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RATIONAL EIGENVECTORS IN SPACES OF TERNARY FORMS 

LARRY LEHMAN 

ABSTRACT. We describe the explicit computation of linear combinations of 
ternary quadratic forms which are eigenvectors, with rational eigenvalues, un- 
der all Hecke operators. We use this process to construct, for each elliptic 
curve E of rank zero and conductor N < 2000 for which N or N/4 is square- 
free, a weight 3/2 cusp form which is (potentially) a preimage of the weight 
two newform OE under the Shimura correspondence. 

INTRODUCTION 

If E is a modular elliptic curve over Q with qE its associated weight two newform, 
an interesting problem is to construct explicitly a weight 3/2 cusp form which is 
sent to qE by the Shimura correspondence. Tinnell [19], Frey [8], Bungert [3], 
and the author [12] have used such cusp forms to provide information about the 
group of rational points on twists of specific elliptic curves. (Koblitz uses Tunnell's 
result as the motivation for an introduction to elliptic curves and modular forms, 
particularly those of half-integral weight, and we refer to his book [10] for more 
details on this problem.) 

One method of constructing weight 3/2 modular forms, which the author em- 
ployed in [12], uses quadratic forms in three variables. In [13], we demonstrated a 
practical method for finding all ternary quadratic forms associated with modular 
forms of a given level. In this article, we consider further the connection between 
quadratic forms, modular forms, and elliptic curves from the computational view- 
point. Our main result is the following: For every isogeny class of elliptic curves E 
having rank zero and conductor N < 2000 such that either N or N/4 is squarefree, 
there is an explicitly computed weight 3/2 cusp form, arising from the ternary qua- 
dratic forms in a genus which depends on invariants of E, which is a candidate for 
being a preimage of qE under the Shimura correspondence. (See Theorem 1 below 
and the remarks which follow it for a more precise expression of this result.) 

1. HECKE OPERATORS ON TERNARY FORMS AND MODULAR FORMS 

In this section, we briefly recall the necessary background on ternary quadratic 
forms and their associated modular forms. We refer to a positive definite quadratic 
form f(x, y, z) = ax2 + by2 + cz2 + ryz + sxz + txy whose coefficients are integers 
having no common divisors as a ternary form. The matrix of f is A = Af = 

[2t 2b r . Following the conventions of [13], we define the discriminant of f to 
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be d = det(A)/2 and its level to be the unique integer N such that NA-1 is the 
matrix of a ternary form. Ternary forms f and g are said to be equivalent over 
a ring R if there is an R-unimodular matrix U (a matrix with entries in R whose 
determinant is a unit in R) such that Ag = UAf Ut. Two ternary forms are in the 
same class if they are equivalent over Z. They are in the same genus if they are 
equivalent over 7p for all primes p and over the real numbers. This is the case if 
and only if the ternary forms have the same discriminant and level and the same 
collection of genus symbols. (See [13, p. 410] for the definition of genus symbols.) 

Now consider a genus of ternary forms of level N, with G = ..l, .. , fn} as class 
representatives. Let M be the complex vector space having G as a basis. Then 
there is a commutative family of linear operators on M, T = {Tp I p prime, p t N}, 
which we refer to as Hecke operators. We can define Tp as follows (see [1] for more 
details and references): For each f E G, the congruence f(x, y, z) -0 (mod p) is 
a nonsingular conic over Fp , call it SP(f), and so contains p + 1 points. For each 
point P on Sp (f), there is a Z-unimodular matrix U such that the first row of U, 
viewed as a point in projective space over Fp, is the same as P, and such that 

L2p2a pt si [2a t s 
UAf Ut pt 2b r with a, t E Z. Then let A9= t 2b pr be the matrix of 

s r 2c 
9 s pr 2p2cJ 

a ternary form g. One can show that f and g are in the same genus and that the 
class of g depends only on the point P and the class of f. Denote the class of g by 
P(f). So now we can define Tp by setting Tp(fi) = ZPES (f ) P(fi) for 1 < i < n 
and extending Tp to M by linearity. 

We are interested in finding rational eigenvectors in M, that is, eigenvectors 
which have rational eigenvalues under each of the Hecke operators. We note some 
useful facts about eigenvectors in the following two propositions. 

Proposition 1. Let g = EZ=1 eifi be an eigenvector of Tp (for some prime p t N 
as above) with eigenvalue A. Then A is an algebraic integer which is rational if each 
cei is rational. Furthermore IAI < p + 1 and A = p + 1 if E=ni aj74 0. 

Proof. If B = [bij] is the representation of Tp with respect to the basis G, then each 
bij is a nonnegative integer and for all j, En=1 bij = p + 1. The first statement in 
Proposition 1 is then obvious. For the second, consider the sums En= IAci I and 

Ei=1 Aoti E 

We will denote the subspace of M consisting of all En= I ifi with En=1 i = 0 
as S and refer to these as cusp vectors in M. It is easy to see that S is invariant 
under all Tp. The fact that the Hecke operators in T commute allows us to conclude 
the following: 

Proposition 2. Let V be a subspace of M which is invariant under all operators 
in T. For a specific prime p and some A E C, let W be the A-eigenspace of Tp in 
V. Then W is also invariant under T. 

Proof. If w is any element in W, then for any prime q, Tp(Tq(w)) = Tq(Tp(w)) = 

Tq(Aw) = ATq(w). Thus Tq(w) E W by definition. E 

If f is a ternary form with level N and discriminant d, then the complex function 
on the upper half-plane defined by 

00 

Of (Z) E e27if (k,l,m)z = anqn I where q = e27riz, 

(k,l ,m) Z3 n=O 
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is a modular form of weight 3/2, level N, and character Xd [17]. The latter expres- 
sion is called the q-expansion of Of. Modular forms of the same weight, level, and 
character are equal if their q-expansions are identical for sufficiently many terms, 
depending on the level of the forms [15]. For any prime p, there is a Hecke op- 
erator T(p2) which takes a form Of to another modular form of the same weight, 
level, and character. For p I N, we can define T(p2) in terms of the q-expansion of 
of by T(p2)Of - -O ap2nnq. (See [10] for the more general definition of Hecke 
operators, and for more details on these terms.) 

If M is spanned by a genus G = {f , ... , fn} of ternary forms of level N, then 
there is a linear map, which we will denote by e, from M into a space of modular 
forms, determined by sending each ternary form f E G to the modular form Of/2. 
We will denote the image of M as M in general. Because Of - Og is a cusp form if 
f and g are in the same genus [16], it is easy to see that the image of S under E3, 
call it S, is the subspace of cusp forms in M. Results of Eichler [7] and Ponomarev 
[14] (see also [3, Prop. 4]) indicate that the Hecke operators Tp defined on M are 
essentially the same as T(p2) on M, that is, for primes p t N that e)oTp = T(p2)oE. 
In particular, an eigenvector in M is mapped to an eigenform in M (or to zero, as 
noted in Theorem 1 below). 

2. RATIONAL EIGENVECTORS ASSOCIATED TO ELLIPTIC CURVES 

We now note some connections between certain elliptic curves and eigenvectors 
in specific spaces of ternary forms. Let E be a representative of an isogeny class 
of modular elliptic curves over ?Q and let qE be its associated weight two newform. 
Suppose that E has even rank and that its conductor is of the form N = 2eQ where 
Q is an odd, squarefree integer and 0 < e < 3. For each prime p t N, let AP be the 
eigenvalue of qE under the Hecke operator T(p). For p I N, let ep be the eigenvalue 
Of qE under the Wp involution. Define a squarefree integer a by saying that p 1 a 

if and only if ep = -1. We will say that a is the genus number associated to the 
collection {Ep} (or to OE or to E). Since E has even rank, it is conjectured that 
rf eP = -1 or equivalently that a has an odd number of prime factors. (See [18] for 
more details on these operators.) 

To E, we associate a genus of ternary forms in the following way. Let the level of 
the genus equal 2'Q and the discriminant equal 25Q2 where r and s are as follows: 
If e = 0, then r = 2 and s = 4; if e = 1, then r = 2 and s = 2; if e = 2, then r = 3 
and s = 4; and if e = 3, then r = 4 and s = 5. For a ternary form f of this level 
and discriminant, the relevant genus symbols are (f/p) for all p I Q, and if e = 0, 
(f/4) (but in that case, (f/4) must be -1) [13, Prop. 5]. In each case, choose 
(f/p) to be ep(-2s/p). Let M(N, y) be the space spanned by all classes of ternary 
forms in the genus having level, discriminant, and genus symbols as defined here 
(with S(N, y) its subspace of cusp vectors, and so forth). 

In the case in which e = 0, the fact that (f/4) = -1 implies that any cusp form 
in S(N,<y) has the form En=1 anqn) where an = 0 if n _ 1 or 2 (mod 4). Thus 
S(N, -y) is a subspace of the space denoted as S3/2(N) in [11]. In general, this space 
is not invariant under the operator T(22) as defined above, but Kohnen defines a 
revised operator, which we will denote by T'(22), for this space (see [11, p. 42] for 
the definition of this operator). 

We can now state our main result as follows: 
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Theorem 1. For every isogeny class of elliptic curves E of even rank and conduc- 
tor N = 2eQ < 2000, with genus number -y, there is an explicitly computed rational 
eigenvector g E M4(N, y), unique up to scalar multiplication, having eigenvalues 
the same as those of qE for small primes. Furthermore, A = A(z) = 0(g) has the 
following properties: 

(1) A 54 0 if and only if E has rank zero. 
(2) If e = 0, then T'(22)A = A2A. 
(3) If e = 1, then T(22)A= =-2A. 
(4) If e = 2, then T(22)A = 0. 

(5) If e = 3, then T(22)A(2z) = 0. 
(6) If an odd prime p divides -y, then T(p2)A = A. 

Proof. The proof is mainly by direct computation, but we describe the general 
method used to establish this result. Let G = .fil... , fn} be a basis for Vo = 
M(2eQ, -y). Writing the primes not dividing 2Q in increasing order as P1, P2.... 

let Vi be the Api-eigenspace of Tp, in Vi-1, for i > 0. If Bi is the representation 
of Tpt with respect to G, a basis for Vi can be found by solving the homogeneous 
system (ApIj - Bj)X = 0. It is clear that each element in such a basis can be 
taken as a rational linear combination of G. By Proposition 2, each space Vi is 
invariant under all operators in T. By direct computation, we have shown that for 
some i > 0, dim Vi = 1 and so any nonzero element g E Vi is an eigenvector under 
all Tp E T, with a rational eigenvector in each case. 

The first five statements about A = (9g) are also established computationally by 
calculating sufficiently many terms in the q-expansion of A. (Note that statement 5 
says that each term of even exponent in that q-expansion has coefficient 0.) State- 
ment 6 is shown without computation by establishing a one-to-one correspondence 
between solutions of f (x, y, z) = n and of f (x, y, z) = p2n if f is a ternary form for 
which the genus symbol (f /p) is equal to -(2S/p) (which is the case if p ty). The 
details are omitted. D 

Remarks. We used published [4] and unpublished [6] tables of Cremona for the 
elliptic curves of conductor less than 2000. The invariants eP and AP are easily 
calculated in terms of E note in particular that since AP = p + 1 - Ep [4], it 
follows that IAPI < p + 1 and thus that any eigenvector g obtained by this process 
must be a cusp vector. A basis G for M (N, -y) can be computed using the process 
outlined in [13]. The representation matrices Bi are found using an algorithm 
adapted from [1]. 

In general, the cusp form A = e(9) is, as stated in the introduction, merely a 
candidate for being a preimage of qE under the Shimura correspondence. But in 
any specific case, the remaining details could, in principle, be tested as follows: One 
could check by sufficient computation that A is an eigenform under T(p2) for any 
odd prime p I N for which p { . (Preliminary computations in our examples give 
strong evidence that T(p2)A =-A for each such prime.) If so, then A must be sent 
to some weight two newform 4' by the Shimura correspondence. If for sufficiently 
many primes, the eigenvalues of A agree with those of qE, it follows that ' = E 

[15]. In each of our examples, we have checked that the eigenvalues of A are the 
same as those of E for all primes p < 50 for which p t N. 

We do not offer a proof that there is always some i > 0 for which dim V, = 1 
(that is, for N > 2000). However, we note that results of Gross [9] when N is prime, 
and Bocherer and Schulze-Pillot [2] when N is squarefree indicate that a preimage 
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Of E under the Shimura correspondence is a linear combination of the theta series 
associated to ternary forms if and only if for the L-series of OE, L(qE, 1) + 0. This 
is conjectured to be the case if and only if the rank of E is zero. 

The particular choices of the level, discriminant, and genus symbols of the ternary 
forms which we associate to an elliptic curve E are based on extensive computation 
of all rational eigenvectors in spaces of ternary forms. By Proposition 1, there are 
only finitely many possible rational eigenvalues under a given Hecke operator Tp 
on a space of ternary forms M. We have carried out a complete computation of 
all rational eigenvectors in a large number of spaces, and we present some results 
in the following: 

Theorem 2. Let N = 2eQ with Q odd and squarefree and 0 < e < 3 as above. For 
each prime p dividing N, let ep be chosen as ?1 such that fJ eP =-1, and let 'y 
be the genus number associated to the collection {ep}. Let S(N, y) be the space of 
cusp vectors generated by the genus of ternary forms as defined preceding Theorem 
1. If D divides N, let n(D, -y) be the number of weight two newforms of level D and 
genus number y. (If y { D, then n(D, y) = 0 by definition.) Then for all N < 1000, 

(1) dimS(N,<y) = E n(D,-y). 
DIN 

(2) There is a one-to-one correspondence between independent rational eigenvec- 
tors in S(N, -y) and isogeny classes of elliptic curves of even rank, conductor 
D dividing N, and genus number ey. 

(3) If g is a rational eigenvector in S(N, 'y), but g does not arise from an elliptic 
curve of conductor N as in Theorem 1, then there is at least one prime p I N 
for which e(g) is not an eigenform under T(p2). 

Remark. The proof of Theorem 2 is again by direct computation. Statement 1 is 
proved by comparing our tables of ternary forms with tables of W-splits of weight 
two modular forms compiled by Cremona in an unpublished table [5]. 

3. EXAMPLE 

We conclude by presenting an example to illustrate the results of Theorems 1 
and 2. This example is fairly typical, although in many cases, the space of ternary 
forms which we must consider has a substantially larger dimension than in this 
case. 

Let E be given by y2 x3 -x2 + 25158x -775719, an elliptic curve of rank 0 and 
conductor 924 22 .3.7. 11, denoted as curve 924A1 in [4]. By counting points on 
E reduced modulo various primes, we find that &3 = 1, &7 = 1, Ell = 1, A5 -3, 
A13 = 1, etc. Since the rank of E is even, we may assume that &2 =-3E7E11 =-1, 
so the genus number of E is 2. (These values are confirmed by Table 3 in [4].) 

Writing N = 924 as 26Q with e = 2 and Q = 231, we associate to E the genus 
of ternary forms having level 23Q = 1848, discriminant 24Q2 = 853776, and genus 
symbols (f/3) = E3(-24/3) = -1, (f/7) = -1, and (f/li) = -1. Using the 
methods of [13], we find that there are ten classes of ternary forms in this genus, 
having representatives fi,... , fio as in the following table. Let M (924, 2) be the 
C-vector space spanned by these ten forms. 

Applying T5 to MA(924,2), we find that the -3-eigenspace, Vi, has dimension 2, 
but in V1, the 1-eigenspace of T13, V2, is one-dimensional. For some vector in V2 
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TABLE 1. M(924,2) is spanned by the ternary forms fi,.. , flo. 
There are seven rational eigenvectors in S(924, 2), each presented 
as a linear combination of the fi's. (For example, g, = fi - f2 + 
* +6flo.) 

fi f2 f3 fh fA fA f7 f fg fi o 
a: 6 17 21 24 33 35 35 41 54 54 
b: 77 83 110 83 84 41 66 68 54 62 
c: 462 164 110 117 98 164 98 83 77 83 
r: 0 -52 -88 6 -84 32 0 -20 0 16 
s: 0 -8 0 12 0 28 -28 -26 0 36 
t: 0 -10 0 24 0 14 0 -8 -24 48 

gi: 1 -1 1 -1 3 1 -1 -5 -4 6 924A 
g2: 1 0 1 2 1 -4 -2 0 1 0 154B 
g3: 4 6 -1 -4 2 -6 6 0 -1 -6 132B 
g4: 2 -2 2 -2 -1 2 -2 4 -1 -2 84B 
95: 1 0 -1 2 -1 0 0 0 -1 0 66B 
g6: 1 4 1 -1 -2 1 -1 -5 1 1 44A 
g7: 1 -4 1 2 1 4 2 -4 1 -4 42A 

(gi in the table above), we calculate that 

A1 = E(g1) = q6 _ q17 + q21 + 3q33 - 4q41+ 

a cusp form of weight 3/2, level 1848, and trivial character. Forms in this space 
are equal if their q-expansions are identical to the term of q577 [15], so by direct 
calculation, we verify that T(22)A1 = 0 and T(p2)Al = -A1 for p = 3, 7, and 11. 

In S(924, 2), there are seven independent rational eigenvectors, listed as g1,. . ., g7 
in the table above. By computing their eigenvalues for primes p < 50 which do not 
divide 924, it appears that there is a correspondence between these eigenforms and 
the isogeny classes of elliptic curves listed at the right of the table. These are all the 
elliptic curves of conductor dividing 924 which have genus number 2 [4]. However, 
if we let Ai = E(g?) for 1 < i < 7, we easily check that A2, A5, and A7 are not 
eigenforms under T(22); A2 and A6 are not eigenforms under T(32); A3, A5, and A6 
are not eigenforms under T(72); and A4 and A7 are not eigenforms under T(112). 
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