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NUMBERS WHOSE POSITIVE DIVISORS HAVE SMALL 
INTEGRAL HARMONIC MEAN 

G. L. COHEN 

To Peter Hagis, Jr., on the occasion of his 70th birthday 

ABSTRACT. A natural number n is said to be harmonic when the harmonic 
mean H(n) of its positive divisors is an integer. These were first introduced 
almost fifty years ago. In this paper, all harmonic numbers less than 2 x 109 
are listed, along with some other useful tables, and all harmonic numbers n 
with H(n) < 13 are determined. 

1. 

Let T(n) and a(n) denote the number of positive divisors of a positive integer n, 
and their sum, respectively. The harmonic mean of these divisors is easily seen to 
be 

H(n)= __n(n) 

Then n is said to be harmonic if H(n) is an integer. Harmonic numbers were first 
studied by Ore [7], and they remain of interest because of their connection with 
perfect numbers. Recall that n is perfect if a(n) = 2n; it is easy to show that every 
perfect number is harmonic. 

A list of the harmonic numbers less than 2.1 09 is given in Table 3, at the end of 
this paper. This extends the lists of Ore [7] and Garcia [3], which gave all harmonic 
numbers up to 105 and 107, respectively. We see that no nontrivial example of an 
odd harmonic number is known; if it could be proved that in fact there are none, 
then this would imply the nonexistence of odd perfect numbers. 

In [4] Guy wrote: "Which values does the harmonic mean take? Presumably not 
4, 12, 16, 18, 20, 22, ... ; does it take the value 23?" We have settled the first of 
these questions for the first two values in Theorem 3, below. This paper gives only 
a brief sketch of the proofs of the various results. Full details are given in [2]. 

Theorem 1. The only harmonic numbers of the form 2am, where m is odd and 
squarefree and 1 < a < 11, are those listed in Tables la and lb. (There are 52 such 
numbers including 45 when a = 8.) 

Theorem 2. Let w(n) denote the number of distinct prime factors of n. For all n, 

2w(n)+1 
(1) H(n) > ,z,n, + I I 
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TABLE la 

a All 2am E 7t with m odd and squarefree 
1 2 3=6 
2 227 = 28 225.7 = 140 

3 none 
4 2431 = 496 
5 253 7=672 
6 26127 - 8128, 2613 127 = 105664 
7 none 
8 see Table lb 

9-11 none 

TABLE lb 

All n = 28m E H with m odd and squarefree H(n) 
283 5 7 .11 .19 23 37 43 73 = 15007087898880 989 
283.5.7.11 19 23 37 73 = 349002044160 506 
283.5 7 11 19 37 43 73 = 652482082560 516 
283.5 7.11 19 . 37 . 43. 73 . 257 = 167687895217920 1028 
283 . 5. 7. 11 19 . 37 . 43. 73. 1031 = 672709027119360 1031 
283.5 7 11 19 37 47 73 = 713178090240 517 
283 .5 7. .11 19 . 37 . 47. 73. 1033 = 736712967217920 1033 
283.5.7.11 19 37 73 = 15174001920 264 
283.5.7.11 19 37 73 131 = 1987794251520 524 
283 . 5. 7. f1 1 19 . 37. 73. 131 . 523 = 1039616393544960 1046 
283 5 7.11 19 37 73 263 = 3990762504960 526 
283 . 5. 7 f 11 19 . 37 . 73 . 263 1051 = 4194291392712960 1051 
283.5.7.17 .19 31 37 61 73 = 44345330883840 1037 
283 5 7 17 19 31 37 73 = 726972637440 527 
283 5.7.17 19 37 67 73 = 1571198926080 536 
283.5.7.17 19 37 73 = 23450730240 272 
283 5 7 17 .19 37 73 271 = 6355147895040 542 
283. 5. 7. 17. 19 . 37. 73 . 271 . 541 = 3438135011216640 1082 
283 5.7 19 23 37 73 = 31727458560 276 
283.5.7.19 23 37 73 137 = 4346661822720 548 
283 . 5. 7 19 . 23 . 37. 73. 137. 547 = 2377624017027840 1094 
283 . 5. 7.19 . 23 . 37. 73. 137. 547 1093 = 2598743050611429120 2186 
283 5.7.19 31 37 61 73 = 2608548875520 549 
283 . 5. 7. 19 . 31 37 . 61 73 . 1097 = 2861578116445440 1097 
283 5.7.19 31 37 73 = 42763096320 279 
283. 5. 7. 19 31 . 37. 73 . 557 = 23819044650240 557 
283.5.7.19 37 47 73 = 64834371840 282 
283 . 5. 7. 19 .37 . 47. 73. 281 = 18218458487040 562 
283. 5. 7. 19 . 37 . 47. 73. 281 . 1123 = 20459328880945920 1123 
283. 5. 7. 19 . 37 . 47. 73 . 563 = 36501751345920 563 
283.5 7.19 37 71 73 = 97941285120 284 
283 . 5. 7. 19 37. 71 73 . 283 = 27717383688960 566 
283.5.7.19 37 73 = 1379454720 144 
285 7.11 19 31 37 61 73 = 9564679210240 671 
285.7.11 19 31 37 73 = 156798019840 341 
285.7.11 19 .37 43 73 = 217494027520 344 
285.7.11 19 37 73 = 5058000640 176 
285.7 19 23 37 73 = 10575819520 184 
285. 7. 19 . 23 . 37. 73 . 367 = 3881325763840 367 
285 . 7. 19 . 23 . 37. 73. 367. 733 = 2845011784894720 733 
285.7 19 31 37 61 73 = 869516291840 366 
285.7 19 .31 .37 73 = 14254365440 186 
285 7.19 37 47 73 = 21611457280 188 
285.7 19 37 73 = 459818240 96 
285 . 7. 19 37. 73. 191 = 87825283840 191 
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with the following exceptions (in which p denotes a prime): n = p, n = 2p, n = 6p 
(p ?4 3), n = 30p (7 < p < 23), and n = 1, 15, 21, 70. 

Theorem 3. The only harmonic numbers n with H(n) < 13 are the thirteen ap- 
parent in Table 3 (see ?6). 

2. 

Throughout this note, roman letters denote positive integers and p and q denote 
primes. The canonical decomposition of n as a product of primes will always be 
written as 

t 

i=l 

where we assume that Pi < P2 < ... < Pt To indicate that pi' n, but pa.+1 n, 
we write pa, 

We set S(n) = o(n)/n. Then 

bliM S(pb) = limPb(1 pYi 

for convenience, this limit will be denoted by S(p). If p < q, a < b and c > 1, then 
it is easily verified that 

(2) 1 < S(qa) < S(qb) < S(4) = q <P?l = S(p) < S(pc). 
q-1 -p ()<SP. 

Recall that oa and T are multiplicative functions, so that H and S are also. 
We specify further that S is multiplicative in an extended sense whereby we can 
write for example S(paj) = S(pa)S(-), for distinct primes p and q. (Consider the 
left-hand side of this equation to be defined by the right-hand side.) 

We will denote by X- the set of all harmonic numbers. 
The following lemmas are required. 

Lemma 1. Besides 1, the only squarefree harmonic number is 6. 

Lemma 2. There are no harmonic numbers of the form pa. 

Lemma 3. The only harmonic numbers of the form paqb are perfect numbers. 

Lemma 4. If n = 2a-1(2a - 1) is perfect (so that 2a - 1 and a are primes), then 
H(n) = a. 

Lemmas 1 and 2 are due to Ore [7]. Lemma 3 was first proved by Pomerance [8] 
and was rediscovered by Callan [1]. Lemma 4 is easily proved, assuming some 
elementary knowledge of perfect numbers. Notice that Lemma 1 can be expressed 
equivalently as: If n E'H and n > 6, then Tr(n) > 2w(n)-13. 

Lemma 5. Let a be a positive integer such that, for some prime p _ 2 (mod 3), 
we have 3p I o(2a) and (3p, a + 1) = 1. If m is an odd integer such that 2am is 
harmonic, then m is not squarefree. 

Proof. Note that p 7& 2. Let m be an odd integer such that n = 2am is har- 
monic, and suppose further that m is squarefree. Then T(n) = 2w(m)(a + 1). 
Since H(n)o(n) = nT(n) and 3p I a(n) and (3p, a + 1) = 1, we have 3 II n and 
p 11 n. The former implies that 3 exactly divides the right-hand side of the equa- 
tion H(n)o-(n) = nT(n), and the latter implies that 32 divides the left-hand side, 
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since 3 1 (p + 1) I a(n) and 3 1 o(2a). This contradiction shows that m cannot be 
squarefree. 

- 

Lemma 6. Suppose n is harmonic. If p is an odd prime such that p 11 n and 
p I H(n), then n/p is harmonic. If 2 11 n and 4 H(n), then n/2 is harmonic. 

The proof is straightforward. 

Lemma 7. If n is harmonic and H(n) = p, a prime, then either p I n or n is 
perfect. 

Proof. Since H(n)o(n) = nT(n), we have H(n) = p I nT(n). Suppose p I T(n). 

Then qP-1 I n for some prime q and so T(n) > 2(n)-lp. Write n = pi Ipi as 
above. Then pi > i + 1 for all i and 

w(n) w(n) w (n) 

i= (Pt =1pfl P i=1 T (n) = H(n)S(n) = P LS(, )<p P1 < P H p(a(n) + 1). 

It follows that w(n) + 1 > 2 (n)- 1and this is a contradiction when w(n) > 3. Thus, 
p I n when w(n) > 3. Otherwise, by Lemmas 2, 3 and 4, n is perfect. 

- 

Lemma 8. Suppose w(n) = 3 or 4. Then a(n) 5& 2n. If a(n) = 3n then n E 
{120, 672, 523776}. 

The proof is omitted. It uses results of Hagis [5] and Steuerwald [9]. 

Lemma 9. Let n be an odd harmonic number. If pa 11 n, then pa =1 (mod 4). 

This result is Theorem 2 in Garcia [3]. It was derived independently, and stated 
in the form above, by Mills [6]. 

3. 

Sketch of the proof of Theorem 1. For each value of a in turn, we put n = 2am, 
where m is odd and squarefree, and assume n E 'H. The case a = 1 is clear from 
Lemma 1, and Lemma 5 accounts for the cases a = 3, 7 and 9, because a(23) = 3.5, 

(2 7 )= 3 .5 .17 and u(29) = 3 11 .31. 
The following notation is convenient. For any prime q and distinct primes ql, 

, qS, write 

ojq) -q? 1??s 

T(q) 2 v Qjs =Iq 

Notice that Qj,, = H(qj ... qs). 
Suppose a = 2. Since H(n)o(n) = nT(n), we have (22) = 7 11n. Set n = 227k, 

where (k, 14) = 1, and note that H(227) = 3. Either k = 1, giving n = 227 = 28, 
or k is squarefree and 3H(k) is an integer. In this case, set k = q, ... qS, where ql, 
* , q, are distinct primes, not 2 or 7. We have 

H(n) = 3H(k) = q =... 3Q,,s. 

The argument from here, and similarly in the remainder of this proof, rests on 
determining whether and how, in this rational number, the denominator can fully 
factor into the numerator to produce an integer. We take ql = 3 so that q, = 5. If 
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s = 1, then we have found n = 225 . 7 = 140. Otherwise, H(n) = 5Q2,s, in which 
now we may suppose that q2 ... < q. We cannot have q2 = 5, since then q2 = 9 
is not prime, and q' < qi for i > 2, so we have found all such n = 22m. 

The proofs for the cases a = 4, 5, 6, 10 and 11 are similarly short, and will not 
be given here, but that for the case a = 8 is very long. It begins as follows. 

Suppose n = 28m. Since a(28) = 7 73 and H(n)u(n) = nT(n) with T(n) = 

2w(n)-132, we have 7 11 n and 73 11 n. Put n = 287 73k, where k = q ... q, a 
product of distinct primes, not 2, 7 or 73. We have 

2 632 
H(287 .73)= 263 

37 

and so we require H(n) = (2632/37)H(k) = (2632/37)Qi,s to be an integer. Take 
q, = 37. Then qj = 19 and H(n) = (2632/19)Q2,,. Take q2 = 19, so q' = 10 and 
H(n) = (2532/5)Q3,,. Take q3 = 5, sO q3 = 3 and H(n) = 253Q4,5 

If s = 3, then we have in fact found the solution n = 285 . 7 19 37 73. All 
others arise from this "seed" and depend on finding a value for qi which divides 
the numerical part of the current numerator and for which qi is a prime different 
from those already encountered. It is easy to verify that harmonic numbers cannot 
otherwise arise. 

There are the following possibilities for q': 2, 24, 2 . 3, 223, 233 and 253. (These 
are the acceptable divisors of 253.) If qf = 2, then q4 = 3 and H(n) = 2432Q5,S. If 
s = 4, then we have found the solution n = 283 .5. 7. 19 .37. 73. Otherwise, there 
are the following possibilities for qs: 2 , 2 . 3, 223, 2 3, 2232 and 32. (These are 
the acceptable divisors of 2432.) If q' = 24, then q5 = 31 and H(n) = 3231Q6,s. If 
s = 5, then we have found the solution n = 283 .5 .7 19.31 37 73. Otherwise, we 
must consider possible values of q', and so on. Then we must consider the other 
possible values of qs, and then the other possible values of q4. 

The proof continues until all possibilities have been considered. 
- 

4. 

Sketch of the proof of Theorem 2. Suppose n > 1 and, as above, write n= 
Sincepi >i+1 for 1 <i <t, we have 

() t 
a(n) < Pi < rIi+ =t + 1. 

n i=l pi-1 i-1 

Then, since H(n) = T(n)/(or(n)/n), the theorem is proved for those n for which 
-r(n) > 2t+'. In fact, this is always the case, except if n is squarefree or of the form 
p2m, where m is squarefree and p { m. These possibilities must be investigated 
more closely, leading to the exceptions noted in the statement of the theorem. D 

An easy consequence of Theorem 2, using Lemmas 1, 2 and 3, is that the in- 
equality (1) holds for any harmonic number n, n > 6. 

For our proof of Theorem 3, we require a tabulated improvement of (1), for 
harmonic numbers n with small values of w(n). Let Pi denote the ith prime, so 
that P1 = 2, P2 = 3, .... Then pi > Pi for each i, and our improvement is based 
on exact calculations with Pi/(Pi - 1), rather than (i + 1)/i as in the above proof. 
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For example, if 2 n and w(n) = 3, then using (2), S(n) = S(2p 12pa3) < 

S(2 3 5), so that 

H(n)_ -T(n) _ T(n) 223 64 
o(n)/n S(n) (3/2)(3/2)(5/4) 15 

In this way, we have constructed the column of lower bounds for H(n) headed 
2 11 n in Table 2. For each value of w(n), H(n) is not less than the corresponding 
entry in this column. The other columns treat the special cases in which 2a n for 
2 < a < 11, 212 1 n and 2 t n, respectively. 

TABLE 2 

Lower bounds for H(n) if n CH 
w(n) 2 || n 2' || n 2' || n 2'11 n 25 nl 2' 11 n 

3 5 6a 7 10 llb 14C 

4 8 10 12 16 17 23 
5 14 18 22 28 31 39 
6 25 32 40 50 57 70 
7 47 60 74 92 106 129 

> 8 88 113 141 174 201 243 
an #& 140l n 5 & 672, cn r# 105664 

Lower bounds for H(n) if n E 7-H 
w(n) 27 11 n 2' 11 n 2' 11 n 2 r 11 n 2" 11 n 2" 1 n 2 n 

3 16 23 27 32 23 14 6 
4 25 31 36 42 36 24 10 
5 42 49 57 67 61 44 19 
6 76 89 97 115 111 80 35 
7 140 164d 179 208 209 151 66 

> 8 264 264 336 384 395 285 126 

n 741379454720 

Suppose 22 1f n, w(n) > 3 and n : 140. By Theorem 1, or(n) > 2w(n)-232. Also, 
S(n) < S(22) njtSn7) S(Pi). This is used in the calculations for the third column of 
Table 2, and in this fashion Table 2 may be completed. 

Notice from the table that w(n) < 4 if H(n) < 13. Not having to consider 
w(n) > 5 was the main reason for seeking only those n E XH with H(n) < 13 in 
Theorem 3. The number of columns in Table 2 was determined by continuing until 
it could be asserted that if n is harmonic with H(n) < 13, and n is even, then 26 t n 
(except if n = 105664). 

5. 

The proof of Theorem 3 will be described in this section. There will be many 
applications of Lemma 1 and (2), often without special mention. Lemma 1 implies 
that, for n E X, or(n) 7& 8 if w(n) = 3, and or(n) 7& 16 if w(n) = 4. For reference 
throughout the full proof, [2] includes a convenient table of possible values of or(n) 
for w(n) = 3 and 4, together with the corresponding possible exponents on the 
prime factors of n. 

The proof makes considerable use of the following technical lemma, whose proof 
we omit. 
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Lemma 10. Suppose n is a harmonic number, satisfying n > 2 109 and H(n) < 
13. Then n has a prime factor exceeding 20. 

Sketch of the proof of Theorem 3. As a function of w(n), the right-hand side of (1) 
is increasing, and equals 4 when w(n) = 3. Therefore, Theorem 2 implies that 
H(n) > 5 when w(n) > 3. Then if H(n) < 4 we must have n = 1, since H(1) = 1, 
or w(n) = 2, by Lemma 2. Then, by Lemmas 3 and 4, n = 6 or 28. In particular, 
there is no solution of the equation H(n) = 4. 

Suppose H(n) = 5, so that 5uf(n) = nr(n). Two solutions, n = 140 and n = 496, 
are evident from Table 3. For any other solution, from Table 2 we have w(n) = 3 
and 2 1f n, and from Lemma 7 we have 51 n. By Lemma 10, the remaining prime 
factor exceeds 20. Then r(n) = 5S(n) < 5S(2 5 23) < 9.9, a contradiction of 
Lemma 1. 

The proof continues in this manner, considering in turn each possible value of 
H(n). Each case requires a special argument and, generally speaking, each is more 
complicated than the one before. Here, we shall give further only the penultimate 
case. 

Suppose H(n) = 12, so that 12o(n) = nr(n). Using Lemma 6, we deduce that 
we cannot have 2 n or 3 11 n, and, from Lemma 8, r(n) =A 24 or 36. Of course, 
T(n) /& 12. We note that there are no solutions in Table 3. 

Suppose n is odd. Then we cannot have w(n) = 4 since this implies 32 < 
T(n) = 12S(n) < 12S(3 5. 7. 23) < 27.5. So, if n is odd, then w(n) = 3, and 
T(n) < 12S(3 5 23) < 23.6. Notice that 4 1 T(n), since otherwise 2 1 n, so 
then 3 t r(n). Thus 32 J n, but we cannot have 32 n, else 3 1 T(n), or 33 11 n, 
by Lemma 9. The only possibility is then n = 34pq, for distinct odd primes p, q 
exceeding 3; but then we must also have a(34) - 112 j n, a contradiction. 

Suppose n is even and w(n) = 4. From Table 2, 24 t n, so r(n) < 12S(2 335.23) < 
44.2. The only possible exponents for the four prime factors of n are arrangements 
of 3, 1, 1, 1 or 4, 1, 1, 1. Since 22 1 n, these arrangements are impossible, by 
Theorem 1. Hence w(n) = 3. 

FRom Table 2, 26 t n, so that T(n) < 12S(253 3. ) < 37.1. Suppose first that 
3 j n. Then, since 2 232 n, n must equal 2333p, 2432p, 2234p, 2232p2 or 2232p, all 
of which are easily eliminated, whatever the prime p. 

Then we may now suppose that 22 1 n, 3 t n and w(n) = 3. Then 3 1 T(n) 
and r(n) < 12S(255 23) < 30.9. It follows, using Theorem 1, that we cannot 
have 25 11 n or 23 fl n. If 24 11 n, then o(24) = 31 1 n, and either n = 2431p2 or 
n = 24312p; it is easy to see that neither can be harmonic, for any p. If 22 n, 
then u(22) = 7 1 n, but 75 t n. We cannot have 74 1j n, since then u(74) = 2801 n, 
but 22742801 , 7-; we cannot have 73 1f n, since then 12 1 r(n); we cannot have 
72 11 n, since then 3f(72) = 191 n, contradicting Lemma 10; we cannot have 711 n, 
since then n = 227pa for a = 2 or 4 and (14,p) = 1, but substituting this into 
12u(n) = nr(n) leads to 4 1 (a + 1), a contradiction. O 

6. 

In Table 3 we list all 130 harmonic numbers not exceeding 2 109. The next 
smallest harmonic number is 2008725600 = 253- 527219 . 29 .31. A very simple 
search procedure, written in UBASIC, was allowed to run a very long time to 
produce this table. 
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TABLE 3 

All n ER , 1 < n < 2. 109 
n H(n) n H(n) 

1 1 56511000= 233 537 13 23 115 
6 = 2 3 2 69266400 = 253.527219 31 105 

*28 = 227 3 71253000 = 2333537 13 29 116 
140 = 225 7 5 75038600 = 23527213 19 31 91 
270= 2 335 6 80832960= 26325.13 17 127 85 

*496= 2431 5 81695250= 2 33537213 19 105 
672= 253 7 8 90409410= 2.325 7213 19 83 83 

1638= 2.327.13 9 108421632= 293311 23 31 92 
2970= 2 335 11 11 110583200= 25527313 31 91 
6200= 235231 10 115048440= 23325.13231 61 78 

*8128= 26127 7 115462620= 22325 7213 19.53 106 
8190= 2.325.7 13 15 137891520= 26325.13 29 127 87 

18600= 233 5231 15 *142990848.= 29327. 11 13 31 120 
18620= 225 7219 14 144963000= 2333537 13 59 118 
27846= 2.327 13 17 17 163390500= 2233537213 19 135 
30240= 25335 7 24 164989440= 29335 7 11 31 140 
32760= 23325.7.13 24 191711520= 25325 7211 13 19 176 
55860= 223 5 7219 21 221557248= 293311 .31 .47 94 

105664 = 2613 127 13 233103780 = 22325 7213 19 107 107 
117800 = 235219 31 19 255428096 = 297 11219 31 88 
167400 = 23335231 27 287425800 = 23335217 31. 101 101 
173600= 25527 31 25 300154400 = 25527213 19 31 130 
237510= 2.325.7.13.29 29 *301953024.= 212328191 27 
242060= 225 7213 19 26 318177800= 235219 31 37 73 73 
332640= 25335 7 11 44 318729600= 2733527. 17 31 168 
360360= 23325.7.11 13 44 326781000= 2333537213 19 168 
539400= 233.5229 31 29 400851360= 25325 7213 19 23 184 
695520= 25335 7 23 46 407386980= 22325 7211 .13 17 19 187 
726180= 223 5 7213 19 39 423184320= 26325. 13 89 127 89 
753480= 23325.7. 13 23 46 428972544= 29337 11 13 31 156 

*950976= 263213 127 27 447828480 = 29335 11 19 31 152 
1089270= 2 325 7213 19 42 *459818240= 285.7.19 37 73 96 
1421280 = 25335 7 47 47 481572000 = 2533537313 168 
1539720= 23325.7.13 47 47 499974930= 2.355.7213 17 19 153 

*2178540= 22325 7213 19 54 500860800= 27335211 17 31 176 
2229500 = 22537313 35 513513000 = 2333537 11 13 19 209 
2290260= 223 5 7219 41 41 526480500= 223 537213. 19 29 145 
2457000= 2333537 13 60 540277920= 25325 7213 19 31 186 
2845800= 23335217 31 51 559903400= 23527219 31 97 97 
4358600 = 235219 31 37 37 623397600= 2533527219 31 189 
4713984= 293311 31 48 644271264= 25327.13231 61 117 
4754880= 26325.13 127 45 *675347400= 2332527213 19 31 189 
5772200 = 23527219 31 49 *714954240 = 29325.7.11. 13 31 200 
6051500 = 22537213 19 50 758951424= 29337 11 23 31 161 
8506400= 25527331 49 766284288= 293 .7 11219 31 132 
8872200= 23335231 .53 53 819131040= 25325 7213 19 47 188 

11981970= 2 325 7211 13 19 77 825120800= 25527331 .97 97 
14303520= 25335 7 11 43 86 886402440= 23345 7 11217 19 204 
15495480= 23325 7 11 13 43 86 900463200= 253 527213. 19 31 195 
16166592= 263213 17 127 51 *995248800= 2532527313 31 189 
17428320= 25325 7213 19 96 1047254400= 27335217 23 31 184 
18154500= 223 537213 19 75 1162161000= 2333537 11 13 43 215 
23088800= 25527219 31 70 1199250360= 23345 7 11219 23 207 
23569920= 29335 11 31 80 1265532840= 23325 11 .13231 61 143 
23963940= 22325 7211 13 19 99 1307124000= 2533537213 19 240 
27027000= 2333537 11 13 110 1352913408= 29337 11 31 41 164 
29410290= 2 355 7213 19 81 *1379454720= 283 5 7 19 37 73 144 
32997888= 29337 11 31 84 1381161600= 2732527. 13 17 31 240 

*33550336= 2128191 13 1509765120= 212325 8191 45 
37035180= 22325 7213 17 19 102 1558745370= 2 355 7213 19 53 159 
44660070= 2 325 7213 19 41 82 1630964808= 233411331 61 99 
45532800= 27335217 31 96 1632825792 = 263213 17 101 127 101 
46683000= 2333537 13 19 114 1727271000= 2333537 13 19 37 222 
50401728= 263213 53 127 53 1862023680 = 29335 11 31 79 158 
52141320= 23345 7 11219 108 1867650048= 2103411 23 89 128 
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Except for those marked with an asterisk, all numbers in Table 3 are also arith- 
metic: a natural number n is arithmetic if the arithmetic mean A(n) of its positive 
divisors is an integer. In [7], Ore describes his interest in harmonic numbers that 
are neither arithmetic nor perfect; he originally thought perhaps there were none, 
but found the first example himself. 

It is easy to see that A(n)H(n) = n for any n, so those numbers marked with an 
asterisk in Table 3 are, equivalently, those n E X, n < 2 109, for which H(n) t n. 
There are six other examples in Table lb. 
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