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THE RABIN-MONIER THEOREM 
FOR LUCAS PSEUDOPRIMES 

F. ARNAULT 

ABSTRACT. We give bounds on the number of pairs (P, Q) with 0 < P, Q < n 
such that a composite number n is a strong Lucas pseudoprime with respect 
to the parameters (P, Q). 

1. INTRODUCTION 

Pseudoprimes, strong pseudoprimes. It is well known that if n is a prime number, 
then it satisfies one of the following relations, where n - 1 = 2kq with q odd. 

bq =_ 1 modulo n 

(1) or 

there exists an integer i such that 0 < i < k and b2 _ -1 modulo n. 

This property is often used as a primality "test", called the Rabin-Miller test, 
which consists in checking if the property (1) holds, for several bases b. If (1) 
does not hold for some b, then n is certainly composite. If (1) is found to be true 
when trying several bases (usually 10 or 20), then n is likely to be prime. Composite 
numbers which satisfy the condition (1) are called strong pseudoprimes with respect 
to the base b. For short spsp(b). 

By recent results, it is possible to build composite numbers which satisfy (1) 
for several chosen bases b (see [1], [2], [5]). So, when one knows the bases used by 
a given implementation of the Rabin-Miller test, one can find composite numbers 
which this test finds to be prime. However, it is possible to give upper bounds for 
the probability that this test will give an incorrect answer. The main result in this 
direction is the Rabin-Monier theorem. 

1.1. Theorem (Rabin-Monier). Let n be a composite integer distinct from 9. The 
number of bases b such that 0 < b < n, which are relatively prime to n and for 
which n is a spsp(b) is bounded by (p(n)/4, where p is the Euler function. 

Lucas pseudoprimes. Let P and Q be integers and D = p2 - 4Q. For n integer, 
we denote by E(n) the Jacobi symbol (D/n). The Lucas sequences associated with 
the parameters P, Q are defined by 

Uo =0, Ui =1, an o 1Uk+2 =PUk+1 QUk, 
Io = 21 V = pi -and, for k > 0, ? + + 

{ V0 = 2, V1 =P, 1Vk+2= PVk+l-QVk. 
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We have the following result, which can be compared with the criterion (1): 

1.2. Theorem. Let p be a prime number not dividing 2QD. Put p - E(p) = 2kq 

with q odd. One of the following conditions is satisfied: 

Pi Uq 
or 

there exists i such that 0 < i < k and PtV2iq, 

A composite number n relatively prime to 2QD and satisfying 

nlUq 

(2) or 

there exists i such that 0 < i < k and PIV2iq, 

where we have put n - e(n) = 2kq with q odd, is called a strong Lucas pseudoprime 
with respect to the parameters P and Q. For short we write n is an slpsp(P, Q). 

As above, we can derive a "test" from this property: the strong Lucas pseudo- 
prime test [4]. In this test, we check whether property (2) holds, for several pairs 

(P, Q) 

The main result. The main purpose of this paper is to prove the following theorem, 
which is the analog of Theorem 1.1 but for strong Lucas pseudoprimes. 

1.3. Theorem. Let D be an integer and n a composite number relatively prime to 
2D and distinct from 9. For all integer D, the size 

(3) SL(D, n) = {(P, Q) 
0 

<(Q ,Q) < n, p - 4Q =D modullo n } (3) SL(D,m) = ~gcd (Q, n) = 1, nmis slpsp(P, Q) 

is less than or equal to j45n except if n is the product 

n = (2 klql - 1)(2 klql + 1) 

of twin primes with qi odd and such that the Legendre symbols satisfy (D/2 kql - 

1) =-1, (D/2klql + 1) = 1. Also, the following inequality is always true: 

SL(D, n) < n/2. 

The Monier formula and its analog. A result close to Theorem 1.1 was first shown 
by Rabin [9]. But Monier [7] gave the following formula and used it to prove 
Theorem 1.1. 

1.4. Theorem (Monier). Let p1 *.. p'- be the prime decomposition of an odd in- 
teger n > 0. Put 

p-1- 2kq with q, qi odd, 

ordering the pi 's such that k1 < ... < k,. The number of bases b such that n is an 
spsp(b) is expressed by the following formula 

B (n) = I + E 2j1 J 7 gcd(q, qi). 
j=0 / i=1 

Similarly, we will first prove, in Section 4, an analogous formula for the Lucas 
test. 
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1.5. Theorem. Let D be an integer and let p1 ... p'- be the prime decomposition 
of an integer n > 2 relatively prime to 2D. Put 

{ n-E(n) = 2kq with q, qi odd, 

ordering the pi 's such that k1 < ... < k,. The number of pairs (P, Q) with 0 < 
P, Q < n, gcd(Q, n) = 1, p2 - 4Q D modulo n and such that n is an slpsp(P, Q) 
is expressed by the following formula 

s k1-1 s 

SL(D, n) = fJ(gcd(q, qi) -1) + E 2ji f gcd(q, qi). 
i=l j=O i=1 

2. SOME LEMMAS 

We start with three lemmas. The first two will be used to prove Theorem 1.5, 
and the last to prove Theorem 1.3. 

Roots in a cyclic group. 

2.1. Lemma. Let G be a cyclic group and q an integer. (a) There are exactly 
gcd(q, IGI) qth-roots of 1 in G. (b) An element y of G is a qth-power if and only if 

Gj/gcd(q,IGI) = 1. 

In this case, y has exactly gcd(q, IGI) qth-roots in G. 

Proof. Put d = gcd(q, IGI). The proof of (a) is easy if we see, using Bezout relations, 
that for x E G, 

Xq= 1 X Xd = 1. 

Also, the qth-powers in G are the dth-powers. But, y is a dth-power if and only 
if ylGI/d = 1. To count the qth-roots of y whenever such a root exists, we remark 
that we can obtain the others from it by multiplying it by a qth-root of 1. z 

Congruences in some rings. 

2.2. Lemma. Let 0 be a ring extension of Z and a,:3 E 0. Let also p be a prime 
ideal in 0, r > 1 be an integer, and k E p n Z. One has the implication 

0 _3 modulo p X 1 k ak k modulo p1r 

Proof. If ac-f3Ep, then 

a k - fk = (a _ 1)(ak-1 + ak-2 +... +k-1) 

_ (a~ - r(!k-1+ + .ak .1 + k+ ayk1) modulo p 

= (a - O)kckl E p 

This shows the assertion when r = 2. An easy induction concludes the proof. fl 
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The 0D function. Let D be an integer and let E(n) denote the Jacobi symbol (D/n). 
For convenience, we introduce the following number-theoretic function, studied in 
[3] and defined only on integers relatively prime to 2D: 

{D (P(pr) =pr-l(p-(p)) for any primep t 2D, and r E N*, 

(pD((n1n2) = OD(nt )(PD((n2) for n1 and n2 relatively prime. 

2.3. Lemma. Let D be an integer. For n > 0 relatively prime to 2D, we have 

'PD(n) < 3 n) 

where s is the number of distinct prime factors of n. Also, we have the particular 
cases: 

8 
s = 2 =X PD(n) <?n, 

64 
s =3 3= PD(n) <? n, 

768 (14NS 4 

s > 4 =:OD (n)? 385 ~\13J 
n. 

Proof. For the first part of the result, it is sufficient to handle the case where n - pr 
is an odd prime power such that p t D. Then we have 

(P D(pr)__prl1(p - E(p)) (,o 
- 

) = P = I = 1 (p)/p < I + lp < 4/3 

and the result follows. The proof of the second part is similar, using the knowledge 
that pi > 5 for all but perhaps one subscript i, pi > 7 for all but perhaps two 
subscripts i, pi > 11 for all but perhaps three subscripts, and pi > 13 for all but 
perhaps four subscripts. 

3. CONNECTION WITH QUADRATIC INTEGERS 

Let P, Q be integers such that D= p2 -4Q $& 0 and consider the Lucas sequences 
(Un) and (Vn) associated with P, Q. It is easy to see that we have the relations 

cEk -k 

(4) Uk , Vk=ck + 3k, for all k N, 

where a, 3 are the two roots of the polynomial X2 - PX + Q. Also, if n is an 
integer relatively prime to 2QD, we can put T = ac3-1 modulo nO. Then we have 
the following equivalences, for k E N, 

nIUk X Tk1 modulo n, 

nlVk X Tk-1 modulo n. 

Hence, if n is composite and relatively prime to 2QD, it is an slpsp(P, Q) if and 

only if 

Tq= 1 modulo n 

or 

there exists i such that 0 < i < k and T = -1 modulo n, 

where n - E(n) = 2kq with q odd. 
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Norm 1 elements. Let 0 be the ring of integers of a quadratic field Q( D). The 
norm in Q( D) is the map N defined by N(u + vD) = u2 - DV2 C Q (u,V EQ). 
For z in 0, the norm N(z) is in Z. For a rational integer n, the ring 0/n is a free 
(Z/nZ)-algebra of rank 2. We consider, in this algebra, the multiplicative group of 
norm 1 elements, which we denote by (0/n)r. In other words, (0/n)r) is the image 
of the set 

{x c (9jN(x) 1_ modulo n} 

by the canonical map (9 -? 0/n. 
The proof of Theorem 1.5 will be similar to Monier's proof, but will use the 

following result on the structure of the group ((9/n)A, which is proved in [3]. 

3.1. Theorem. Let p t 2D be a prime number and r > 1 an integer. The group 
(0/pr)A is cyclic of order pr-i (p - (D/p)). L 

The link between the parameters P, Q and the norm 1 elements r is described 
by the following result: 

3.2. Proposition. Let D be an integer, but not a perfect square and (9 be the 
ring of integers in Q( D). Let n be an integer relatively prime to 2D. Then, for 
all integers P, there exists an integer Q, uniquely determined modulo n, such that 
p2 - 4Q D modulo n. Moreover, the set of integers P such that 

0 < P < n, 
{gcd(P2 - D, n) = 1 (i.e. gcd(Q, n) = 1), 

is in a one-to-one correspondence with the elements T in (O/n)A such that r - 1 is 
a unit in 0/n. This correspondence is expressed by the following formulas 

(5) { 
(P + D) (P - 

1D)-1 modulo nO. 

Proof. The first claim is easy, as n is odd. Then, we observe that i-1 and T are 
conjugate in 0/n. So putting u + Dv = Di(r + 1)( - 1)1, we have 

u - vD= D(T + 1)(i - I)-1 

- 4D-('-1 + 1)('-1 - 1)-1 modulo n 

=-VD(I + T) (I - T)1 

v D(T + 1)( - I)-1' = u + VD. 

As n is odd, we obtain v 0 modulo n. So the second equation in (5) is satisfied 
by a rational integer. Then we leave to the reader the task of showing that the two 
relations (5) are equivalent to each other. FL 

Remark on the square discriminant case. If D is a non-zero perfect square it is well 
known that the strong Lucas test reduces to the Rabin-Miller test. It is interesting 
to clarify this fact. If n is an integer relatively prime to 2D, we can put T = a/3- 
modulo n (this time, a, /3 are rational integers). From (4) we have the following 
equivalences, for k E N: 

nlUk X T k 1 modulo n, nIVk XTk -1 modulo n. 

So n is an slpsp(P, Q) if and only if it is an spsp(T). 
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Moreover, the proof of Proposition 3.2 could very easily be adapted to show that 
there exists a one-to-one correspondence between the sets 

{ gcd(P2-D,n )=1 } and {T= gc(T,-gcd(T-1,n)=1 

Hence, the proof of Theorem 1.4 given by Monier could easily be adapted to prove 
Theorem 1.5 in this special case where D is a perfect square. 

4. PROOF OF THEOREM 1.5 

The difference between consecutive perfect squares d2 and (d + 1)2 tends to +oo 
as d tends to +oo. So the integers D + kn with k E Z cannot all be perfect squares. 
Because SL(D, n) is equal to SL(D + kn, n) for all integer k, we can assume in the 
proof that D is not a perfect square. 

We denote by (9 the ring of integers of the field Q(VD). Proposition 3.2 shows 
that we have to count the number of elements in the sets 

X(n) = {T E (0/n) 11 - T E (Q/n)x, Tq 

Yj(n) = { T ((9/n)'I1-T (E (0/n)X,T2iq =-1}, forO<j<k-1, 

because their sum is SL(D, n). Using the Chinese Remainder Theorem, we reduce 
the problem to counting the sets X(pj4) and Yj (pi). 

Count of X(p i). 
* We first count X(p'i). By Theorem 3.1, the number of qth-roots of 1 in the 

group (9/p?i)'' is 

d = gcd(q,p (pi - ())) 
= gcd(q,pi - e(pi)) since q is relatively prime to n, 

= gcd(q, qi) since q is odd. 

From these roots, we must throw away those such that 1- T is not invertible modulo 
pi. We show that the only such T is the trivial root 1. Indeed, note that 

{r _ ? Td 1 
T TP?E(P) _= 1 modulo pi 0. 

TPi (P%-E(P))=1 

Let p be a prime ideal of (9 containing piO. For k > 1 integer, we have 

T 1 modulo pk TPi =_ 1 modulo pk+1 by Lemma 2.2, 

=> 1 T TP'E(Pi) = TrF(Pi) modulo pk+1 

T T 1 modulo pk+1. 

So, by induction, 1 - T is not a unit modulo pr . If pi splits in (9, this implies T _ 1 
modulo i (as T = -1). In both cases (inertial or split), we obtain T _ 1 modulo 
Pi'i. Hence, the number of elements in X(p'ir) is 

d- 1 = gcd(q,qi) -1. 

Hence, 
S 

#X(n) = j7(gcd(q, qi) -1). 
i=1 
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Count of Yj (pi'i). 
* We now count Yj (p'i"). Here, the invertibility condition for 1 - Tmodulo pi 

does not throw away any solution. Indeed, as pi is odd we cannot have, for p a 
prime ideal containing piO, 

1=12 qr23= --T modulo p. 

By Lemma 2.1, we have 

#Yj Vi Jo if j > ki, 
i {gcd(2jq, (D(p4i)) = 2jgcd(q,qi) if j <k. 

Lastly, the equality 
k-1 

SL(D, n) = #X(n) + E #Yj (n) 
j=O 

completes the proof because, as n e(n) modulo 2k1 (as pi- -(pi) modulo 2k1 for 
all i), we have k1 < k. E 

5. FIRST CONSEQUENCES 

Following the usual proof [7] of the Rabin-Monier theorem, we would easily 
obtain 

5.1. Corollary. If n is an odd composite integer, then 

SL(D, n) < SOD((n)/4. 

But, as the function pD(n) is not bounded by n (see [3] for more details), this 
result is not of the same interest as Theorem 1.3. 

In fact, using Proposition 3.2, one can show, if p"1 ... pls is the prime decompo- 
sition of n, that the size 

< P,Q < n, p2 - 4Q _ D modulo n, fiII ri- - I () 1) 
(Pi Q) ~ gcd (Q, n) = 1 moulsn Pi=i--c(i 

This size is less than n and is equal to it infinitely many times. So it seems quite 
natural to try to bound SL(D, n) by kn for some constant k. 

5.2. Lemma. Let prl ... prs be the prime decomposition of an integer n relatively 
prime to 2D. With the notations k, q, ki, qi of Theorem 1.5, we have the inequalities 

1 s gcd(q,qi) 

SL(D,rn) < 1 s i 
'OD(nl) ? 2siH Pi 

l/2S-1+62+ 56s where &i = ki - . 

Proof. We follow the proof of the very similar statement by Monier [7]. We have 
s s 

(PD(n) = 2kl+- +k5 JjJq fJpri-1 

i=1 i=1 

so, by Theorem 1.5, 

(6) SL(D, n) 1+ ?k-l 23s S )j5 1 

(PD (n) 2k1 ++k5s qi i ri 
i=1 ~~i=1 P 
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But the left-hand factor of (6) is bounded by 

1 + Eki-1 2js 1 + (2skl - 1)/(2s - 1) 

2ski 2ski 

= ? 2 1-2s 1)72ski 
V 2S 1 2s -1J 

= [( 1- ) /2sk] ? 2 1 

The last formula shows that this is a decreasing function of k1. So we can bound 
it by its value at k1 = 1: 

1 + Eki-1 2js 

(7) 2sk1 - 2s-1 

The first two inequalities follow from this. The last also follows from (7), using the 
equality 

1 + Ek?-1 2is 1 + E?kZ o 2i 1 

2k,+ --+k,, 2ski 262+ +6,s 

6. PROOF OF THEOREM 1.3 

As in Theorem 1.5, we use the following notation: Let p" ... -pr be the prime 
decomposition of n and put 

[ -e(n) = 2kq 

with q, qi odd. 

(Pi-?(pi) = 2kiqi for 1 < i < s, 

The case s = 1. First, consider the case s = 1. The second inequality of Lemma 5.2 
shows that 

SL(D, n) < r- D (n) 
P1 

If pr > 5 we obtain, as ri > 2, 

SL(D,n) < yOD(n)/5. 

In this case, Lemma 2.3 implies SL(D, n) < (4/3)n/5 = (4/15)n. If P1 = 3, a 
similar argument holds, because we assume n 74 9. 

The case s = 2. Now, the case s = 2. By the second part of Lemma 2.3, it is 
sufficient to show that we have 

(8) SL(D, n) ? -yD(n). 
6 

* But, Lemma 5.2 gives 

SL(D, n) < 1/6 if ri > 2 for at least some i, 

SOD(n) - 1/8 if 62 = k2-ki > 2, 

which is sufficient to prove the assertion in both cases. 
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* So we can assume that ri = r2 = 1 (n = P1P2) and 62 = k2- = 0 or 

1. First, we consider the subcase where qi , q2. Then the first inequality of 

Lemma 5.2 shows that 

SL(D, n) < 1 gcd(q, ql) gcd(q, q2) 

SOD(fn) -2 qi q2 

Here, we point out that at least one of the ratios gcd(q, qi)/qi is bounded by 1/3. 

Otherwise, they would both be 1 and then both qi and q2 would divide q. Also 

2kq = P1P2 - E(P1P2) 

= (2k ql + _ (pi))(2k,+62q2 + ?(p2)) - E(P1P2) 

= 22kl+62qlq2 ? 2k, (q, ? 22q2q). 

We would then have qi Iq2 and q2I q, contradicting the hypothesis qi #? q2. Hence, 
if qi 7? q2, then 

SL(D,n) < 1/6 
(PD (n) 

and equation (8) is satisfied. 

* So we can suppose that ri = r2 = 1 (n = P1P2), 62 = k2- k equals 0 or 1, 
and that qi = q2. If 62 = 1, the integer n is 

n = (2klql ? 1)(2k1+lqj ? 1) with qi odd 

> (2ki q - 1)(2k1+lqj - 1) 

- 2(2klql )2 - 3(2klql) + 1. 

Hence, 8(2klql)2 - 12(2klqi) + 4 < 4n. We have also 

2 kq n - (n) = 2(2 klq)2 + (2?(pi) + -(p2))(2k1ql) 

and so, qi divides q. Here, Theorem 1.5 gives 

SL (D, n) = (q, _1)2 + (1 + 4 + * * + 4kl-l)q 2 

=( _ 1)2 + 4 12 

4k1 + 2 2 

_ 3 q1 

Hence, 15 SL(D, n) < 5(2klql)2 + 10q 2. We distinguish the subcase k1 = 1 from the 
one where k1 > 2. If k1 > 2 we have 10q 2 < (22qj)2 < (2klql)2. Hence, 

4n - 15 SL(D, n) > 3(2k qi)2 - 10q2 - 12(2klqi) + 4 

> 2(2k qi)2 - 12(2klql) + 4 

= 2((2kqlq)2 - 6(2klql) + 2). 

The roots of this polynomial are less than 6. So it is positive as soon as 2k'ql > 6. 

As k1 > 2, the only possibility in this case is 2klql = 4, which implies k1 = 2 and 

q, = 1 so that P1 = 3 or 5, and P2 = 2k1+lqj ? 1 = 7 or 9, so that n = 21 or 35, 
and SL(D, n) = 5. 
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In the other subcase (k1 = 1), 62 = 1 and hence k2 = 2 and therefore 

{n > (2qi - 1)(4q, -1) with qi odd, 

SL(D,n) = 2q2 - 2q, + 1 from (9). 

Hence, 

4n- 15 SL(D, n) > 2q ?+6q, -11 

> 0 if q #1. 

The remaining case is qi = 1. Since k1 = 1 and 62 = 1 so that k2 = 2, this implies 
n = 15 and SL(D, n) = 1. At this point, the result has been proved when 62 = 1. 

* Lastly, we consider the exceptional case n = P1P2, 62 = 0 so that k1 = k2, and 
qi = q2. Then we have 

n = (2klql - 1)(2klql + 1) = 4k lq2 _ 1 with e(n) = -1, 

4 ki _ 12 
SL(D, n) = (q - 1) + -3 ql2 as in (9). 

Hence, 

3(n - 2 SL(D, n)) = 4k1q2 - 4q2+ 12ql - 9 

> 12q, - 9 > 0. 

Therefore, SL(D, n) < n/2. 

The case s = 3. Now, the case s = 3. By the second part of Lemma 2.3, it is 
sufficient to show that the inequality 

(10) SL(D,n) < -SOD(n) 
48 

holds. 
* Lemma 5.2 implies the result under the following conditions: 

(1/12 if ri > 2 for at least one i, 

(S (D,) < 1/8 if the ki's are not all equal, 
( 1/12 if one of the qi's does not divide q, 

because the inequality (10) is then satisfied. 
* In the remaining case, we have 

n = (2kI q + i)(2k1 q2 + 62)(2k1q3 + ?3) 

with ql, q2 and q3 odd and dividing n - e(n) = 2klq. The formula of Theorem 1.5 

can be written 

SL(D, n) = (q, -l)(q2- 1)(q3 -1) + (1 + 8 +.. + 8 ki -)qlq2q3 

ki- 1 
= (q, 

- 
)(q2- 1)(q3 -1) + 7 7-qlq2q3. 

But, PD(n) = 8klqiq2q3 so, the inequality (10) can be written 

(qi - 1)(q2 - 1)(q3 - 1) + 1 qlq2q3 < 788 k1qlq2q3 7 48 
or more simply, 

8k- 1 

(qi - 1)(q2 - 1)(q3 - 1 - (336 ? qlq2q3. 
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This is satisfied as soon as 

(8k1 1 
336 7,) 

and in particular as soon as k1 > 3. So we can assume that k1 equals 1 or 2. 
* We handle first the case k1 = 2, that is 

n = (4qi + ?l )(4q2 + ?2)(4q3 + ?3) 

with ql, q2, q3 odd and dividing n - e(n) = 4q. Suppose that qi = q2= 1, so that 
El = -E2 and {P1,P2} = {3,5}. Then e(n) = -?3 and 

4q = n-?(n) =15(4q3 + ? 3) + ? 3 = 60q3 + 16E3. 

As q3 q, this implies q3116, so q3 = 1, which is impossible because the prime P1, P2, P3 
are distinct. 

Hence, we can assume that q2 > 3 and q3 > 3 since the ordering of the primes is 

arbitrary here. Then since 

n > (4q1 - 1)(4q2 - 1)(4q3 - 1) 

= 64qlq2q3 - 16(qlq2 + qlq3 + q2q3) + 4(qi + q2 + q3) - 1 

and since 

SL(D, n) = ql q2q3 - (ql q2 + ql q3 + q2q3) + (qi + q2 + q3) - 1 

we can see that 

4n - 15 SL(D, n) > 106qlq2q3 - 49(qlq2 + qlq3 + q2q3) + (qi + q2 + q3) + 11 

- 106(qi - 1)(q2 - 3)(q3 - 3) 

? 269(qi - 1)(q2 - 3)+269(qi - 1)(q3 - 3)+57(q2 - 3)(q3 - 3) 

? 661(qi - 1) + 123(q2 - 3) + 123(q3 - 3) + 237 

> 0. 

* Now, we consider the case where k1 = 1, that is 

n = (2qi + 1l) (2q2 + ?2) (2q3 + ?3) 

with ql, q2, q3 odd and dividing n - e(n) = 2q. First, assume that qi = 1, so P1 = 3. 

Then p2,p3 > 5 so q2,q3 > 3 and 

n = 3(2q2 + ?2)(2q3 + ?3) > 3(2q2 - 1)(3q3 -1), SL(D,n) = q2q3- 

Hence, 

4n - 15 SL(D,n) > 12(2q2 - 1)(2q3 - 1) - 15q2q3 = 33q2q3 - 24q2 - 24q3 + 12 

= 33(q2 - 3)(q3 - 3) + 75(q2 - 3) + 75(q3 - 3) + 165 > 0. 

So we can assume that all qi's are greater than 1. But qi = 3 only if pi = 5 or 

7. If qi = q2 = 3, then {P1,P2} = {5, 7} and q3 > 5. In this case n = 5 - 7(2q3 + E3) 

and SL(D, n) = 4(q3 - 1) + 9q3. Hence 

4n - 15 SL(D, n) > 4. 5 . 7(2q3 - 1) - 60(q3 - 1) - 135q3 

=85q3 -80 =85(q3-5)+345> 0. 
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So we can assume that qi > 3 and q2, q3 > 5. But qi = 5 only if pi = 11. So we 
can assume that q2 > 5 and q3 > 7. We have 

n > (2qi - 1)(2q2 - 1)(2q3 - 1) 

= 8qlq2q3 - 4(qlq2 + qlq3 + q2q3) + 2(qi + q2 + q3) -1, 

SL(D,n) = (qi - 1)(q2 - 1)(q3 -1) + qlq2q3- 

From this we easily deduce (if we are lucky to have good computing tools at hand) 
that 

4n - 15 SL(D, n) > 2qlq2q3 - (qlq2 + qlq3 + q2q3) - 7(qi + q2 + q3) + 11 

- 2(qi - 3)(q2 - 5)(q3 - 7) 

+13(qi -3)(q2 -5)+9(qi -3)(q3 -7)+5(q2 -5)(q3 -7) 
+51(qi -3)+25(q2 -5)+15(q3 -7)+45. 

This proves that 4n - 15 SL(D, n) > 0 because we have assumed qi > 3, q2 > 5, 
q3 >7. 

The case s > 4. Lastly, the case where s > 4. Lemma 5.2 shows that 

SL(D,n) < SD(n)/2 = n)/8 

Using the inequality 2.3, we obtain 

SL(D, n) < 
96 7 n < 

96 
n < 

4 
SLD - ?385 \13/ 2 385 1l5 

This finally (!) concludes the proof. F] 

7. WORST CASES AND BETTER BOUNDS 

Twin primes. We have noted that the only numbers n such that SL(D, n) > j4n 
are products 

n = (2klql - 1)(2klql + 1) 

of twin primes with qi odd and e(2k1ql - 1) = -1, e(2k1ql + 1) = 1. The proof of 
Theorem 1.3 shows that in fact, we then have 

(11) n/3 < SL(D,n) < n/2. 

If there are infinitely many twin primes P1 < P2 satisfying the conditions (D/pl) = 

-1 and (D/p2) = 1, then there are infinitely many n such that relations (11) hold. 
If P1,P2 are such twin primes satisfying the additional condition k1 = 1 (that is 
P1 1 modulo 4), then for n = P1P2, we have 

SL(D, n) (q _ 1)2 + q2 (q, - 1)2 + q2 2q2 - 2ql +1 
n 4k'ql -1 4ql2 4ql2 - 1 

This shows that SL(D, n)/n tends to 1/2 as q, tends to +oo. So, under the assump- 
tion that there are infinitely many such twin primes, we can find numbers n such 
that SL(D, n)/n is as close as we want to 1/2. However, note that such numbers 
are easy to spot, so they do not really represent a nuisance for primality testing. 

Example. Let D = 2 and n = 1 000 037 1 000 039 = 1 000 076 001 443. Then 
SL(D,n) = 500 037 000 685 and 1/2 - SL(D,n)/n < 10-6. 
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The bound 4/15. Among numbers n such that SL(D, n) does to exceed j45n, consider 
those such that 

n = P1P2P3--1 modulo 4, e(pi) =-1, and pi + lln + 1 for i = 1,2,3 
(these numbers were already encountered in [10]). We have, in this case, 

SL(D,n) = (ql - 1)(q2 - 1)(q3 -1) + qlq2q3 

which can be greater than n/4, and very close to 4/15n. For example, consider the 
following 

Example. Let D = 7 and n = 20705, so that 

P1=5, P2=41, P3=101, 

-(pl) = -(p2) = ?(p3) = e(n) = -1, 

p? + 1 = 2q, =2 3, P2 + 1 = 2q2 = 2(3 7), p3 + 1 = 2q3 = 2(3 .17), 

n + 1 = 2q = 2(3 .7 17 .29), 

SL(7,20705) = 5213. 

Better bounds. There exist several ways to improve the Lucas test in order to make 
it more secure. One good idea yet found in [4] and [8] is to combine a Rabin-Miller 
test and a "true" (i.e. with (D/n) = -1) Lucas test. Such a combination seems 
much more secure than one might expect considering each test separately. But no 
precise result is known about this fact. 

Another approach is found in [6] where a strong test derived from the strong 
Lucas test is defined. It is shown that there the probability of error in each iteration 
of this new test is less than 1/8. 
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