
MATHEMATICS OF COMPUTATION
Volume 66, Number 218, April 1997, Pages 903-913
S 0025-5718(97)00856-9

ON THE RAPID COMPUTATION OF VARIOUS
POLYLOGARITHMIC CONSTANTS

DAVID BAILEY, PETER BORWEIN, AND SIMON PLOUFFE

ABSTRACT. We give algorithms for the computation of the d-th digit of cer-
tain transcendental numbers in various bases. These algorithms can be easily
implemented (multiple precision arithmetic is not needed), require virtually
no memory, and feature run times that scale nearly linearly with the order of
the digit desired. They make it feasible to compute, for example, the billionth
binary digit of log (2) or ir on a modest work station in a few hours run time.

We demonstrate this technique by computing the ten billionth hexadecimal
digit of ir, the billionth hexadecimal digits of 1r2, log(2) and log2(2), and the
ten billionth decimal digit of log(9/10).

These calculations rest on the observation that very special types of iden-
tities exist for certain numbers like ir, -r2, log(2) and log2 (2). These are essen-
tially polylogarithmic ladders in an integer base. A number of these identities
that we derive in this work appear to be new, for example the critical identity
for 7r:

?? 1 4 2 1 1
7r= (- - - _

o 16" 8i?1 8i+4 8i+5 8i+6

1. INTRODUCTION

It is widely believed that computing just the d-th digit of a number like 7r is
really no easier than computing all of the first d digits. From a bit complexity
point of view this may well be true, although it is probably very hard to prove.
What we will show is that it is possible to compute just the d-th digit of many
transcendentals in (essentially) linear time and logarithmic space. So while this is
not of fundamentally lower complexity than the best known algorithms (for say 7r
or log(2)), this makes such calculations feasible on modest workstations without
needing to implement arbitrary precision arithmetic.

We illustrate this by computing the ten billionth hexadecimal digit of 7r, the
billionth hexadecimal digits of ir2, log(2) and log2(2), and the ten billionth decimal
digit of log(9/10). Details are given in Section 4. A previous result in this same
spirit is the Rabinowitz-Wagon "spigot" algorithm for 7r. In that scheme, however,
the computation of the digit at position n depends on all digits preceding position
n.

We are interested in computing in polynomially logarithmic space and polyno-
mial time. This class is usually denoted SC (space = log0(l)(d) and time = d-(l)

Received by the editor October 11, 1995 and, in revised form, February 16, 1996.
1991 Mathematics Subject Classification. Primary llA05, 11Y16, 68Q25.
Key words and phrases. Computation, digits, log, polylogarithms, SC, 7r, algorithm.
Research of the second author was supported in part by NSERC of Canada.

903

904 DAVID BAILEY, PETER BORWEIN, AND SIMON PLOUFFE

where d is the place of the "digit" to be computed). Actually we are most interested
in the space we will denote by SC* of polynomially logarithmic space and (almost)
linear time (here we want the time = O(d logo(') (d))). There is always a possible
ambiguity when computing a digit string base b in distinguishing a sequence of
digits a(b - 1)(b - 1)(b - 1) from (a + 1)000. In this particular case we consider
either representation as an acceptable computation. In practice this problem does
not arise.

It is not known whether division is possible in SC, similarly it is not known
whether base change is possible in SC. The situation is even worse in SC*, where it
is not even known whether multiplication is possible. If two numbers are in SC* (in
the same base) then their product computes in time = O(d2 log0 () (d)) and is in
SC but not obviously in SC*. The d2 factor here is present because the logarithmic
space requirement precludes the usage of advanced multiplication techniques, such
as those based on FFTs.

We will not dwell on complexity issues except to point out that different algo-
rithms are needed for different bases (at least given our current ignorance about
base change) and very little closure exists on the class of numbers with d-th digit
computable in SC. Various of the complexity related issues are discussed in [6], [8],

[9], [11], [14].
As we will show in Section 3, the class of numbers we can compute in SC* in

base b includes all numbers of the form

(l.l)~~~~~~~~~~~ E (k) (1.1) S
~~~~~~bckq(k)' 

k=1 

where p and q are polynomials with integer coefficients and c is a positive integer. 
Since addition is possible in SC*, integer linear combinations of such numbers are 
also feasible (provided the base is fixed). 

The algorithm for the binary digits of 7r, which also shows that 7r is in SC* in 
base 2, rests on the following remarkable identity: 

Theorem 1. The following identity holds: 

001 4 2 1 1 

(1.2) Zr =E 16 (8i + 1 - 8i + 4 8i + 5 8i + 6 

This can also be written as: 
00 

(1.3) 
Pi 

6 [pi] = [4,0,0, -2,- 1-1, 0, O] 

where the overbar notation indicates that the sequence is periodic. 

Proof. This identity is equivalent to: 

(1.4) -'/2 4 -8X3-4VX4-8X dx, 

which on substituting y := 2x becomes 

F1 16y- 16 
10 

2y31 4 y - 4 



THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS 905 

The equivalence of (1.2) and (1.4) is straightforward. It follows from the identity 

1 / V'-xk-i 1 / V?? 

X8 dx Xk-J1+8 dx 
i=0 

100 1 

k 16i(8i+k) 

That the integral (1.4) evaluates to 7r is an exercise in partial fractions most easily 
done in Maple or Mathematica. El 

This proof entirely conceals the route to discovery. We found the identity (1.2) 
by a combination of inspired guessing and extensive searching using the PSLQ 
integer relation algorithm [3],[12]. 

Shortly after the authors originally announced the result (1.2), several colleagues, 
including Helaman Ferguson, Tom Hales, Victor Adamchik, Stan Wagon, Donald 
Knuth and Robert Harley, pointed out to us other formulas for 7r of this type. One 
intriguing example is 

03 1 2 2 1 1/2 1/2 1/4 
r 16"8i +1 4i + 2 4i+ 3 4i+5 4i+6 4i+7)' 

which can be written more compactly as 

-1)z 2 2 1 

io4 4i + 1 4i + 2 4i + 3 
i1=0 

In [2], this and some related identities are derived using Mathematica. 
As it turns out, these other formulas for 7r can all be written as formula (1.2) 

plus a rational multiple of the identity 

?? 1 -8 8 4 8 2 2 1 
__ E 8i+1 8i+2 8i+3 8i+4 8i+5 8i+6 8i+7) 

The proof of this identity is similar to that of Theorem 1. 
The identities of the next section and Section 5 show that, in base 2, 7r2, log2 (2) 

and various other constants, including {log(2), log(3),... , log(22)} are in SC*. (We 
don't know however if log(23) is even in SC.) 

We will describe the algorithm in Section 3. Complexity issues are discussed in 
[3], [5], [6], [7], [8], [9], [14], [19], [21] and algorithmic issues in [5], [6], [7], [8], [14]. 
The requisite special function theory may be found in [1], [5], [15], [16], [17], [20]. 

2. IDENTITIES 

As usual, we define the m-th polylogarithm Lm by 
00 

(2.1) L,(z) =Eim) IZI < 1 . 

The most basic identity is 

(2.2) - log(l - 2-n) = L1 (1/2n) 

which shows that log(l - 2-n) is in SC* base 2 for integer n. (See also section 5.) 



906 DAVID BAILEY, PETER BORWEIN, AND SIMON PLOUFFE 

Much less obvious are the identities 

(2.3) 7r2 = 36L2(1/2) - 36L2(1/4) - 12L2(1/8) + 6L2(1/64) 

and 

(2.4) log2(2) = 4L2(1/2) - 6L2(1/4) - 2L2(1/8) + L2(1/64). 

These can be written as 
00 

(2.5) lr 2= 36 E 
1 li2 a-] = [I1,-3, -2,-3,1,10], 

(2.6) log2 (2) = 2 E 212 [bi] = [2, -10, -7, -10, 2,-]. 
i=1 

Here the overline notation indicates that the sequences repeat. Thus we see that 
7r2 and log2(2) are in SC* in base 2. These two formulas can alternately be written 

2 9 ? 1 16 24 8 6 1 
7r 8 E. 64i((6i +1)2 (6i+2)2 (6i+ 3)2 (6i+ 4)2 +(6i+ 5)2)' 

log(2 0! 1 -16 16 40 14 
8 iO64 ((6i)2 + (6i+ 1)2 (6i+ 2)2 (6i+ 3)2 

10 1 

(6i+ 4)2 +(6i+5)2) 

Identities (2.3)-(2-6) are examples of polylogarithmic ladders in the base 1/2 in 
the sense of [16]. As with (1.2) we found them by searching for identities of this 
type using an integer relation algorithm. We have not found them directly in print. 
However (2.5) follows from equation (4.70) of [15] with a = 7r/3, ,3 = 7r/2 and -y = 

7r/3. Identity (2.6) now follows from the well known identity 

(2.7) 12L2(1/2) = 7r2- 6 log2 (2). 

A distinct but similar formula that we have found for ir2 iS 

2 ?? 1 16 16 8 16 
7 

=o 16i (8i+l)2 (8i + 2)2 (8i+ 3)2 (8i + 4)2 

4 4 2 

(8i+ 5)2 (8i+ 6)2 (8i+7)2 
which can be derived from the methods of section 1. 

There are several ladder identities involving L3: 

(2.8) 35/2((3) - 7r2 log(2) = 36L3 (1/2) - 18L3 (1/4) - 4L3 (1/8) + L3 (1/64), 

(2.9) 2 log3(2) - 7( 3) =-24L3 (1/2) + 18L3 (1/4) + 4L3 (1/8) - L3 (1/64), 

(2.10) 
10 log3 (2) - 2r2 log(2) =-48L3 (1/2) + 54L3 (1/4) + 12L3 (1/8) - 3L3 (1/64). 

The favored algorithms for 7r of the last centuries involved some variant of 
Machin's 1706 formula: 

(2.11) 4 = 4 arctan - -arctan 



THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS 907 

There are many related formulas [15], [16], [17], [20] but to be useful to us all the 
arguments of the arctans have to be a power of a common base, and we have not 
discovered any such formula for 7r . One can however write 

(2.12) 2 = 2 arctan - + arctan . 

This can be written as 

(2.13) 7r = 4f(1/2) + f(1/8) where f(x) S i (2 )Ix 

and allows for the calculation of \/'-7r in SC*. 
Another two identities involving Catalan's constant G, ir and log(2) are: 

(2.14) G- 8() 2L2i ij2' [ci] = [I,I, I, o, --1,--1,0] 

and 

(2.15) 2 _log 
2 (2) ____di (2.15) 59 8 _ log(2 = E Li [di] = [1,0,-1,-1,-1,0,1,1]. 

These may be found in [17, p. 105, p. 151]. Thus 8G -irlog(2) is also in SC* in 
base 2, but it is open and interesting as to whether G is itself in SC* in base 2. 

A family of base 2 ladder identities exist: 

(2.16) Lm(1/64) Lm(1/8) 2 Lm(1/4) + 4 Lm(1/2) 5 (-log(2))m 
6m-1 3m-1 2m-1 9 9 m! 

_2(_ g (2)_)m-2 4 (- log(2))m-4 403 ((5) (- log(2)) - 0 
54 (m-2)! 486 (m-4)! 1296 (m-5)! 

The above identity holds for 1 < m < 5; when the arguments to factorials are 
negative they are taken to be infinite so the corresponding terms disappear. See 
[16, p. 45]. 

As in the case of formula (1.2) for 7r, colleagues of the authors have subsequently 
pointed out several other formulas of this type for various constants. Three exam- 
ples reported by Knuth, which are based on formulas in [13, p. 17, 18, 22, 47, 139], 
are 

l l 1 1 1/2 1/4 1/8 
2)=zZ16.(8i 1 +8i +3+8i+ 5+8i +7) 

x/~arctan(1/x~) SE 1 1 1/2 1/4 1/8 
i=O 16-i 8i +3+ 8i +5 -8i +7' 

00 1 1 - 1 1/2 _1/4 
arctan(1/3) =Z 16i (8i + 1 8i + 2 8i + 4 8i + 5 

Thus these constants are also in class SC*. Some other examples can be found 
in [18]. 



908 DAVID BAILEY, PETER BORWEIN, AND SIMON PLOUFFE 

3. THE ALGORITHM 

Our algorithm to compute individual base-b digits of certain constants is based 
on the binary scheme for exponentiation, wherein one evaluates x' rapidly by suc- 
cessive squaring and multiplication. This reduces the number of multiplications to 
less than 2log2(n). According to Knuth [14], where details are given, this trick 
goes back at least to 200 B.C. In our application, we need to perform exponentia- 
tion modulo a positive integer c, but the overall scheme is the same one merely 
performs all operations modulo c. An efficient formulation of this algorithm is as 
follows. 

To compute r = bn mod c, first set t to be the largest power of two < n, and set 
r= 1. Then 

A: if n > t then r -br mod c; n -n-t; endif 
t <- t/2 
if t > I then r -r2mod c; go to A; endif 

Here and in what follows, "mod" is used in the binary operator sense, namely 
as the binary function defined by x mod y := x - [x/y]y. Note that the above 
algorithm is entirely performed with positive integers that do not exceed c2 in size. 
Thus it can be correctly performed, without round-off error, provided a numeric 
precision of at least 1 + 2 log2 c bits is used. 

Consider now a constant defined by a series of the form 
00 

S= E bckp(k)' 

where b and c are positive integers and p(k) is a polynomial with integer coefficients. 
First observe that the digits in the base b expansion of S beginning at position n+ 1 
can be obtained from the fractional part of bnS. Thus we can write 

oo bn-ck 

(3.4) bnS mod 1 = b (k) mod 1 
k=0 

Ln/ci n c mod__ p_k______bmodk 

k mod p(k) mod I +mod 1. S= p(k) kLc]lp(k) k=O k= Ln/cj +1 

For each term of the first summation, the binary exponentiation scheme is used 
to evaluate the numerator. Then floating-point arithmetic is used to perform the 
division and add the result to the sum mod 1. The second summation, where 
the exponent of b is negative, may be evaluated as written using floating-point 
arithmetic. It is only necessary to compute a few terms of this second summation, 
just enough to insure that the remaining terms sum to less than the "epsilon" of 
the floating-point arithmetic being used. The final result, a fraction between 0 and 
1, is then converted to the desired base b. 

Since floating-point arithmetic is used here in divisions and in addition modulo 
1, the result is of course subject to round-off error. If the floating-point arithmetic 
system being used has the property that the result of each individual floating-point 
operation is in error by at most one bit (as in systems implementing the IEEE 
arithmetic standard), then no more than log2(2n) bits of the final result will be 
corrupted. This is actually a generous estimate, since it does not assume any 
cancelation of errors, which would yield a lower estimate. In any event, it is clear 



THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS 909 

that ordinary IEEE 64-bit arithmetic is sufficient to obtain a numerically significant 
result for even a large computation, and "quad precision" (i.e. 128-bit) arithmetic, 
if available, can insure that the final result is accurate to several digits beyond 
the one desired. One can check the significance of a computed result beginning 
at position n by also performing a computation at position n + 1 or n - 1 and 
comparing the trailing digits produced. 

The most basic interesting constant whose digits can be computed using this 
scheme is 

00 

log (2) S7 k2k 
k=1 

in base 2. Using this scheme to compute hexadecimal digits of ir from identity (1.2) 
is only marginally more complicated, since one can rewrite formula (1.2) using four 
sums of the required form. Details are given in the next section. In both cases, in 
order to compute the n-th binary digit (or a fixed number of binary digits at the 
n-th place) we must sum 0(n) terms of the series. Each term requires 0(log(n)) 
arithmetic operations and the required precision is 0(log(n)) digits. This gives 
a total bit complexity of 0(nlog(n)M(log(n))) where M(j) is the complexity of 
multiplying j bit integers. So even with ordinary multiplication the bit complexity 
is 0 (n log3 (n)) . 

This algorithm is, by a factor of log(log(log(n))), asymptotically slower than the 
fastest known algorithms for generating the n-th digit by generating all of the first 
n digits of log(2) or ir [7]. The asymptotically fastest algorithms for all the first 
n digits known requires a Strassen-Sch6nhage multiplication [19]; the algorithms 
actually employed use an FFT based multiplication and are marginally slower than 
our algorithm, from a complexity point of view, for computing just the n-th digit. Of 
course this complexity analysis is totally misleading: the strength of our algorithm 
rests mostly on its easy implementation in standard precision without requiring 
FFT methods to accelerate the computation. 

It is clear that the above methods can easily be extended to evaluate digits of 
contstants defined by a formula of the form 

0 
p(k) S 

bckq(k)' 

where p and q are polynomials with integer coefficients and c is a positive integer. 
Similarly if p and q are slowly growing analytic functions of various types the 
method extends. 

4. COMPUTATIONS 

We report here computations of 7r, log(2), log2(2), 7r2 and log(9/10), based 
on the formulas (1.1), (2.2), (2.5), (2.6) and the identity log(9/10) = -LI(1/10), 
respectively. 

Each of our computations employed quad precision floating-point arithmetic for 
division and sum mod 1 operations. Quad precision is supported from Fortran on 
the IBM RS6000/590 and the SGI Power Challenge (R8000), which were employed 
by the authors in these computations. We were able to avoid the usage of explicit 
quad precision in the exponentiation scheme by exploiting a hardware feature com- 
mon to these two systems, namely the 106-bit internal registers in the multiply-add 



910 DAVID BAILEY, PETER BORWEIN, AND SIMON PLOUFFE 

operation. This saved considerable time, because quad precision operations are 
significantly more expensive than 64-bit operations. 

Computation of xr2 and log2(2) presented a special challenge, because one must 
perform the exponentiation algorithm modulo k2 instead of k. When n is larger than 
only 213, some terms of the series (2.5) and (2.6) must be computed with a modulus 
k2 that is greater than 226. Squares that appear in the exponentiation algorithm will 
then exceed 252, which is nearly the maximum precision of IEEE 64-bit floating- 
point numbers. When n is larger than 226, then squares in the exponentiation 
algorithm will exceed 2104, which is nearly the limit of quad precision. 

This difficulty can be remedied using a method which has been employed for 
example in searches for Wieferich primes [10]. Represent the running value r in 
the exponentiation algorithm by the ordered pair (rj, r2), where r = rl + kr2, and 
where rl and r2 are positive integers less than k. Then one can write 

r2= (r, + kr2)2 = r2 + 2r1r2k + r2k2. 

When this is reduced mod k2, the last term disappears. The remaining expression is 
of the required ordered pair form, provided that r2 is first reduced mod k, the carry 
from this reduction is added to 2rlr2, and this sum is also reduced mod k. Note 
that this scheme can be implemented with integers of size not exceeding 2k2. Since 
the computation of r2 mod k2 is the key operation of the binary exponentiation 
algorithm, this means that ordinary IEEE 64-bit floating-point arithmetic can be 
used to compute the n-th hexadecimal digit of ir2 or log2(2) for n up to about 
224. For larger n, we still used this basic scheme, but we employed the multiply- 
add "trick" mentioned above to avoid the need for explicit quad precision in this 
section of code. 

Our results are given below. The first entry, for example, gives the 106-th through 
106 + 13-th hexadecimal digits of 7r after the "decimal" point. In all cases we did the 
calculations twice the second calculation was similar to the first, except shifted 
back one position. Since this changes all the arithmetic performed, it is a highly 
rigorous validity check. Thus we believe that all the digits shown below are correct. 

These computations were done at NASA Ames Research Center, using worksta- 
tion cycles that otherwise would have been idle. 

5. LOGS IN BASE 2 

It is easy to compute, in base 2, the d-th binary digit of 

(5.1) log(l - 2-n) = L1(1/2 n). 

So it is easy to compute log(m) for any integer m that can be written as 

(5.2) IM := ~~(2 a, - 1)(2 a2 - 1) . . . (2 ah -1) 

(5 .2) m = (2b1 - 1)(2b2 - 1)... (2b.7 1) 

In particular the n-th cyclotomic polynomial evaluated at 2 is so computable. A 
check shows that all primes less than 19 are of this form. The beginning of this list 
is: 

{2, 3,5,7,11,13,17,31,43,57,73,127,151,205,257}. 

Since 

218 - 1 = 7 .9 19 73. 



THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS 911 

Constant: Base: Position: Digits from Position: 
7r 16 106 26C65E52CB4593 

107 17AF5863EFED8D 
108 ECB840E21926EC 
109 85895585A0428B 
1010 921C73C6838FB2 

log(2) 16 lo6 418489A9406EC9 
107 815F479E2B9102 
108 E648F40940E13E 
109 BIEEF1252297EC 

,7f2 16 106 685554E1228505 
107 9862837AD8AABF 
108 4861AAF8F861BE 
109 437A2BA4A13591 

log2 (2) 16 lo6 2EC7EDB82B2DF7 
107 33374B47882B32 
108 3F5515OFlAB3DC 
109 8BA7C885CEFCE8 

log(9/10) 10 106 80174212190900 
107 21093001236414 
108 01309302330968 
109 44066397959215 
1010 82528693381274 

and since 7, VX and 73 are all on the above list we can compute log(19) in SC* 
from 

log(19) = log(218 - 1) - log(7) - log(9) - log(73). 

Note that 211 1 = 23 89 so either both log(23) and log(89) are in SC* or neither 
is. 

We would like to thank Carl Pomerance for showing that an identity of type 
(5.2) does not exist for 23. This is a consequence of the fact that each cyclotomic 
polynomial evaluated at two has a new distinct prime factor. We would also like 
to thank Robert Harley for pointing out that 29 and 37 are in SC* in base 2 via 
consideration of the Aurefeuillian factors 22,-1 + 2n + 1 and 22n-1 - 2n + 1. 

6. RELATION BOUNDS 

One of the first questions that arises in the wake of the above study is whether 
there exists a scheme of this type to compute decimal digits of 7r. At present 
we know of no identity like (1.2) in base 10. The chances that there is such an 
identity are dimmed by some numerical results that we have obtained using the 
PSLQ integer relation algorithm [3], [12]. These computations establish (with the 
usual provisos of computer "proofs") that there are no identities (except for the 



912 DAVID BAILEY, PETER BORWEIN, AND SIMON PLOUFFE 

case n = 16) of the form 

al,+ 1 E1 _ a2 a3 +am+, 

aO ao nk rnk+I mk+2 mk+m m 

where n ranges from 2 to 128, where m ranges from 1 to min(n, 32), and where 
the Euclidean norm of the integer vector (ao, a1,... , am+,) is 1012 or less. These 
results of course do not have any bearing on the possibility that there is a formula 
not of this form which permits computation of ir in some non-binary base. 

In fact, J. P. Buhler has reported a proof that any identity for 7r of the above 
K ~K 

form must have n = 2 or n = X . This also does not exclude more complicated 
formulae for the computation of 7r base 10. 

7. QUESTIONS 

As mentioned in the previous section, we cannot at present compute decimal 
digits of 7r by our methods because we know of no identity like (1.2) in base 10. 
But it seems unlikely that it is fundamentally impossible to do so. This raises the 
following obvious problem: 

1] Find an algorithm for the n-th decimal digit of 7r in SC*. It is not even clear 
that 7r is in SC in base 10 but it ought to be possible to show this. 

2] Show that 7r is in SC in all bases. 
3] Are e and 2 in SC (SC*) in any base? 
Similarly the treatment of log is incomplete: 
4] Is log(2) in SC* in base 10? 
5] Is log(23) in SC* in base 2? 

8. ACKNOWLEDGMENTS 

The authors wish to acknowledge the following for their helpful comments: V. 
Adamchik, J. Borwein, J. Buhler, R. Crandall, H. Ferguson, T. Hales, R. Harley, 
D. Knuth, C. Pomerance and S. Wagon. 

REFERENCES 

1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York, 
NY, 1966. MR 34:8606 

2. V. Adamchik and S. Wagon, Pi: A 2000-year search changes direction (preprint). 
3. A. V. Aho, J.E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo- 

rithms, Addison-Wesley, Reading, MA, 1975. MR 54:1706 
4. D. H. Bailey, J. Borwein and R. Girgensohn, Experimental evaluation of Euler sums, Exper- 

imental Mathematics 3 (1994), 17-30. MR 96e:11168 
5. J. Borwein, and P Borwein, Pi and the AGM - A Study in Analytic Number Theory and 

Computational Complexity, Wiley, New York, NY, 1987. MR 89a:11134 
6. J. Borwein and P. Borwein, On the complexity of familiar functions and numbers, SIAM 

Review 30 (1988), 589-601. MR 89k:68061 
7. J. Borwein, P. Borwein and D. H. Bailey, Ramanujan, modular equations and approximations 

to pi, Amer. Math. Monthly 96 (1989), 201-219. MR 90d:11143 
8. R. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput. Mach. 

21 (1974), 201-206. MR 58:31996 
9. S. Cook, A taxonomy of problems with fast parallel algorithms, Information and Control 64 

(1985), 2-22. MR 87k:68043 
10. R. Crandall, K. Dilcher, and C. Pomerance, A search for Wieferich and Wilson primes, Math. 

Comp. 66 (1997), 433-449. CMP 96:07 



THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS 913 

11. R. Crandall and J. Buhler, On the evaluation of Euler sums, Experimental Mathematics 3, 
(1995), 275-285. MR 96e:11113 

12. H. R. P. Ferguson and D. H. Bailey, Analysis of PSLQ, an integer relation algorithm 
(preprint). 

13. E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975. 
14. D. E. Knuth, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, 

Addison-Wesley, Reading, MA, 1981. MR 83i:68003 
15. L. Lewin, Polylogarithms and Associated Functions, North Holland, New York, 1981. MR 

83b:33019 
16. L. Lewin, Structural Properties of Polylogarithms, Amer. Math. Soc., RI., 1991. MR 

93b:11158 
17. N. Nielsen, Der Eulersche Dilogarithmus, Halle, Leipzig, 1909. 
18. S. D. Rabinowitz and S. Wagon, A spigot algorithm for the digits of pi, Amer. Math. Monthly 

102 (1995), 195-203. MR 96a:11152 
19. A. Schonhage, Asymptotically fast algorithms for the numerical multiplication and division 

of polynomials with complex coefficients, in: EUROCAM (1982) Marseille, Springer Lecture 
Notes in Computer Science, vol. 144, 1982, pp. 3-15. MR 83m:68064 

20. J. Todd, A problem on arc tangent relations, Amer. Math. Monthly 56 (1949), 517-528. MR 
11:159d 

21. H. S. Wilf, Algorithms and Complexity, Prentice Hall, Englewood Cliffs, NJ, 1986. MR 
88j:68073 

NASA AMES RESEARCH CENTER, MAIL STOP T27A-1, MOFFETT FIELD, CALIFORNIA 94035- 
1000 

E-mail address: dbailey@nas .nasa.gov 

DEPARTMENT OF MATHEMATICS AND STATISTICS, SIMON FRASER UNIVERSITY, BURNABY, B.C., 
CANADA V5A 1S6 

E-mail address: pborwein@cecm. sfu. ca 

DEPARTMENT OF MATHEMATICS AND STATISTICS, SIMON FRASER UNIVERSITY, BURNABY, B.C., 
CANADA V5A 1S6 

E-mail address: plouffe@cecm. sfu. ca 


	Cit r436_c437: 
	Cit r447_c448: 
	Cit r449_c450: 


