) > klog IIPII. 
n-*oo n k 

This motivates the study of the polynomials Pk E Zk [X] and the quantities Ck such 
that 

(2) pezkkX\ min HiPKl, and Ck =- 0 ogPkllK, 

for positive integers k. According to [BE95], the polynomials Pk are called integer 
Chebyshev polynomials in the interval [0, 1]. In [Ber88] these polynomials are also 
called polynomials of minimal diophantic deviation from zero. 

Received by the editor October 18, 1995 and, in revised form, May 3, 1996. 
1991 Mathematics Subject Classification. Primary llJ54, 11-04, 41A10, 41-04. 

( 1997 American Mathematical Society 

763 



764 LAURENT HABSIEGER AND BRUNO SALVY 

Much is known about these polynomials and their asymptotic structure. It was 
proved by Snirelman (see [Ber67]) that the sequence (Ck)kEN* converges to a limit 
C; Borwein and Erdelyi [BE95] showed that C E (0.8586616,0.8657719); and the 
lower bound was improved by Flammang to 0.8591282 [Fla95, FRS95]. Therefore 
one cannot prove the prime number theorem in this way. However the problem of 
finding the integer Chebyshev polynomials in the interval [0, 1] is interesting in itself. 
(See [BE95, Mon94] and the references therein. In particular, Borwein and Erdelyi 
state in [BE95] that "Even computing low-degree examples is complicated.") 

In this paper, we first prove two lemmas that halve the degree of the polyno- 
mials we need to look for. This step enables us to compute polynomials of larger 
degree but we cannot guarantee to find them all anymore. We then describe sev- 
eral techniques to derive an efficient algorithm for computing these polynomials for 
moderate degree. We give a table of these polynomials for degree up to 75 and use 
a value from this table (P70) to answer an open problem from [BE95] and improve 
the lower bound on C. 

2. STRUCTURE OF THE POLYNOMIALS 

The set 

Ek = {PE Zk[X P(1 - X) = (_j)kP(X)} 

is related to our problem by the following two lemmas. 

Lemma 1. For any nonnegative integer k, we have 

E2k = Zk[X(1 - X)] and E2k+1 = (1 - 2X)2k[X(l - X)] 

Proof. We first show by induction on k that E2k = Zk[X(l- X)]. The case k = 0 
is trivial: Eo = Z = Zo[X(l - X)]. Let k be a positive integer and let P be in 
E2k. The polynomial P(X) - P(0) vanishes when X equals 0, and when X equals 
1, by symmetry. Therefore the quotient Q(X) - P(X)-P(O) is a polynomial in X 
of degree at most 2k - 2. Besides, the polynomial Q belongs to E2k-2. Applying 
the induction hypothesis to Q then gives the desired result for P. 

If P belongs to E2k+1, we have P(1/2) = -P(1/2) = 0, which shows that 1- 2X 
divides P(X). The polynomial Q(X) = P(X)/(1 - 2X) then belongs to E2k and 
we can use the first part to complete the proof of the lemma. O 

Lemma 2. For any positive integer k, there exists an element F of degree k in Ek 

for which 
1 

Ck = --log JIFII. k 

Proof. Let k be a positive integer and P a polynomial of degree less than or equal 
to k, with integral coefficients such that Ck = -log IIP K. /k. Let us define two 
polynomials Qi and Q2 with integral coefficients by 

(3) Q1(X) = XP(X) + (_l)k(l - X)P(1 -X) 

(4) Q2(X) = (1 - X)P(X) + (-1)kXP(1- X). 

By construction, we have Qi(X) = (-1)kQ(1 - X), for i = 1, 2. For any element 
t in [0, 1], notice that 

IQW(t)l < t IIPIlOO + (1 - t) lIPIioo = IIPII.O 
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which implies that IIQiIIKo < II P1 o , for i = 1, 2. 
At least one of the polynomials Qi is non-zero, since otherwise P(X) would be 

solution of a linear system with determinant (_j)k (2X - 1) 54 0, which would 
imply P = 0. We then take F = Qi to complete the proof of the lemma. D 

3. COMPUTATION OF MINIMAL POLYNOMIALS 

We now describe the techniques we use to compute a polynomial Pk of degree k 
satisfying (2) for k up to 75. The outline of the algorithm is as follows: 

1. Find a good upper bound for IIPk IKI; 
2. Use this bound to deduce polynomials that are necessarily factors of Pk; 

3. Perform an exhaustive search for the missing factors. 

We now review these stages in detail. 

3.1. First upper bound. A good bound is given by 

Ck = Mm IIPpPk-pI|K.o 
O<p<k 

For 56 out of the first 75 polynomials, Ck turns out to be optimal, which means 
that a minimal polynomial of degree k has been found. However, we do not have 
this information a priori. 

3.2. Bounds and factors. The second stage of the algorithm is iterative. Each 
step attempts to prove the existence of a factor of Pk starting from Ck and a known 
factor F of Pk. Initially, F = 1 if k is even and F = 2X - 1 otherwise. By 
Lemmas 1 and 2, we concentrate on finding factors of a polynomial G E 2[X], such 
that Pk(X) = F(X)G(X(1 - X)). We denote by g the degree of G. 

Since IPk(x)I is bounded by Ck on [0,1], it follows that for all x E [0,1/4], 

(5) IG(x) IF(u(x))i < Ck, with (x) - 1- 1 x 

As G has integer coefficients, this inequality can often be used to prove the existence 
of factors of the form qX -p (p and q integers, 0 < p/q < 1/4) when F(u(p/q)) 7& 0, 
for then it is sufficient to check that 

C F(u(p/q)) I ck< qg 

which implies q9 G(p/q)j < 1. This technique extends to multiple factors via 
Markov's inequality on the r-th derivative of any polynomial P of degree n with 
real coefficients: 

am<axIPf)(rix1 ? (2' n 2(n 2-12)... (n2- (r- 1)2) 

where (2i+ 1)!! = 1 3 .5 ...(2i+ 1). 
In practice, we use these bounds with p/q E {1/4, 1/5} to find factors (4X - )a 

(5X - I)b of G, corresponding to factors (2X - 1)2a, (5X2 - 5X + 1)b of 
the polynomial Pk. This technique also applies to p/q = 0, yielding factors 
Xc(1-X)c of Pk, but we rather use another bound derived from [BE95]. If Pk(X) = 
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Xk-PQ(X) with Q(0) + 0, then 

IQ(0)I I ,2p? (kp ) Ck- 

This yields factors XC(1 - X)c by Lemmas 1 and 2. 
The advantage of the bounds above is that their computation can be performed 

rather efficiently. However, they generally fail to yield all the factors of Pk. One 
reason for this is that they do not really take into account the known factor F, 
except for its value at u(p/q). To get tighter bounds on the value of G at a given x, 
we then turn to Lagrange interpolation. If xO, ... , x9 are g + 1 distinct points 
in [0, 1/4], then 

G(x) = E G(xi)fJ x x 

i=o j7Xi - xi 

If the points x; are chosen so that F(u(xj)) + 0 for j 0, ... ,g, it follows that 

(6) IG(x) I < Ck Z F(u(j))j I 7 i Xi j 

This gives a bound on IG(x)l for any x E C, which can be further improved by 
finding a set {xo, ... , xg } which minimizes the right-hand side of (6). It turns out 
that it is not necessary to spend much time finding a global minimum, but that a 
few iterations of an optimizing scheme produce excellent results. 

More generally, bounds on values of the polynomial help find factors of G of 
any degree. If A(X) = a0Xn + ?+ an is an irreducible polynomial with integer 
coefficients, a necessary and sufficient condition for A to be a factor of G is that the 
resultant of A and G be zero. Since this resultant is an integer, denoting a,,... , an 

the roots of A, this condition is equivalent to 

(7) 1ao 9 G(aj)j ... G(aen) < 1. 

Thus for each irreducible polynomial A(X) such that A(X(1 -X)) occurs as a factor 
of one of the Pp's, p < k, we compute its roots ali, . . ., an numerically and bound 
the left-hand side of (7) using Lagrange interpolation as above for each IG(oaj) . In 
practice, this works well for A(X) = 29X2 - liX + 1 which occurs frequently. 

During this stage of the algorithm, every time a factor is found, F and g are 
updated, leading to better estimates in the inequalities above, and the whole process 
is started over again, until no more factors are found. 

3.3. Exhaustive search. For 25 out of the first 75 polynomials, the quest for 
factors described above is sufficient to determine all the factors of Pk. In the other 
cases, we still have to determine a missing factor. By plugging values of x in (5), 
we get linear inequalities satisfied by the coefficients of the factor G. Sufficiently 
many of these inequalities define a polyhedron whose interior integer points we have 
to determine. We have not found any reference to an efficient algorithm for doing 
so (except [KNA94] in dimension 2). 

We solve this problem by using a simplex method to compute bounds on each 
coordinate. Then if the size of the bounding polyrectangle is not too large, we 
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check each of its points to see whether it belongs to the polyhedron. For larger 
polyrectangles, we select the variable with least variation and apply recursively 
the same technique for each of its possible values. Empirically, it appears that it 
is better to compute the coefficients of the reciprocal polynomials in the basis 1, 
(X -4), (X -4) (X -5), . .. instead of the coefficients of the polynomials themselves. 

4. A NEW FACTOR AND ITS CONSEQUENCES 

Table 1 shows the first 75 integer Chebyshev polynomials. For each degree we 
give only one polynomial, even when several exist. The notations are 

A1 = X(l-X), A2 = 1 - 2X, A3 = 5X2 - 5X+ 1, 

A4 =6X2-6X+1, A5= 29X4 - 58X3 + 4OX2 -11X + 1, 

A6 =(13X3 - 20X2 + 9X - 1)(13X3 - 19X2 + 8X - 1), 

A7 = (31X4 - 63X3 + 44X2 - 12X + 1)(31X4 - 61X3 + 41X2 - liX + 1), 

A8 = 4921X10 - 24605X9 + 53804X8 - 67586X7 + 53866X6 

-28388X5 + 9995X4 - 2317X3 + 338X2 - 28X + 1. 

When expressed in the variable u = X(1 - X), these polynomials become 

A1 = u, A2= 4u - 1, A3=5u-1, A4=6u-1, A5= 29u2 - llu+ 1, 

A6= 169u3 - 94U2 +17u- 1, A7= 961u4 - 712u3 + 194u2 -23u + 1, 

A8 = 4921u5 - 4594u4 + 1697u3 - 310U2 + 28u - 1. 

Almost all these factors were already known to occur in integer Chebyshev poly- 
nomials. The most surprising result is the factor A8 which divides P70. This factor 
gives a negative answer to the following open problem from [BE95]: 

Do the integer Chebyshev polynomials on [0, 1] have all their zeros 
in [0,1]? 

The polynomial P70 has four non-real zeros. The derivative of A8 however has all 
its zeros in [0, 1]. 

The factor A8 can also be used to improve the bound on C. Following the lines 
of [BE95], we use a simplex method to compute ai,... ,I lo and c such that: the 
system 

10 

Eaoi log I Ai (xj)l < c, j=1...,n, 
i=l 

is satisfied; c is minimal; the aei's are nonnegative and constrained by 

10 

E i deg(Ai) = 1; 
i=l 

the polynomial Ag is taken from [BE95]: 

941[X(1 - X)]4 - 703[X(1 - X)]3 + 193[X(1 - X)]2 - 23X(1 - X) + 1; 
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TABLE 1. Integer Chebyshev polynomials of degree up to 75 

k Ck Polynomial k Ck Polynomial 
0 -Oc 1 38 .8400137109 A14A6A2 

1 0 A2 39 .8488877225 A13A5A2A5 

2 .6931471805 A1 40 .8404640658 A13A26AA5 
3 .7803552046 A1A2 41 .8465081502 A14A25AA5 
4 .6931471805 A2 42 .8440344532 A14A6A2A5 
5 .8047189562 A2A2 43 .8449879864 A14A5A3A5 
6 .7803552047 A2A2 44 .8455791880 A15A6A2A5 
7 .7991843140 A3A2 45 .8398268629 A15A7A2A5 
8 .8010279578 A3A2 46 .8468722310 A16A6A2A5 

9 .8316158874 A31A2A3 47 .8430715282 A15A5A2A2 
10 .8047189567 A41A2 48 .8491690644 A16A6A3A5 

11 .8109727374 A41A2A3 49 .8457300825 A16A7A2A4A5 
12 .8235466006 A41A2A3 50 .8448129844 A16A6A2A2 

13 .8090328223 A41A2A2 51 .8473273518 A17A7A3A5 

14 .8405593722 A15A2A3 52 .8464778545 A17A28AA4A5 
15 .8163003367 A51A3A3 53 .8494236563 A18A7A3A5 
16 .8268434981 A61A2A3 54 .8441650118 A18A2A3A5 
17 .8311026953 A16A3A3 55 .8469319238 A19A7A3A5 
18 .8316158595 A61A2A2 56 .8457325337 A19A2A3A5 
19 .8400137111 A17A3A3 57 .8464270507 A19A7A4A5 
20 .8288579250 A61A2A3A5 58 .8471145416 A20A2A3A5 
21 .8303936176 A81A3A3 59 .8468162432 A19A7A3A2 
22 .8322820522 A81A4A3 60 .8483301990 A21A2A3A5 
23 .8385504326 A81A3A2 61 .8462840938 A20A7A3A2 

24 .8378960676 A9A42A3 62 .8488367522 A21A2A4A5 
25 .8448129844 A81A3A3A5 63 .8463191193 A210A7A3A5A6 

26 .8338173096 A9A42A2 64 .8477264811 A21A2A3A2 
27 .8434645771 A9A2A3A5 65 .8478630743 A22A2A4A5 
28 .8405595853 A10A4A2 66 .8489400289 A212A2?A3A4A5 
29 .8356309576 A11A2A3 67 .8492102067 A23A2A4A5 
30 .8398858116 AI0A 4A3A5 68 .8468222183 A213A2?A3A4A5 
31 .8358028746 A11A25A2 69 .8471956204 A22A29A3A5A6 
32 .8412151163 A11A42A3A5 70 .8467991413 A212A8A2A5A8 
33 .8406807538 A12A5A2 71 .8472585205 A124A21A3A4A5 
34 .8461748302 A11A24A2A5 72 .8499040059 A213A28AA5A6 
35 .8388555719 Al1A52A3A4A5 73 .8499191960 A24A9A4A2 
36 .8409740145 A12A24A2A5 74 .8486911214 A123A8A4A5A7 
37 .8431610719 A12A5A3A5 75 .8487246297 A124A92A4A5A6 

the polynomial A10 is 

34X4 - 68X3 + 46X2 - 12X + 1, 

which was found by considering polynomials with small coefficients in the ba- 
sis 1, (X - 4), (X - 4)(X - 5),...; and the xj's are (numerous) points in [0, 1/2]. 
After further optimization starting from the result of the simplex method, we obtain 
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(a1, ,alo) 

- (.3185482277,.1173845553,.0387135327,.0015952503,.0151308163, 

.0056051138, .0023845110, .0004709314, .0057932925, .0001539332). 

From this computation we deduce a polynomial 

Q _ A3185482277 173845553 387135327 15952503 
151308163 56051138 A3845110 . A4709314 . 57932925 1539332 

of degree d- 101 -5 such that 

- log IQl 0.85925028052498171737548368. 

Then since H1Pndjj. <- I?Qnll , we get the following improvement on the known 
lower bound 0.8591282. 

Theorem 1. The constant C satisfies 

C > 0.85925028. 

5. CONCLUSION 

All the computations have been performed using the computer algebra system 
Maple. By implementing the same techniques in C, one would probably find at 
most ten more polynomials, at the expense of a much longer programming time. 
However, it is clearly much more effective to look for better algorithms. 

Currently, the bottleneck of the computation is the last part, which is hopeless 
if the degree of the missing factor is too high (our limit is 24, corresponding to 
thirteen undeterminate coefficients in X(1 - X)). Sophisticated techniques from 
integer linear programming might help. 

Also, it is crucial to find as many factors as possible before this stage. In practice, 
we almost always know what the best polynomial is, the problem lies in proving it. 
In particular, in almost all cases, the use of bounds as described in this paper is 
not sufficient to determine the maximal exponent of the factor X(1 - X). Further 
work on this part should help. 
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